summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/post/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/roms/u-boot/post/drivers')
-rw-r--r--qemu/roms/u-boot/post/drivers/Makefile8
-rw-r--r--qemu/roms/u-boot/post/drivers/flash.c107
-rw-r--r--qemu/roms/u-boot/post/drivers/i2c.c97
-rw-r--r--qemu/roms/u-boot/post/drivers/memory.c550
-rw-r--r--qemu/roms/u-boot/post/drivers/rtc.c179
5 files changed, 941 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/post/drivers/Makefile b/qemu/roms/u-boot/post/drivers/Makefile
new file mode 100644
index 000000000..1abfb1ffe
--- /dev/null
+++ b/qemu/roms/u-boot/post/drivers/Makefile
@@ -0,0 +1,8 @@
+#
+# (C) Copyright 2002-2006
+# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+obj-y += flash.o i2c.o memory.o rtc.o
diff --git a/qemu/roms/u-boot/post/drivers/flash.c b/qemu/roms/u-boot/post/drivers/flash.c
new file mode 100644
index 000000000..07eab332d
--- /dev/null
+++ b/qemu/roms/u-boot/post/drivers/flash.c
@@ -0,0 +1,107 @@
+/*
+ * Parallel NOR Flash tests
+ *
+ * Copyright (c) 2005-2011 Analog Devices Inc.
+ *
+ * Licensed under the GPL-2 or later.
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <post.h>
+#include <flash.h>
+
+#if CONFIG_POST & CONFIG_SYS_POST_FLASH
+
+/*
+ * This code will walk over the declared sectors erasing them,
+ * then programming them, then verifying the written contents.
+ * Possible future work:
+ * - verify sectors before/after are not erased/written
+ * - verify partial writes (e.g. programming only middle of sector)
+ * - verify the contents of the erased sector
+ * - better seed pattern than 0x00..0xff
+ */
+
+#ifndef CONFIG_SYS_POST_FLASH_NUM
+# define CONFIG_SYS_POST_FLASH_NUM 0
+#endif
+#if CONFIG_SYS_POST_FLASH_START >= CONFIG_SYS_POST_FLASH_END
+# error "invalid flash block start/end"
+#endif
+
+extern flash_info_t flash_info[];
+
+static void *seed_src_data(void *ptr, ulong *old_len, ulong new_len)
+{
+ unsigned char *p;
+ ulong i;
+
+ p = ptr = realloc(ptr, new_len);
+ if (!ptr)
+ return ptr;
+
+ for (i = *old_len; i < new_len; ++i)
+ p[i] = i;
+
+ *old_len = new_len;
+
+ return ptr;
+}
+
+int flash_post_test(int flags)
+{
+ ulong len;
+ void *src;
+ int ret, n, n_start, n_end;
+ flash_info_t *info;
+
+ /* the output from the common flash layers needs help */
+ puts("\n");
+
+ len = 0;
+ src = NULL;
+ info = &flash_info[CONFIG_SYS_POST_FLASH_NUM];
+ n_start = CONFIG_SYS_POST_FLASH_START;
+ n_end = CONFIG_SYS_POST_FLASH_END;
+
+ for (n = n_start; n < n_end; ++n) {
+ ulong s_start, s_len, s_off;
+
+ s_start = info->start[n];
+ s_len = flash_sector_size(info, n);
+ s_off = s_start - info->start[0];
+
+ src = seed_src_data(src, &len, s_len);
+ if (!src) {
+ printf("malloc(%#lx) failed\n", s_len);
+ return 1;
+ }
+
+ printf("\tsector %i: %#lx +%#lx", n, s_start, s_len);
+
+ ret = flash_erase(info, n, n + 1);
+ if (ret) {
+ flash_perror(ret);
+ break;
+ }
+
+ ret = write_buff(info, src, s_start, s_len);
+ if (ret) {
+ flash_perror(ret);
+ break;
+ }
+
+ ret = memcmp(src, (void *)s_start, s_len);
+ if (ret) {
+ printf(" verify failed with %i\n", ret);
+ break;
+ }
+ }
+
+ free(src);
+
+ return ret;
+}
+
+#endif
diff --git a/qemu/roms/u-boot/post/drivers/i2c.c b/qemu/roms/u-boot/post/drivers/i2c.c
new file mode 100644
index 000000000..95da2ebda
--- /dev/null
+++ b/qemu/roms/u-boot/post/drivers/i2c.c
@@ -0,0 +1,97 @@
+/*
+ * (C) Copyright 2002
+ * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+/*
+ * I2C test
+ *
+ * For verifying the I2C bus, a full I2C bus scanning is performed.
+ *
+ * #ifdef CONFIG_SYS_POST_I2C_ADDRS
+ * The test is considered as passed if all the devices and only the devices
+ * in the list are found.
