diff options
Diffstat (limited to 'qemu/target-arm/kvm32.c')
-rw-r--r-- | qemu/target-arm/kvm32.c | 523 |
1 files changed, 0 insertions, 523 deletions
diff --git a/qemu/target-arm/kvm32.c b/qemu/target-arm/kvm32.c deleted file mode 100644 index d44a7f92b..000000000 --- a/qemu/target-arm/kvm32.c +++ /dev/null @@ -1,523 +0,0 @@ -/* - * ARM implementation of KVM hooks, 32 bit specific code. - * - * Copyright Christoffer Dall 2009-2010 - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" -#include <sys/ioctl.h> -#include <sys/mman.h> - -#include <linux/kvm.h> - -#include "qemu-common.h" -#include "qemu/timer.h" -#include "sysemu/sysemu.h" -#include "sysemu/kvm.h" -#include "kvm_arm.h" -#include "cpu.h" -#include "internals.h" -#include "hw/arm/arm.h" - -static inline void set_feature(uint64_t *features, int feature) -{ - *features |= 1ULL << feature; -} - -bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) -{ - /* Identify the feature bits corresponding to the host CPU, and - * fill out the ARMHostCPUClass fields accordingly. To do this - * we have to create a scratch VM, create a single CPU inside it, - * and then query that CPU for the relevant ID registers. - */ - int i, ret, fdarray[3]; - uint32_t midr, id_pfr0, id_isar0, mvfr1; - uint64_t features = 0; - /* Old kernels may not know about the PREFERRED_TARGET ioctl: however - * we know these will only support creating one kind of guest CPU, - * which is its preferred CPU type. - */ - static const uint32_t cpus_to_try[] = { - QEMU_KVM_ARM_TARGET_CORTEX_A15, - QEMU_KVM_ARM_TARGET_NONE - }; - struct kvm_vcpu_init init; - struct kvm_one_reg idregs[] = { - { - .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0), - .addr = (uintptr_t)&midr, - }, - { - .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0), - .addr = (uintptr_t)&id_pfr0, - }, - { - .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0), - .addr = (uintptr_t)&id_isar0, - }, - { - .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1, - .addr = (uintptr_t)&mvfr1, - }, - }; - - if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { - return false; - } - - ahcc->target = init.target; - - /* This is not strictly blessed by the device tree binding docs yet, - * but in practice the kernel does not care about this string so - * there is no point maintaining an KVM_ARM_TARGET_* -> string table. - */ - ahcc->dtb_compatible = "arm,arm-v7"; - - for (i = 0; i < ARRAY_SIZE(idregs); i++) { - ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]); - if (ret) { - break; - } - } - - kvm_arm_destroy_scratch_host_vcpu(fdarray); - - if (ret) { - return false; - } - - /* Now we've retrieved all the register information we can - * set the feature bits based on the ID register fields. - * We can assume any KVM supporting CPU is at least a v7 - * with VFPv3, LPAE and the generic timers; this in turn implies - * most of the other feature bits, but a few must be tested. - */ - set_feature(&features, ARM_FEATURE_V7); - set_feature(&features, ARM_FEATURE_VFP3); - set_feature(&features, ARM_FEATURE_LPAE); - set_feature(&features, ARM_FEATURE_GENERIC_TIMER); - - switch (extract32(id_isar0, 24, 4)) { - case 1: - set_feature(&features, ARM_FEATURE_THUMB_DIV); - break; - case 2: - set_feature(&features, ARM_FEATURE_ARM_DIV); - set_feature(&features, ARM_FEATURE_THUMB_DIV); - break; - default: - break; - } - - if (extract32(id_pfr0, 12, 4) == 1) { - set_feature(&features, ARM_FEATURE_THUMB2EE); - } - if (extract32(mvfr1, 20, 4) == 1) { - set_feature(&features, ARM_FEATURE_VFP_FP16); - } - if (extract32(mvfr1, 12, 4) == 1) { - set_feature(&features, ARM_FEATURE_NEON); - } - if (extract32(mvfr1, 28, 4) == 1) { - /* FMAC support implies VFPv4 */ - set_feature(&features, ARM_FEATURE_VFP4); - } - - ahcc->features = features; - - return true; -} - -bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) -{ - /* Return true if the regidx is a register we should synchronize - * via the cpreg_tuples array (ie is not a core reg we sync by - * hand in kvm_arch_get/put_registers()) - */ - switch (regidx & KVM_REG_ARM_COPROC_MASK) { - case KVM_REG_ARM_CORE: - case KVM_REG_ARM_VFP: - return false; - default: - return true; - } -} - -typedef struct CPRegStateLevel { - uint64_t regidx; - int level; -} CPRegStateLevel; - -/* All coprocessor registers not listed in the following table are assumed to - * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less - * often, you must add it to this table with a state of either - * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. - */ -static const CPRegStateLevel non_runtime_cpregs[] = { - { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, -}; - -int kvm_arm_cpreg_level(uint64_t regidx) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { - const CPRegStateLevel *l = &non_runtime_cpregs[i]; - if (l->regidx == regidx) { - return l->level; - } - } - - return KVM_PUT_RUNTIME_STATE; -} - -#define ARM_CPU_ID_MPIDR 0, 0, 0, 5 - -int kvm_arch_init_vcpu(CPUState *cs) -{ - int ret; - uint64_t v; - uint32_t mpidr; - struct kvm_one_reg r; - ARMCPU *cpu = ARM_CPU(cs); - - if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { - fprintf(stderr, "KVM is not supported for this guest CPU type\n"); - return -EINVAL; - } - - /* Determine init features for this CPU */ - memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); - if (cpu->start_powered_off) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; - } - if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { - cpu->psci_version = 2; - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; - } - - /* Do KVM_ARM_VCPU_INIT ioctl */ - ret = kvm_arm_vcpu_init(cs); - if (ret) { - return ret; - } - - /* Query the kernel to make sure it supports 32 VFP - * registers: QEMU's "cortex-a15" CPU is always a - * VFP-D32 core. The simplest way to do this is just - * to attempt to read register d31. - */ - r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; - r.addr = (uintptr_t)(&v); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); - if (ret == -ENOENT) { - return -EINVAL; - } - - /* - * When KVM is in use, PSCI is emulated in-kernel and not by qemu. - * Currently KVM has its own idea about MPIDR assignment, so we - * override our defaults with what we get from KVM. - */ - ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr); - if (ret) { - return ret; - } - cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK; - - return kvm_arm_init_cpreg_list(cpu); -} - -typedef struct Reg { - uint64_t id; - int offset; -} Reg; - -#define COREREG(KERNELNAME, QEMUFIELD) \ - { \ - KVM_REG_ARM | KVM_REG_SIZE_U32 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ - offsetof(CPUARMState, QEMUFIELD) \ - } - -#define VFPSYSREG(R) \ - { \ - KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ - KVM_REG_ARM_VFP_##R, \ - offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ - } - -/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */ -#define COREREG64(KERNELNAME, QEMUFIELD) \ - { \ - KVM_REG_ARM | KVM_REG_SIZE_U32 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ - offsetoflow32(CPUARMState, QEMUFIELD) \ - } - -static const Reg regs[] = { - /* R0_usr .. R14_usr */ - COREREG(usr_regs.uregs[0], regs[0]), - COREREG(usr_regs.uregs[1], regs[1]), - COREREG(usr_regs.uregs[2], regs[2]), - COREREG(usr_regs.uregs[3], regs[3]), - COREREG(usr_regs.uregs[4], regs[4]), - COREREG(usr_regs.uregs[5], regs[5]), - COREREG(usr_regs.uregs[6], regs[6]), - COREREG(usr_regs.uregs[7], regs[7]), - COREREG(usr_regs.uregs[8], usr_regs[0]), - COREREG(usr_regs.uregs[9], usr_regs[1]), - COREREG(usr_regs.uregs[10], usr_regs[2]), - COREREG(usr_regs.uregs[11], usr_regs[3]), - COREREG(usr_regs.uregs[12], usr_regs[4]), - COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]), - COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]), - /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ - COREREG(svc_regs[0], banked_r13[BANK_SVC]), - COREREG(svc_regs[1], banked_r14[BANK_SVC]), - COREREG64(svc_regs[2], banked_spsr[BANK_SVC]), - COREREG(abt_regs[0], banked_r13[BANK_ABT]), - COREREG(abt_regs[1], banked_r14[BANK_ABT]), - COREREG64(abt_regs[2], banked_spsr[BANK_ABT]), - COREREG(und_regs[0], banked_r13[BANK_UND]), - COREREG(und_regs[1], banked_r14[BANK_UND]), - COREREG64(und_regs[2], banked_spsr[BANK_UND]), - COREREG(irq_regs[0], banked_r13[BANK_IRQ]), - COREREG(irq_regs[1], banked_r14[BANK_IRQ]), - COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]), - /* R8_fiq .. R14_fiq and SPSR_fiq */ - COREREG(fiq_regs[0], fiq_regs[0]), - COREREG(fiq_regs[1], fiq_regs[1]), - COREREG(fiq_regs[2], fiq_regs[2]), - COREREG(fiq_regs[3], fiq_regs[3]), - COREREG(fiq_regs[4], fiq_regs[4]), - COREREG(fiq_regs[5], banked_r13[BANK_FIQ]), - COREREG(fiq_regs[6], banked_r14[BANK_FIQ]), - COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]), - /* R15 */ - COREREG(usr_regs.uregs[15], regs[15]), - /* VFP system registers */ - VFPSYSREG(FPSID), - VFPSYSREG(MVFR1), - VFPSYSREG(MVFR0), - VFPSYSREG(FPEXC), - VFPSYSREG(FPINST), - VFPSYSREG(FPINST2), -}; - -int kvm_arch_put_registers(CPUState *cs, int level) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - struct kvm_one_reg r; - int mode, bn; - int ret, i; - uint32_t cpsr, fpscr; - - /* Make sure the banked regs are properly set */ - mode = env->uncached_cpsr & CPSR_M; - bn = bank_number(mode); - if (mode == ARM_CPU_MODE_FIQ) { - memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); - } else { - memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); - } - env->banked_r13[bn] = env->regs[13]; - env->banked_r14[bn] = env->regs[14]; - env->banked_spsr[bn] = env->spsr; - - /* Now