diff options
Diffstat (limited to 'qemu/target-arm/neon_helper.c')
-rw-r--r-- | qemu/target-arm/neon_helper.c | 2243 |
1 files changed, 2243 insertions, 0 deletions
diff --git a/qemu/target-arm/neon_helper.c b/qemu/target-arm/neon_helper.c new file mode 100644 index 000000000..47d13e908 --- /dev/null +++ b/qemu/target-arm/neon_helper.c @@ -0,0 +1,2243 @@ +/* + * ARM NEON vector operations. + * + * Copyright (c) 2007, 2008 CodeSourcery. + * Written by Paul Brook + * + * This code is licensed under the GNU GPL v2. + */ +#include <stdlib.h> +#include <stdio.h> + +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/helper-proto.h" + +#define SIGNBIT (uint32_t)0x80000000 +#define SIGNBIT64 ((uint64_t)1 << 63) + +#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q + +#define NEON_TYPE1(name, type) \ +typedef struct \ +{ \ + type v1; \ +} neon_##name; +#ifdef HOST_WORDS_BIGENDIAN +#define NEON_TYPE2(name, type) \ +typedef struct \ +{ \ + type v2; \ + type v1; \ +} neon_##name; +#define NEON_TYPE4(name, type) \ +typedef struct \ +{ \ + type v4; \ + type v3; \ + type v2; \ + type v1; \ +} neon_##name; +#else +#define NEON_TYPE2(name, type) \ +typedef struct \ +{ \ + type v1; \ + type v2; \ +} neon_##name; +#define NEON_TYPE4(name, type) \ +typedef struct \ +{ \ + type v1; \ + type v2; \ + type v3; \ + type v4; \ +} neon_##name; +#endif + +NEON_TYPE4(s8, int8_t) +NEON_TYPE4(u8, uint8_t) +NEON_TYPE2(s16, int16_t) +NEON_TYPE2(u16, uint16_t) +NEON_TYPE1(s32, int32_t) +NEON_TYPE1(u32, uint32_t) +#undef NEON_TYPE4 +#undef NEON_TYPE2 +#undef NEON_TYPE1 + +/* Copy from a uint32_t to a vector structure type. */ +#define NEON_UNPACK(vtype, dest, val) do { \ + union { \ + vtype v; \ + uint32_t i; \ + } conv_u; \ + conv_u.i = (val); \ + dest = conv_u.v; \ + } while(0) + +/* Copy from a vector structure type to a uint32_t. */ +#define NEON_PACK(vtype, dest, val) do { \ + union { \ + vtype v; \ + uint32_t i; \ + } conv_u; \ + conv_u.v = (val); \ + dest = conv_u.i; \ + } while(0) + +#define NEON_DO1 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); +#define NEON_DO2 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ + NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); +#define NEON_DO4 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ + NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ + NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ + NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); + +#define NEON_VOP_BODY(vtype, n) \ +{ \ + uint32_t res; \ + vtype vsrc1; \ + vtype vsrc2; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg1); \ + NEON_UNPACK(vtype, vsrc2, arg2); \ + NEON_DO##n; \ + NEON_PACK(vtype, res, vdest); \ + return res; \ +} + +#define NEON_VOP(name, vtype, n) \ +uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ +NEON_VOP_BODY(vtype, n) + +#define NEON_VOP_ENV(name, vtype, n) \ +uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \ +NEON_VOP_BODY(vtype, n) + +/* Pairwise operations. */ +/* For 32-bit elements each segment only contains a single element, so + the elementwise and pairwise operations are the same. */ +#define NEON_PDO2 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ + NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); +#define NEON_PDO4 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ + NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ + NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ + NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \ + +#define NEON_POP(name, vtype, n) \ +uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ +{ \ + uint32_t res; \ + vtype vsrc1; \ + vtype vsrc2; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg1); \ + NEON_UNPACK(vtype, vsrc2, arg2); \ + NEON_PDO##n; \ + NEON_PACK(vtype, res, vdest); \ + return res; \ +} + +/* Unary operators. */ +#define NEON_VOP1(name, vtype, n) \ +uint32_t HELPER(glue(neon_,name))(uint32_t arg) \ +{ \ + vtype vsrc1; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg); \ + NEON_DO##n; \ + NEON_PACK(vtype, arg, vdest); \ + return arg; \ +} + + +#define NEON_USAT(dest, src1, src2, type) do { \ + uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ + if (tmp != (type)tmp) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = tmp; \ + }} while(0) +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) +NEON_VOP_ENV(qadd_u8, neon_u8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) +NEON_VOP_ENV(qadd_u16, neon_u16, 2) +#undef NEON_FN +#undef NEON_USAT + +uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a + b; + if (res < a) { + SET_QC(); + res = ~0; + } + return res; +} + +uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) +{ + uint64_t res; + + res = src1 + src2; + if (res < src1) { + SET_QC(); + res = ~(uint64_t)0; + } + return res; +} + +#define NEON_SSAT(dest, src1, src2, type) do { \ + int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ + if (tmp != (type)tmp) { \ + SET_QC(); \ + if (src2 > 0) { \ + tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ + } else { \ + tmp = 1 << (sizeof(type) * 8 - 1); \ + } \ + } \ + dest = tmp; \ + } while(0) +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) +NEON_VOP_ENV(qadd_s8, neon_s8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) +NEON_VOP_ENV(qadd_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_SSAT + +uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { + SET_QC(); + res = ~(((int32_t)a >> 31) ^ SIGNBIT); + } + return