+ * #ifdef CONFIG_SYS_POST_I2C_IGNORES
+ * Ignore devices listed in CONFIG_SYS_POST_I2C_IGNORES. These devices
+ * are optional or not vital to board functionality.
+ * #endif
+ * #else [ ! CONFIG_SYS_POST_I2C_ADDRS ]
+ * The test is considered as passed if any I2C device is found.
+ * #endif
+ */
+
+#include <common.h>
+#include <post.h>
+#include <i2c.h>
+
+#if CONFIG_POST & CONFIG_SYS_POST_I2C
+
+static int i2c_ignore_device(unsigned int chip)
+{
+#ifdef CONFIG_SYS_POST_I2C_IGNORES
+ const unsigned char i2c_ignore_list[] = CONFIG_SYS_POST_I2C_IGNORES;
+ int i;
+
+ for (i = 0; i < sizeof(i2c_ignore_list); i++)
+ if (i2c_ignore_list[i] == chip)
+ return 1;
+#endif
+
+ return 0;
+}
+
+int i2c_post_test (int flags)
+{
+ unsigned int i;
+#ifndef CONFIG_SYS_POST_I2C_ADDRS
+ /* Start at address 1, address 0 is the general call address */
+ for (i = 1; i < 128; i++) {
+ if (i2c_ignore_device(i))
+ continue;
+ if (i2c_probe (i) == 0)
+ return 0;
+ }
+
+ /* No devices found */
+ return -1;
+#else
+ unsigned int ret = 0;
+ int j;
+ unsigned char i2c_addr_list[] = CONFIG_SYS_POST_I2C_ADDRS;
+
+ /* Start at address 1, address 0 is the general call address */
+ for (i = 1; i < 128; i++) {
+ if (i2c_ignore_device(i))
+ continue;
+ if (i2c_probe(i) != 0)
+ continue;
+
+ for (j = 0; j < sizeof(i2c_addr_list); ++j) {
+ if (i == i2c_addr_list[j]) {
+ i2c_addr_list[j] = 0xff;
+ break;
+ }
+ }
+
+ if (j == sizeof(i2c_addr_list)) {
+ ret = -1;
+ post_log("I2C: addr %02x not expected\n", i);
+ }
+ }
+
+ for (i = 0; i < sizeof(i2c_addr_list); ++i) {
+ if (i2c_addr_list[i] == 0xff)
+ continue;
+ if (i2c_ignore_device(i2c_addr_list[i]))
+ continue;
+ post_log("I2C: addr %02x did not respond\n", i2c_addr_list[i]);
+ ret = -1;
+ }
+
+ return ret;
+#endif
+}
+
+#endif /* CONFIG_POST & CONFIG_SYS_POST_I2C */
diff --git a/qemu/roms/u-boot/post/drivers/memory.c b/qemu/roms/u-boot/post/drivers/memory.c
new file mode 100644
index 000000000..d94a43744
--- /dev/null
+++ b/qemu/roms/u-boot/post/drivers/memory.c
@@ -0,0 +1,550 @@
+/*
+ * (C) Copyright 2002
+ * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+
+/* Memory test
+ *
+ * General observations:
+ * o The recommended test sequence is to test the data lines: if they are
+ * broken, nothing else will work properly. Then test the address
+ * lines. Finally, test the cells in the memory now that the test
+ * program knows that the address and data lines work properly.
+ * This sequence also helps isolate and identify what is faulty.
+ *
+ * o For the address line test, it is a good idea to use the base
+ * address of the lowest memory location, which causes a '1' bit to
+ * walk through a field of zeros on the address lines and the highest
+ * memory location, which causes a '0' bit to walk through a field of
+ * '1's on the address line.
+ *
+ * o Floating buses can fool memory tests if the test routine writes
+ * a value and then reads it back immediately. The problem is, the
+ * write will charge the residual capacitance on the data bus so the
+ * bus retains its state briefely. When the test program reads the
+ * value back immediately, the capacitance of the bus can allow it
+ * to read back what was written, even though the memory circuitry
+ * is broken. To avoid this, the test program should write a test
+ * pattern to the target location, write a different pattern elsewhere
+ * to charge the residual capacitance in a differnt manner, then read
+ * the target location back.
+ *
+ * o Always read the target location EXACTLY ONCE and save it in a local
+ * variable. The problem with reading the target location more than
+ * once is that the second and subsequent reads may work properly,
+ * resulting in a failed test that tells the poor technician that
+ * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
+ * doesn't help him one bit and causes puzzled phone calls. Been there,
+ * done that.
+ *
+ * Data line test:
+ * ---------------
+ * This tests data lines for shorts and opens by forcing adjacent data
+ * to opposite states. Because the data lines could be routed in an
+ * arbitrary manner the must ensure test patterns ensure that every case
+ * is tested. By using the following series of binary patterns every
+ * combination of adjacent bits is test regardless of routing.
