summaryrefslogtreecommitdiffstats
path: root/qemu/target-arm/helper-a64.c
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/target-arm/helper-a64.c')
-rw-r--r--qemu/target-arm/helper-a64.c445
1 files changed, 0 insertions, 445 deletions
diff --git a/qemu/target-arm/helper-a64.c b/qemu/target-arm/helper-a64.c
deleted file mode 100644
index c7bfb4d8f..000000000
--- a/qemu/target-arm/helper-a64.c
+++ /dev/null
@@ -1,445 +0,0 @@
-/*
- * AArch64 specific helpers
- *
- * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "qemu/osdep.h"
-#include "cpu.h"
-#include "exec/gdbstub.h"
-#include "exec/helper-proto.h"
-#include "qemu/host-utils.h"
-#include "sysemu/sysemu.h"
-#include "qemu/bitops.h"
-#include "internals.h"
-#include "qemu/crc32c.h"
-#include <zlib.h> /* For crc32 */
-
-/* C2.4.7 Multiply and divide */
-/* special cases for 0 and LLONG_MIN are mandated by the standard */
-uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
-{
- if (den == 0) {
- return 0;
- }
- return num / den;
-}
-
-int64_t HELPER(sdiv64)(int64_t num, int64_t den)
-{
- if (den == 0) {
- return 0;
- }
- if (num == LLONG_MIN && den == -1) {
- return LLONG_MIN;
- }
- return num / den;
-}
-
-uint64_t HELPER(clz64)(uint64_t x)
-{
- return clz64(x);
-}
-
-uint64_t HELPER(cls64)(uint64_t x)
-{
- return clrsb64(x);
-}
-
-uint32_t HELPER(cls32)(uint32_t x)
-{
- return clrsb32(x);
-}
-
-uint32_t HELPER(clz32)(uint32_t x)
-{
- return clz32(x);
-}
-
-uint64_t HELPER(rbit64)(uint64_t x)
-{
- return revbit64(x);
-}
-
-/* Convert a softfloat float_relation_ (as returned by
- * the float*_compare functions) to the correct ARM
- * NZCV flag state.
- */
-static inline uint32_t float_rel_to_flags(int res)
-{
- uint64_t flags;
- switch (res) {
- case float_relation_equal:
- flags = PSTATE_Z | PSTATE_C;
- break;
- case float_relation_less:
- flags = PSTATE_N;
- break;
- case float_relation_greater:
- flags = PSTATE_C;
- break;
- case float_relation_unordered:
- default:
- flags = PSTATE_C | PSTATE_V;
- break;
- }
- return flags;
-}
-
-uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
-{
- return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
-{
- return float_rel_to_flags(float32_compare(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
-{
- return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
-{
- return float_rel_to_flags(float64_compare(x, y, fp_status));
-}
-
-float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- if ((float32_is_zero(a) && float32_is_infinity(b)) ||
- (float32_is_infinity(a) && float32_is_zero(b))) {
- /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
- return make_float32((1U << 30) |
- ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
- }
- return float32_mul(a, b, fpst);
-}
-
-float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- if ((float64_is_zero(a) && float64_is_infinity(b)) ||
- (float64_is_infinity(a) && float64_is_zero(b))) {
- /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
- return make_float64((1ULL << 62) |
- ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
- }
- return float64_mul(a, b, fpst);
-}
-
-uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
- uint32_t rn, uint32_t numregs)
-{
- /* Helper function for SIMD TBL and TBX. We have to do the table
- * lookup part for the 64 bits worth of indices we're passed in.
- * result is the initial results vector (either zeroes for TBL
- * or some guest values for TBX), rn the register number where
- * the table starts, and numregs the number of registers in the table.
- * We return the results of the lookups.
- */
- int shift;
-
- for (shift = 0; shift < 64; shift += 8) {
- int index = extract64(indices, shift, 8);
- if (index < 16 * numregs) {
- /* Convert index (a byte offset into the virtual table
- * which is a series of 128-bit vectors concatenated)
- * into the correct vfp.regs[] element plus a bit offset
- * into that element, bearing in mind that the table
- * can wrap around from V31 to V0.
- */
- int elt = (rn * 2 + (index >> 3)) % 64;
- int bitidx = (index & 7) * 8;
- uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
-
- result = deposit64(result, shift, 8, val);
- }
- }
- return result;
-}
-
-/* 64bit/double versions of the neon float compare functions */
-uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_eq_quiet(a, b, fpst);
-}
-
-uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_le(b, a, fpst);
-}
-
-uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_lt(b, a, fpst);
-}
-
-/* Reciprocal step and sqrt step. Note that unlike the A32/T32
- * versions, these do a fully fused multiply-add or
- * multiply-add-and-halve.