res; +} + +uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) +{ + uint64_t res; + + res = src1 + src2; + if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { + SET_QC(); + res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; + } + return res; +} + +/* Unsigned saturating accumulate of signed value + * + * Op1/Rn is treated as signed + * Op2/Rd is treated as unsigned + * + * Explicit casting is used to ensure the correct sign extension of + * inputs. The result is treated as a unsigned value and saturated as such. + * + * We use a macro for the 8/16 bit cases which expects signed integers of va, + * vb, and vr for interim calculation and an unsigned 32 bit result value r. + */ + +#define USATACC(bits, shift) \ + do { \ + va = sextract32(a, shift, bits); \ + vb = extract32(b, shift, bits); \ + vr = va + vb; \ + if (vr > UINT##bits##_MAX) { \ + SET_QC(); \ + vr = UINT##bits##_MAX; \ + } else if (vr < 0) { \ + SET_QC(); \ + vr = 0; \ + } \ + r = deposit32(r, shift, bits, vr); \ + } while (0) + +uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int16_t va, vb, vr; + uint32_t r = 0; + + USATACC(8, 0); + USATACC(8, 8); + USATACC(8, 16); + USATACC(8, 24); + return r; +} + +uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int32_t va, vb, vr; + uint64_t r = 0; + + USATACC(16, 0); + USATACC(16, 16); + return r; +} + +#undef USATACC + +uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int64_t va = (int32_t)a; + int64_t vb = (uint32_t)b; + int64_t vr = va + vb; + if (vr > UINT32_MAX) { + SET_QC(); + vr = UINT32_MAX; + } else if (vr < 0) { + SET_QC(); + vr = 0; + } + return vr; +} + +uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b) +{ + uint64_t res; + res = a + b; + /* We only need to look at the pattern of SIGN bits to detect + * +ve/-ve saturation + */ + if (~a & b & ~res & SIGNBIT64) { + SET_QC(); + res = UINT64_MAX; + } else if (a & ~b & res & SIGNBIT64) { + SET_QC(); + res = 0; + } + return res; +} + +/* Signed saturating accumulate of unsigned value + * + * Op1/Rn is treated as unsigned + * Op2/Rd is treated as signed + * + * The result is treated as a signed value and saturated as such + * + * We use a macro for the 8/16 bit cases which expects signed integers of va, + * vb, and vr for interim calculation and an unsigned 32 bit result value r. + */ + +#define SSATACC(bits, shift) \ + do { \ + va = extract32(a, shift, bits); \ + vb = sextract32(b, shift, bits); \ + vr = va + vb; \ + if (vr > INT##bits##_MAX) { \ + SET_QC(); \ + vr = INT##bits##_MAX; \ + } else if (vr < INT##bits##_MIN) { \ + SET_QC(); \ + vr = INT##bits##_MIN; \ + } \ + r = deposit32(r, shift, bits, vr); \ + } while (0) + +uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int16_t va, vb, vr; + uint32_t r = 0; + + SSATACC(8, 0); + SSATACC(8, 8); + SSATACC(8, 16); + SSATACC(8, 24); + return r; +} + +uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int32_t va, vb, vr; + uint32_t r = 0; + + SSATACC(16, 0); + SSATACC(16, 16); + + return r; +} + +#undef SSATACC + +uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + int64_t res; + int64_t op1 = (uint32_t)a; + int64_t op2 = (int32_t)b; + res = op1 + op2; + if (res > INT32_MAX) { + SET_QC(); + res = INT32_MAX; + } else if (res < INT32_MIN) { + SET_QC(); + res = INT32_MIN; + } + return res; +} + +uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b) +{ + uint64_t res; + res = a + b; + /* We only need to look at the pattern of SIGN bits to detect an overflow */ + if (((a & res) + | (~b & res) + | (a & ~b)) & SIGNBIT64) { + SET_QC(); + res = INT64_MAX; + } + return res; +} + + +#define NEON_USAT(dest, src1, src2, type) do { \ + uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ + if (tmp != (type)tmp) { \ + SET_QC(); \ + dest = 0; \ + } else { \ + dest = tmp; \ + }} while(0) +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) +NEON_VOP_ENV(qsub_u8, neon_u8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) +NEON_VOP_ENV(qsub_u16, neon_u16, 2) +#undef NEON_FN +#undef NEON_USAT + +uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a - b; + if (res > a) { + SET_QC(); + res = 0; + } + return res; +} + +uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) +{ + uint64_t res; + + if (src1 < src2) { + SET_QC(); + res = 0; + } else { + res = src1 - src2; + } + return res; +} + +#define NEON_SSAT(dest, src1, src2, type) do { \ + int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ + if (tmp != (type)tmp) { \ + SET_QC(); \ + if (src2 < 0) { \ + tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ + } else { \ + tmp = 1 << (sizeof(type) * 8 - 1); \ + } \ + } \ + dest = tmp; \ + } while(0) +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) +NEON_VOP_ENV(qsub_s8, neon_s8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) +NEON_VOP_ENV(qsub_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_SSAT + +uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a - b; + if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { + SET_QC(); + res = ~(((int32_t)a >> 31) ^ SIGNBIT); + } + return res; +} + +uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) +{ + uint64_t res; + + res = src1 - src2; + if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { + SET_QC(); + res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; + } + return res; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1 +NEON_VOP(hadd_s8, neon_s8, 4) +NEON_VOP(hadd_u8, neon_u8, 4) +NEON_VOP(hadd_s16, neon_s16, 