we can safely copy stuff down to the kernel */ - for (i = 0; i < ARRAY_SIZE(regs); i++) { - r.id = regs[i].id; - r.addr = (uintptr_t)(env) + regs[i].offset; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); - if (ret) { - return ret; - } - } - - /* Special cases which aren't a single CPUARMState field */ - cpsr = cpsr_read(env); - r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); - r.addr = (uintptr_t)(&cpsr); - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); - if (ret) { - return ret; - } - - /* VFP registers */ - r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; - for (i = 0; i < 32; i++) { - r.addr = (uintptr_t)(&env->vfp.regs[i]); - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); - if (ret) { - return ret; - } - r.id++; - } - - r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | - KVM_REG_ARM_VFP_FPSCR; - fpscr = vfp_get_fpscr(env); - r.addr = (uintptr_t)&fpscr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); - if (ret) { - return ret; - } - - /* Note that we do not call write_cpustate_to_list() - * here, so we are only writing the tuple list back to - * KVM. This is safe because nothing can change the - * CPUARMState cp15 fields (in particular gdb accesses cannot) - * and so there are no changes to sync. In fact syncing would - * be wrong at this point: for a constant register where TCG and - * KVM disagree about its value, the preceding write_list_to_cpustate() - * would not have had any effect on the CPUARMState value (since the - * register is read-only), and a write_cpustate_to_list() here would - * then try to write the TCG value back into KVM -- this would either - * fail or incorrectly change the value the guest sees. - * - * If we ever want to allow the user to modify cp15 registers via - * the gdb stub, we would need to be more clever here (for instance - * tracking the set of registers kvm_arch_get_registers() successfully - * managed to update the CPUARMState with, and only allowing those - * to be written back up into the kernel). - */ - if (!write_list_to_kvmstate(cpu, level)) { - return EINVAL; - } - - kvm_arm_sync_mpstate_to_kvm(cpu); - - return ret; -} - -int kvm_arch_get_registers(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - struct kvm_one_reg r; - int mode, bn; - int ret, i; - uint32_t cpsr, fpscr; - - for (i = 0; i < ARRAY_SIZE(regs); i++) { - r.id = regs[i].id; - r.addr = (uintptr_t)(env) + regs[i].offset; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); - if (ret) { - return ret; - } - } - - /* Special cases which aren't a single CPUARMState field */ - r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); - r.addr = (uintptr_t)(&cpsr); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); - if (ret) { - return ret; - } - cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw); - - /* Make sure the current mode regs are properly set */ - mode = env->uncached_cpsr & CPSR_M; - bn = bank_number(mode); - if (mode == ARM_CPU_MODE_FIQ) { - memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); - } else { - memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); - } - env->regs[13] = env->banked_r13[bn]; - env->regs[14] = env->banked_r14[bn]; - env->spsr = env->banked_spsr[bn]; - - /* VFP registers */ - r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; - for (i = 0; i < 32; i++) { - r.addr = (uintptr_t)(&env->vfp.regs[i]); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); - if (ret) { - return ret; - } - r.id++; - } - - r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | - KVM_REG_ARM_VFP_FPSCR; - r.addr = (uintptr_t)&fpscr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); - if (ret) { - return ret; - } - vfp_set_fpscr(env, fpscr); - - if (!write_kvmstate_to_list(cpu)) { - return EINVAL; - } - /* Note that it's OK to have registers which aren't in CPUState, - * so we can ignore a failure return here. - */ - write_list_to_cpustate(cpu); - - kvm_arm_sync_mpstate_to_qemu(cpu); - - return 0; -} - -int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); - return -EINVAL; -} - -int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); - return -EINVAL; -} - -bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) -{ - qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); - return false; -} - -int kvm_arch_insert_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); - return -EINVAL; -} - -int kvm_arch_remove_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); - return -EINVAL; -} - -void kvm_arch_remove_all_hw_breakpoints(void) -{ - qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); -} - -void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) -{ - qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); -} - -bool kvm_arm_hw_debug_active(CPUState *cs) -{ - return false; -} |