- */
-#define float32_two make_float32(0x40000000)
-#define float32_three make_float32(0x40400000)
-#define float32_one_point_five make_float32(0x3fc00000)
-
-#define float64_two make_float64(0x4000000000000000ULL)
-#define float64_three make_float64(0x4008000000000000ULL)
-#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
-
-float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- a = float32_chs(a);
- if ((float32_is_infinity(a) && float32_is_zero(b)) ||
- (float32_is_infinity(b) && float32_is_zero(a))) {
- return float32_two;
- }
- return float32_muladd(a, b, float32_two, 0, fpst);
-}
-
-float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- a = float64_chs(a);
- if ((float64_is_infinity(a) && float64_is_zero(b)) ||
- (float64_is_infinity(b) && float64_is_zero(a))) {
- return float64_two;
- }
- return float64_muladd(a, b, float64_two, 0, fpst);
-}
-
-float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- a = float32_chs(a);
- if ((float32_is_infinity(a) && float32_is_zero(b)) ||
- (float32_is_infinity(b) && float32_is_zero(a))) {
- return float32_one_point_five;
- }
- return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
-}
-
-float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- a = float64_chs(a);
- if ((float64_is_infinity(a) && float64_is_zero(b)) ||
- (float64_is_infinity(b) && float64_is_zero(a))) {
- return float64_one_point_five;
- }
- return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
-}
-
-/* Pairwise long add: add pairs of adjacent elements into
- * double-width elements in the result (eg _s8 is an 8x8->16 op)
- */
-uint64_t HELPER(neon_addlp_s8)(uint64_t a)
-{
- uint64_t nsignmask = 0x0080008000800080ULL;
- uint64_t wsignmask = 0x8000800080008000ULL;
- uint64_t elementmask = 0x00ff00ff00ff00ffULL;
- uint64_t tmp1, tmp2;
- uint64_t res, signres;
-
- /* Extract odd elements, sign extend each to a 16 bit field */
- tmp1 = a & elementmask;
- tmp1 ^= nsignmask;
- tmp1 |= wsignmask;
- tmp1 = (tmp1 - nsignmask) ^ wsignmask;
- /* Ditto for the even elements */
- tmp2 = (a >> 8) & elementmask;
- tmp2 ^= nsignmask;
- tmp2 |= wsignmask;
- tmp2 = (tmp2 - nsignmask) ^ wsignmask;
-
- /* calculate the result by summing bits 0..14, 16..22, etc,
- * and then adjusting the sign bits 15, 23, etc manually.
- * This ensures the addition can't overflow the 16 bit field.
- */
- signres = (tmp1 ^ tmp2) & wsignmask;
- res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
- res ^= signres;
-
- return res;
-}
-
-uint64_t HELPER(neon_addlp_u8)(uint64_t a)
-{
- uint64_t tmp;
-
- tmp = a & 0x00ff00ff00ff00ffULL;
- tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
- return tmp;
-}
-
-uint64_t HELPER(neon_addlp_s16)(uint64_t a)
-{
- int32_t reslo, reshi;
-
- reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
- reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
-
- return (uint32_t)reslo | (((uint64_t)reshi) << 32);
-}
-
-uint64_t HELPER(neon_addlp_u16)(uint64_t a)
-{
- uint64_t tmp;
-
- tmp = a & 0x0000ffff0000ffffULL;
- tmp += (a >> 16) & 0x0000ffff0000ffffULL;
- return tmp;
-}
-
-/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
-float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
-{
- float_status *fpst = fpstp;
- uint32_t val32, sbit;
- int32_t exp;
-
- if (float32_is_any_nan(a)) {
- float32 nan = a;
- if (float32_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, fpst);
- nan = float32_maybe_silence_nan(a);
- }
- if (fpst->default_nan_mode) {
- nan = float32_default_nan;
- }
- return nan;
- }
-
- val32 = float32_val(a);
- sbit = 0x80000000ULL & val32;
- exp = extract32(val32, 23, 8);
-
- if (exp == 0) {
- return make_float32(sbit | (0xfe << 23));
- } else {
- return make_float32(sbit | (~exp & 0xff) << 23);
- }
-}
-
-float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
-{
- float_status *fpst = fpstp;
- uint64_t val64, sbit;
- int64_t exp;
-
- if (float64_is_any_nan(a)) {
- float64 nan = a;
- if (float64_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, fpst);
- nan = float64_maybe_silence_nan(a);
- }
- if (fpst->default_nan_mode) {
- nan = float64_default_nan;
- }
- return nan;
- }
-
- val64 = float64_val(a);
- sbit = 0x8000000000000000ULL & val64;
- exp = extract64(float64_val(a), 52, 11);
-
- if (exp == 0) {
- return make_float64(sbit | (0x7feULL << 52));
- } else {
- return make_float64(sbit | (~exp & 0x7ffULL) << 52);
- }
-}
-
-float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
-{
- /* Von Neumann rounding is implemented by using round-to-zero
- * and then setting the LSB of the result if Inexact was raised.
- */
- float32 r;
- float_status *fpst = &env->vfp.fp_status;
- float_status tstat = *fpst;
- int exflags;
-
- set_float_rounding_mode(float_round_to_zero, &tstat);
- set_float_exception_flags(0, &tstat);
- r = float64_to_float32(a, &tstat);
- r = float32_maybe_silence_nan(r);
- exflags = get_float_exception_flags(&tstat);
- if (exflags & float_flag_inexact) {
- r = make_float32(float32_val(r) | 1);
- }
- exflags |= get_float_exception_flags(fpst);
- set_float_exception_flags(exflags, fpst);
- return r;
-}
-
-/* 64-bit versions of the CRC helpers. Note that although the operation
- * (and the prototypes of crc32c() and crc32() mean that only the bottom
- * 32 bits of the accumulator and result are used, we pass and return
- * uint64_t for convenience of the generated code. Unlike the 32-bit
- * instruction set versions, val may genuinely have 64 bits of data in it.
- * The upper bytes of val (above the number specified by 'bytes') must have
- * been zeroed out by the caller.
- */
-uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
-{
- uint8_t buf[8];
-
- stq_le_p(buf, val);
-
- /* zlib crc32 converts the accumulator and output to one's complement. */
- return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
-}
-
-uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
-{
- uint8_t buf[8];
-
- stq_le_p(buf, val);
-
- /* Linux crc32c converts the output to one's complement. */
- return crc32c(acc, buf, bytes) ^ 0xffffffff;
-}