2) +NEON_VOP(hadd_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2) +{ + int32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if (src1 & src2 & 1) + dest++; + return dest; +} + +uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2) +{ + uint32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if (src1 & src2 & 1) + dest++; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1 +NEON_VOP(rhadd_s8, neon_s8, 4) +NEON_VOP(rhadd_u8, neon_u8, 4) +NEON_VOP(rhadd_s16, neon_s16, 2) +NEON_VOP(rhadd_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2) +{ + int32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if ((src1 | src2) & 1) + dest++; + return dest; +} + +uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2) +{ + uint32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if ((src1 | src2) & 1) + dest++; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1 +NEON_VOP(hsub_s8, neon_s8, 4) +NEON_VOP(hsub_u8, neon_u8, 4) +NEON_VOP(hsub_s16, neon_s16, 2) +NEON_VOP(hsub_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2) +{ + int32_t dest; + + dest = (src1 >> 1) - (src2 >> 1); + if ((~src1) & src2 & 1) + dest--; + return dest; +} + +uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2) +{ + uint32_t dest; + + dest = (src1 >> 1) - (src2 >> 1); + if ((~src1) & src2 & 1) + dest--; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0 +NEON_VOP(cgt_s8, neon_s8, 4) +NEON_VOP(cgt_u8, neon_u8, 4) +NEON_VOP(cgt_s16, neon_s16, 2) +NEON_VOP(cgt_u16, neon_u16, 2) +NEON_VOP(cgt_s32, neon_s32, 1) +NEON_VOP(cgt_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0 +NEON_VOP(cge_s8, neon_s8, 4) +NEON_VOP(cge_u8, neon_u8, 4) +NEON_VOP(cge_s16, neon_s16, 2) +NEON_VOP(cge_u16, neon_u16, 2) +NEON_VOP(cge_s32, neon_s32, 1) +NEON_VOP(cge_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 +NEON_VOP(min_s8, neon_s8, 4) +NEON_VOP(min_u8, neon_u8, 4) +NEON_VOP(min_s16, neon_s16, 2) +NEON_VOP(min_u16, neon_u16, 2) +NEON_VOP(min_s32, neon_s32, 1) +NEON_VOP(min_u32, neon_u32, 1) +NEON_POP(pmin_s8, neon_s8, 4) +NEON_POP(pmin_u8, neon_u8, 4) +NEON_POP(pmin_s16, neon_s16, 2) +NEON_POP(pmin_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 +NEON_VOP(max_s8, neon_s8, 4) +NEON_VOP(max_u8, neon_u8, 4) +NEON_VOP(max_s16, neon_s16, 2) +NEON_VOP(max_u16, neon_u16, 2) +NEON_VOP(max_s32, neon_s32, 1) +NEON_VOP(max_u32, neon_u32, 1) +NEON_POP(pmax_s8, neon_s8, 4) +NEON_POP(pmax_u8, neon_u8, 4) +NEON_POP(pmax_s16, neon_s16, 2) +NEON_POP(pmax_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) \ + dest = (src1 > src2) ? (src1 - src2) : (src2 - src1) +NEON_VOP(abd_s8, neon_s8, 4) +NEON_VOP(abd_u8, neon_u8, 4) +NEON_VOP(abd_s16, neon_s16, 2) +NEON_VOP(abd_u16, neon_u16, 2) +NEON_VOP(abd_s32, neon_s32, 1) +NEON_VOP(abd_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8 || \ + tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + }} while (0) +NEON_VOP(shl_u8, neon_u8, 4) +NEON_VOP(shl_u16, neon_u16, 2) +NEON_VOP(shl_u32, neon_u32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop) +{ + int8_t shift = (int8_t)shiftop; + if (shift >= 64 || shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= -shift; + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = src1 >> (sizeof(src1) * 8 - 1); \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + }} while (0) +NEON_VOP(shl_s8, neon_s8, 4) +NEON_VOP(shl_s16, neon_s16, 2) +NEON_VOP(shl_s32, neon_s32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop) +{ + int8_t shift = (int8_t)shiftop; + int64_t val = valop; + if (shift >= 64) { + val = 0; + } else if (shift <= -64) { + val >>= 63; + } else if (shift < 0) { + val >>= -shift; + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if ((tmp >= (ssize_t)sizeof(src1) * 8) \ + || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + }} while (0) +NEON_VOP(rshl_s8, neon_s8, 4) +NEON_VOP(rshl_s16, neon_s16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bit accumulator. */ +uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop) +{ + int32_t dest; + int32_t val = (int32_t)valop; + int8_t shift = (int8_t)shiftop; + if ((shift >= 32) || (shift <= -32)) { + dest = 0; + } else if (shift < 0) { + int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + } + return dest; +} + +/* Handling addition overflow with 64 bit input values is more + * tricky than with 32 bit values. */ +uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop) +{ + int8_t shift = (int8_t)shiftop; + int64_t val = valop; + if ((shift >= 64) || (shift <= -64)) { + val = 0; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == INT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x4000000000000000LL; + } else { + val++; + val >>= 1; + } + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8 || \ + tmp < -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ + dest = src1 >> (-tmp - 1); \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + }} while (0) +NEON_VOP(rshl_u8, neon_u8, 4) +NEON_VOP(rshl_u16, neon_u16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bit accumulator. */ +uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop) +{ + uint32_t dest; + int8_t shift = (int8_t)shiftop; + if (shift >= 32 || shift < -32) { + dest = 0; + } else if (shift == -32) { + dest = val >> 31; + } else if (shift < 0) { + uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + } + return dest; +} + +/* Handling addition overflow with 64 bit input values is more + * tricky than with 32 bit values. */ +uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop) +{ + int8_t shift = (uint8_t)shiftop; + if (shift >= 64 || shift < -64) { + val = 0; + } else if (shift == -64) { + /* Rounding a 1-bit result just preserves that bit. */ + val >>= 63; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == UINT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x8000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + }} while (0) +NEON_VOP_ENV(qshl_u8, neon_u8, 4) +NEON_VOP_ENV(qshl_u16, neon_u16, 2) +NEON_VOP_ENV(qshl_u32, neon_u32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) +{ + int8_t shift = (int8_t)shiftop; + if (shift >= 64) { + if (val) { + val = ~(uint64_t)0; + SET_QC(); + } + } else if (shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= -shift; + } else { + uint64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = ~(uint64_t)0; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } else { \ + dest = src1; \ + } \ + } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = src1 >> 31; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } \ + }} while (0) +NEON_VOP_ENV(qshl_s8, neon_s8, 4) +NEON_VOP_ENV(qshl_s16, neon_s16, 2) +NEON_VOP_ENV(qshl_s32, neon_s32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) +{ + int8_t shift = (uint8_t)shiftop; + int64_t val = valop; + if (shift >= 64) { + if (val) { + SET_QC(); + val = (val >> 63) ^ ~SIGNBIT64; + } + } else if (shift <= -64) { + val >>= 63; + } else if (shift < 0) { + val >>= -shift; + } else { + int64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = (tmp >> 63) ^ ~SIGNBIT64; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \ + SET_QC(); \ + dest = 0; \ + } else { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + } \ + }} while (0) +NEON_VOP_ENV(qshlu_s8, neon_u8, 4) +NEON_VOP_ENV(qshlu_s16, neon_u16, 2) +#undef NEON_FN + +uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) +{ + if ((int32_t)valop < 0) { + SET_QC(); + return 0; + } + return helper_neon_qshl_u32(env, valop, shiftop); +} + +uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) +{ + if ((int64_t)valop < 0) { + SET_QC(); + return 0; + } + return helper_neon_qshl_u64(env, valop, shiftop); +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ + dest = src1 >> (sizeof(src1) * 8 - 1); \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + }} while (0) +NEON_VOP_ENV(qrshl_u8, neon_u8, 4) +NEON_VOP_ENV(qrshl_u16, neon_u16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bit accumulator. */ +uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop) +{ + uint32_t dest; + int8_t shift = (int8_t)shiftop; + if (shift >= 32) { + if (val) { + SET_QC(); + dest = ~0; + } else { + dest = 0; + } + } else if (shift < -32) { + dest = 0; + } else if (shift == -32) { + dest = val >> 31; + } else if (shift < 0) { + uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + if ((dest >> shift) != val) { + SET_QC(); + dest = ~0; + } + } + return dest; +} + +/* Handling addition overflow with 64 bit input values is more + * tricky than with 32 bit values. */ +uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) +{ + int8_t shift = (int8_t)shiftop; + if (shift >= 64) { + if (val) { + SET_QC(); + val = ~0; + } + } else if (shift < -64) { + val = 0; + } else if (shift == -64) { + val >>= 63; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == UINT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x8000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { \ + uint64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = ~0; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) do { \ + int8_t tmp; \ + tmp = (int8_t)src2; \ + if (tmp >= (ssize_t)sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = (1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } \ + }} while (0) +NEON_VOP_ENV(qrshl_s8, neon_s8, 4) +NEON_VOP_ENV(qrshl_s16, neon_s16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bit accumulator. */ +uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) +{ + int32_t dest; + int32_t val = (int32_t)valop; + int8_t shift = (int8_t)shiftop; + if (shift >= 32) { + if (val) { + SET_QC(); + dest = (val >> 31) ^ ~SIGNBIT; + } else { + dest = 0; + } + } else if (shift <= -32) { + dest = 0; + } else if (shift < 0) { + int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + if ((dest >> shift) != val) { + SET_QC(); + dest = (val >> 31) ^ ~SIGNBIT; + } + } + return dest; +} + +/* Handling addition overflow with 64 bit input values is more + * tricky than with 32 bit values. */ +uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) +{ + int8_t shift = (uint8_t)shiftop; + int64_t val = valop; + + if (shift >= 64) { + if (val) { + SET_QC(); + val = (val >> 63) ^ ~SIGNBIT64; + } + } else if (shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == INT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x4000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { + int64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = (tmp >> 63) ^ ~SIGNBIT64; + } + } + return val; +} + +uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) +{ + uint32_t mask; + mask = (a ^ b) & 0x80808080u; + a &= ~0x80808080u; + b &= ~0x80808080u; + return (a + b) ^ mask; +} + +uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) +{ + uint32_t mask; + mask = (a ^ b) & 0x80008000u; + a &= ~0x80008000u; + b &= ~0x80008000u; + return (a + b) ^ mask; +} + +#define NEON_FN(dest, src1, src2) dest = src1 + src2 +NEON_POP(padd_u8, neon_u8, 4) +NEON_POP(padd_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = src1 - src2 +NEON_VOP(sub_u8, neon_u8, 4) +NEON_VOP(sub_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = src1 * src2 +NEON_VOP(mul_u8, neon_u8, 4) +NEON_VOP(mul_u16, neon_u16, 2) +#undef NEON_FN + +/* Polynomial multiplication is like integer multiplication except the + partial products are XORed, not added. */ +uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2) +{ + uint32_t mask; + uint32_t result; + result = 0; + while (op1) { + mask = 0; + if (op1 & 1) + mask |= 0xff; + if (op1 & (1 << 8)) + mask |= (0xff << 8); + if (op1 & (1 << 16)) + mask |= (0xff << 16); + if (op1 & (1 << 24)) + mask |= (0xff << 24); + result ^= op2 & mask; + op1 = (op1 >> 1) & 0x7f7f7f7f; + op2 = (op2 << 1) & 0xfefefefe; + } + return result; +} + +uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2) +{ + uint64_t result = 0; + uint64_t mask; + uint64_t op2ex = op2; + op2ex = (op2ex & 0xff) | + ((op2ex & 0xff00) << 8) | + ((op2ex & 0xff0000) << 16) | + ((op2ex & 0xff000000) << 24); + while (op1) { + mask = 0; + if (op1 & 1) { + mask |= 0xffff; + } + if (op1 & (1 << 8)) { + mask |= (0xffffU << 16); + } + if (op1 & (1 << 16)) { + mask |= (0xffffULL << 32); + } + if (op1 & (1 << 24)) { + mask |= (0xffffULL << 48); + } + result ^= op2ex & mask; + op1 = (op1 >> 1) & 0x7f7f7f7f; + op2ex <<= 1; + } + return result; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 +NEON_VOP(tst_u8, neon_u8, 4) +NEON_VOP(tst_u16, neon_u16, 2) +NEON_VOP(tst_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0 +NEON_VOP(ceq_u8, neon_u8, 4) +NEON_VOP(ceq_u16, neon_u16, 2) +NEON_VOP(ceq_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src +NEON_VOP1(abs_s8, neon_s8, 4) +NEON_VOP1(abs_s16, neon_s16, 2) +#undef NEON_FN + +/* Count Leading Sign/Zero Bits. */ +static inline int do_clz8(uint8_t x) +{ + int n; + for (n = 8; x; n--) + x >>= 1; + return n; +} + +static inline int do_clz16(uint16_t x) +{ + int n; + for (n = 16; x; n--) + x >>= 1; + return n; +} + +#define NEON_FN(dest, src, dummy) dest = do_clz8(src) +NEON_VOP1(clz_u8, neon_u8, 4) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz16(src) +NEON_VOP1(clz_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 +NEON_VOP1(cls_s8, neon_s8, 4) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 +NEON_VOP1(cls_s16, neon_s16, 2) +#undef NEON_FN + +uint32_t HELPER(neon_cls_s32)(uint32_t x) +{ + int count; + if ((int32_t)x < 0) + x = ~x; + for (count = 32; x; count--) + x = x >> 1; + return count - 1; +} + +/* Bit count. */ +uint32_t HELPER(neon_cnt_u8)(uint32_t x) +{ + x = (x & 0x55555555) + ((x >> 1) & 0x55555555); + x = (x & 0x33333333) + ((x >> 2) & 0x33333333); + x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f); + return x; +} + +/* Reverse bits in each 8 bit word */ +uint32_t HELPER(neon_rbit_u8)(uint32_t x) +{ + x = ((x & 0xf0f0f0f0) >> 4) + | ((x & 0x0f0f0f0f) << 4); + x = ((x & 0x88888888) >> 3) + | ((x & 0x44444444) >> 1) + | ((x & 0x22222222) << 1) + | ((x & 0x11111111) << 3); + return x; +} + +#define NEON_QDMULH16(dest, src1, src2, round) do { \ + uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ + if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ + SET_QC(); \ + tmp = (tmp >> 31) ^ ~SIGNBIT; \ + } else { \ + tmp <<= 1; \ + } \ + if (round) { \ + int32_t old = tmp; \ + tmp += 1 << 15; \ + if ((int32_t)tmp < old) { \ + SET_QC(); \ + tmp = SIGNBIT - 1; \ + } \ + } \ + dest = tmp >> 16; \ + } while(0) +#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) +NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) +NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_QDMULH16 + +#define NEON_QDMULH32(dest, src1, src2, round) do { \ + uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ + if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ + SET_QC(); \ + tmp = (tmp >> 63) ^ ~SIGNBIT64; \ + } else { \ + tmp <<= 1; \ + } \ + if (round) { \ + int64_t old = tmp; \ + tmp += (int64_t)1 << 31; \ + if ((int64_t)tmp < old) { \ + SET_QC(); \ + tmp = SIGNBIT64 - 1; \ + } \ + } \ + dest = tmp >> 32; \ + } while(0) +#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) +NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) +NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) +#undef NEON_FN +#undef NEON_QDMULH32 + +uint32_t HELPER(neon_narrow_u8)(uint64_t x) +{ + return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) + | ((x >> 24) & 0xff000000u); +} + +uint32_t HELPER(neon_narrow_u16)(uint64_t x) +{ + return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); +} + +uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) +{ + return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) + | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); +} + +uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) +{ + return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); +} + +uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) +{ + x &= 0xff80ff80ff80ff80ull; + x += 0x0080008000800080ull; + return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) + | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); +} + +uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) +{ + x &= 0xffff8000ffff8000ull; + x += 0x0000800000008000ull; + return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); +} + +uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) +{ + uint16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s & 0x8000) { \ + SET_QC(); \ + } else { \ + if (s > 0xff) { \ + d = 0xff; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t)d << (n / 2); \ + } + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) +{ + uint16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s > 0xff) { \ + d = 0xff; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t)d << (n / 2); + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) +{ + int16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s != (int8_t)s) { \ + d = (s >> 15) ^ 0x7f; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t)d << (n / 2); + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) +{ + uint32_t high; + uint32_t low; + low = x; + if (low & 0x80000000) { + low = 0; + SET_QC(); + } else if (low > 0xffff) { + low = 0xffff; + SET_QC(); + } + high = x >> 32; + if (high & 0x80000000) { + high = 0; + SET_QC(); + } else if (high > 0xffff) { + high = 0xffff; + SET_QC(); + } + return low | (high << 16); +} + +uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) +{ + uint32_t high; + uint32_t low; + low = x; + if (low > 0xffff) { + low = 0xffff; + SET_QC(); + } + high = x >> 32; + if (high > 0xffff) { + high = 0xffff; + SET_QC(); + } + return low | (high << 16); +} + +uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) +{ + int32_t low; + int32_t high; + low = x; + if (low != (int16_t)low) { + low = (low >> 31) ^ 0x7fff; + SET_QC(); + } + high = x >> 32; + if (high != (int16_t)high) { + high = (high >> 31) ^ 0x7fff; + SET_QC(); + } + return (uint16_t)low | (high << 16); +} + +uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) +{ + if (x & 0x8000000000000000ull) { + SET_QC(); + return 0; + } + if (x > 0xffffffffu) { + SET_QC(); + return 0xffffffffu; + } + return x; +} + +uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) +{ + if (x > 0xffffffffu) { + SET_QC(); + return 0xffffffffu; + } + return x; +} + +uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) +{ + if ((int64_t)x != (int32_t)x) { + SET_QC(); + return ((int64_t)x >> 63) ^ 0x7fffffff; + } + return x; +} + +uint64_t HELPER(neon_widen_u8)(uint32_t x) +{ + uint64_t tmp; + uint64_t ret; + ret = (uint8_t)x; + tmp = (uint8_t)(x >> 8); + ret |= tmp << 16; + tmp = (uint8_t)(x >> 16); + ret |= tmp << 32; + tmp = (uint8_t)(x >> 24); + ret |= tmp << 48; + return ret; +} + +uint64_t HELPER(neon_widen_s8)(uint32_t x) +{ + uint64_t tmp; + uint64_t ret; + ret = (uint16_t)(int8_t)x; + tmp = (uint16_t)(int8_t)(x >> 8); + ret |= tmp << 16; + tmp = (uint16_t)(int8_t)(x >> 16); + ret |= tmp << 32; + tmp = (uint16_t)(int8_t)(x >> 24); + ret |= tmp << 48; + return ret; +} + +uint64_t HELPER(neon_widen_u16)(uint32_t x) +{ + uint64_t high = (uint16_t)(x >> 16); + return ((uint16_t)x) | (high << 32); +} + +uint64_t HELPER(neon_widen_s16)(uint32_t x) +{ + uint64_t high = (int16_t)(x >> 16); + return ((uint32_t)(int16_t)x) | (high << 32); +} + +uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b) +{ + uint64_t mask; + mask = (a ^ b) & 0x8000800080008000ull; + a &= ~0x8000800080008000ull; + b &= ~0x8000800080008000ull; + return (a + b) ^ mask; +} + +uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b) +{ + uint64_t mask; + mask = (a ^ b) & 0x8000000080000000ull; + a &= ~0x8000000080000000ull; + b &= ~0x8000000080000000ull; + return (a + b) ^ mask; +} + +uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b) +{ + uint64_t tmp; + uint64_t tmp2; + + tmp = a & 0x0000ffff0000ffffull; + tmp += (a >> 16) & 0x0000ffff0000ffffull; + tmp2 = b & 0xffff0000ffff0000ull; + tmp2 += (b << 16) & 0xffff0000ffff0000ull; + return ( tmp & 0xffff) + | ((tmp >> 16) & 0xffff0000ull) + | ((tmp2 << 16) & 0xffff00000000ull) + | ( tmp2 & 0xffff000000000000ull); +} + +uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b) +{ + uint32_t low = a + (a >> 32); + uint32_t high = b + (b >> 32); + return low + ((uint64_t)high << 32); +} + +uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b) +{ + uint64_t mask; + mask = (a ^ ~b) & 0x8000800080008000ull; + a |= 0x8000800080008000ull; + b &= ~0x8000800080008000ull; + return (a - b) ^ mask; +} + +uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b) +{ + uint64_t mask; + mask = (a ^ ~b) & 0x8000000080000000ull; + a |= 0x8000000080000000ull; + b &= ~0x8000000080000000ull; + return (a - b) ^ mask; +} + +uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) +{ + uint32_t x, y; + uint32_t low, high; + + x = a; + y = b; + low = x + y; + if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { + SET_QC(); + low = ((int32_t)x >> 31) ^ ~SIGNBIT; + } + x = a >> 32; + y = b >> 32; + high = x + y; + if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { + SET_QC(); + high = ((int32_t)x >> 31) ^ ~SIGNBIT; + } + return low | ((uint64_t)high << 32); +} + +uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) +{ + uint64_t result; + + result = a + b; + if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { + SET_QC(); + result = ((int64_t)a >> 63) ^ ~SIGNBIT64; + } + return result; +} + +/* We have to do the arithmetic in a larger type than + * the input type, because for example with a signed 32 bit + * op the absolute difference can overflow a signed 32 bit value. + */ +#define DO_ABD(dest, x, y, intype, arithtype) do { \ + arithtype tmp_x = (intype)(x); \ + arithtype tmp_y = (intype)(y); \ + dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ + } while(0) + +uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, uint8_t, uint32_t); + DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); + result |= tmp << 16; + DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); + result |= tmp << 32; + DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, int8_t, int32_t); + DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); + result |= tmp << 16; + DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); + result |= tmp << 32; + DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, uint16_t, uint32_t); + DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, int16_t, int32_t); + DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) +{ + uint64_t result; + DO_ABD(result, a, b, uint32_t, uint64_t); + return result; +} + +uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) +{ + uint64_t result; + DO_ABD(result, a, b, int32_t, int64_t); + return result; +} +#undef DO_ABD + +/* Widening multiply. Named type is the source type. */ +#define DO_MULL(dest, x, y, type1, type2) do { \ + type1 tmp_x = x; \ + type1 tmp_y = y; \ + dest = (type2)((type2)tmp_x * (type2)tmp_y); \ + } while(0) + +uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, uint8_t, uint16_t); + DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); + result |= tmp << 16; + DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); + result |= tmp << 32; + DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, int8_t, uint16_t); + DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); + result |= tmp << 16; + DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); + result |= tmp << 32; + DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, uint16_t, uint32_t); + DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) +{ + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, int16_t, uint32_t); + DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_negl_u16)(uint64_t x) +{ + uint16_t tmp; + uint64_t result; + result = (uint16_t)-x; + tmp = -(x >> 16); + result |= (uint64_t)tmp << 16; + tmp = -(x >> 32); + result |= (uint64_t)tmp << 32; + tmp = -(x >> 48); + result |= (uint64_t)tmp << 48; + return result; +} + +uint64_t HELPER(neon_negl_u32)(uint64_t x) +{ + uint32_t low = -x; + uint32_t high = -(x >> 32); + return low | ((uint64_t)high << 32); +} + +/* Saturating sign manipulation. */ +/* ??? Make these use NEON_VOP1 */ +#define DO_QABS8(x) do { \ + if (x == (int8_t)0x80) { \ + x = 0x7f; \ + SET_QC(); \ + } else if (x < 0) { \ + x = -x; \ + }} while (0) +uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) +{ + neon_s8 vec; + NEON_UNPACK(neon_s8, vec, x); + DO_QABS8(vec.v1); + DO_QABS8(vec.v2); + DO_QABS8(vec.v3); + DO_QABS8(vec.v4); + NEON_PACK(neon_s8, x, vec); + return x; +} +#undef DO_QABS8 + +#define DO_QNEG8(x) do { \ + if (x == (int8_t)0x80) { \ + x = 0x7f; \ + SET_QC(); \ + } else { \ + x = -x; \ + }} while (0) +uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) +{ + neon_s8 vec; + NEON_UNPACK(neon_s8, vec, x); + DO_QNEG8(vec.v1); + DO_QNEG8(vec.v2); + DO_QNEG8(vec.v3); + DO_QNEG8(vec.v4); + NEON_PACK(neon_s8, x, vec); + return x; +} +#undef DO_QNEG8 + +#define DO_QABS16(x) do { \ + if (x == (int16_t)0x8000) { \ + x = 0x7fff; \ + SET_QC(); \ + } else if (x < 0) { \ + x = -x; \ + }} while (0) +uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) +{ + neon_s16 vec; + NEON_UNPACK(neon_s16, vec, x); + DO_QABS16(vec.v1); + DO_QABS16(vec.v2); + NEON_PACK(neon_s16, x, vec); + return x; +} +#undef DO_QABS16 + +#define DO_QNEG16(x) do { \ + if (x == (int16_t)0x8000) { \ + x = 0x7fff; \ + SET_QC(); \ + } else { \ + x = -x; \ + }} while (0) +uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) +{ + neon_s16 vec; + NEON_UNPACK(neon_s16, vec, x); + DO_QNEG16(vec.v1); + DO_QNEG16(vec.v2); + NEON_PACK(neon_s16, x, vec); + return x; +} +#undef DO_QNEG16 + +uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) +{ + if (x == SIGNBIT) { + SET_QC(); + x = ~SIGNBIT; + } else if ((int32_t)x < 0) { + x = -x; + } + return x; +} + +uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) +{ + if (x == SIGNBIT) { + SET_QC(); + x = ~SIGNBIT; + } else { + x = -x; + } + return x; +} + +uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x) +{ + if (x == SIGNBIT64) { + SET_QC(); + x = ~SIGNBIT64; + } else if ((int64_t)x < 0) { + x = -x; + } + return x; +} + +uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x) +{ + if (x == SIGNBIT64) { + SET_QC(); + x = ~SIGNBIT64; + } else { + x = -x; + } + return x; +} + +/* NEON Float helpers. */ +uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + float32 f0 = make_float32(a); + float32 f1 = make_float32(b); + return float32_val(float32_abs(float32_sub(f0, f1, fpst))); +} + +/* Floating point comparisons produce an integer result. + * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. + * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. + */ +uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); +} + +uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float32_le(make_float32(b), make_float32(a), fpst); +} + +uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float32_lt(make_float32(b), make_float32(a), fpst); +} + +uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + float32 f0 = float32_abs(make_float32(a)); + float32 f1 = float32_abs(make_float32(b)); + return -float32_le(f1, f0, fpst); +} + +uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp) +{ + float_status *fpst = fpstp; + float32 f0 = float32_abs(make_float32(a)); + float32 f1 = float32_abs(make_float32(b)); + return -float32_lt(f1, f0, fpst); +} + +uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp) +{ + float_status *fpst = fpstp; + float64 f0 = float64_abs(make_float64(a)); + float64 f1 = float64_abs(make_float64(b)); + return -float64_le(f1, f0, fpst); +} + +uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp) +{ + float_status *fpst = fpstp; + float64 f0 = float64_abs(make_float64(a)); + float64 f1 = float64_abs(make_float64(b)); + return -float64_lt(f1, f0, fpst); +} + +#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) + +void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) + | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) + | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) + | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); + uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) + | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) + | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) + | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); + uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) + | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) + | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) + | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); + uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) + | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) + | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) + | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) + | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); + uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) + | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); + uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) + | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); + uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) + | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); + uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); + uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); + uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) + | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) + | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) + | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); + uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) + | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) + | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) + | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) + | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); + uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) + | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) + | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) + | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) + | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); + uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) + | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) + | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) + | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); + uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) + | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) + | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) + | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); + uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) + | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) + | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) + | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) + | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); + uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) + | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); + uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) + | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); + uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) + | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); + uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); + uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); + uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) + | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) + | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) + | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); + uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) + | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) + | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) + | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm) +{ + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) + | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); + uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) + | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +/* Helper function for 64 bit polynomial multiply case: + * perform PolynomialMult(op1, op2) and return either the top or + * bottom half of the 128 bit result. + */ +uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2) +{ + int bitnum; + uint64_t res = 0; + + for (bitnum = 0; bitnum < 64; bitnum++) { + if (op1 & (1ULL << bitnum)) { + res ^= op2 << bitnum; + } + } + return res; +} +uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2) +{ + int bitnum; + uint64_t res = 0; + + /* bit 0 of op1 can't influence the high 64 bits at all */ + for (bitnum = 1; bitnum < 64; bitnum++) { + if (op1 & (1ULL << bitnum)) { + res ^= op2 >> (64 - bitnum); + } + } + return res; +} |