+ *
+ * ...101010101010101010101010
+ * ...110011001100110011001100
+ * ...111100001111000011110000
+ * ...111111110000000011111111
+ *
+ * Carrying this out, gives us six hex patterns as follows:
+ *
+ * 0xaaaaaaaaaaaaaaaa
+ * 0xcccccccccccccccc
+ * 0xf0f0f0f0f0f0f0f0
+ * 0xff00ff00ff00ff00
+ * 0xffff0000ffff0000
+ * 0xffffffff00000000
+ *
+ * To test for short and opens to other signals on our boards, we
+ * simply test with the 1's complemnt of the paterns as well, resulting
+ * in twelve patterns total.
+ *
+ * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
+ * written to a different address in case the data lines are floating.
+ * Thus, if a byte lane fails, you will see part of the special
+ * pattern in that byte lane when the test runs. For example, if the
+ * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
+ * (for the 'a' test pattern).
+ *
+ * Address line test:
+ * ------------------
+ * This function performs a test to verify that all the address lines
+ * hooked up to the RAM work properly. If there is an address line
+ * fault, it usually shows up as two different locations in the address
+ * map (related by the faulty address line) mapping to one physical
+ * memory storage location. The artifact that shows up is writing to
+ * the first location "changes" the second location.
+ *
+ * To test all address lines, we start with the given base address and
+ * xor the address with a '1' bit to flip one address line. For each
+ * test, we shift the '1' bit left to test the next address line.
+ *
+ * In the actual code, we start with address sizeof(ulong) since our
+ * test pattern we use is a ulong and thus, if we tried to test lower
+ * order address bits, it wouldn't work because our pattern would
+ * overwrite itself.
+ *
+ * Example for a 4 bit address space with the base at 0000:
+ * 0000 <- base
+ * 0001 <- test 1
+ * 0010 <- test 2
+ * 0100 <- test 3
+ * 1000 <- test 4
+ * Example for a 4 bit address space with the base at 0010:
+ * 0010 <- base
+ * 0011 <- test 1
+ * 0000 <- (below the base address, skipped)
+ * 0110 <- test 2
+ * 1010 <- test 3
+ *
+ * The test locations are successively tested to make sure that they are
+ * not "mirrored" onto the base address due to a faulty address line.
+ * Note that the base and each test location are related by one address
+ * line flipped. Note that the base address need not be all zeros.
+ *
+ * Memory tests 1-4:
+ * -----------------
+ * These tests verify RAM using sequential writes and reads
+ * to/from RAM. There are several test cases that use different patterns to
+ * verify RAM. Each test case fills a region of RAM with one pattern and
+ * then reads the region back and compares its contents with the pattern.
+ * The following patterns are used:
+ *
+ * 1a) zero pattern (0x00000000)
+ * 1b) negative pattern (0xffffffff)
+ * 1c) checkerboard pattern (0x55555555)
+ * 1d) checkerboard pattern (0xaaaaaaaa)
+ * 2) bit-flip pattern ((1 << (offset % 32))
+ * 3) address pattern (offset)
+ * 4) address pattern (~offset)
+ *
+ * Being run in normal mode, the test verifies only small 4Kb
+ * regions of RAM around each 1Mb boundary. For example, for 64Mb
+ * RAM the following areas are verified: 0x00000000-0x00000800,
+ * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
+ * 0x04000000. If the test is run in slow-test mode, it verifies
+ * the whole RAM.
+ */
+
+#include <post.h>
+#include <watchdog.h>
+
+#if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/*
+ * Define INJECT_*_ERRORS for testing error detection in the presence of
+ * _good_ hardware.
+ */
+#undef INJECT_DATA_ERRORS
+#undef INJECT_ADDRESS_ERRORS
+
+#ifdef INJECT_DATA_ERRORS
+#warning "Injecting data line errors for testing purposes"
+#endif
+
+#ifdef INJECT_ADDRESS_ERRORS
+#warning "Injecting address line errors for testing purposes"
+#endif
+
+
+/*
+ * This function performs a double word move from the data at
+ * the source pointer to the location at the destination pointer.
+ * This is helpful for testing memory on processors which have a 64 bit
+ * wide data bus.
+ *
+ * On those PowerPC with FPU, use assembly and a floating point move:
+ * this does a 64 bit move.
+ *
+ * For other processors, let the compiler generate the best code it can.
+ */
+static void move64(const unsigned long long *src, unsigned long long *dest)
+{
+#if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X)
+ asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */
+ "stfd 0, 0(4)" /* *dest = fpr0 */
+ : : : "fr0" ); /* Clobbers fr0 */
+ return;
+#else
+ *dest = *src;
+#endif
+}
+
+/*
+ * This is 64 bit wide test patterns. Note that they reside in ROM
+ * (which presumably works) and the tests write them to RAM which may
+ * not work.
+ *
+ * The "otherpattern" is written to drive the data bus to values other
+ * than the test pattern. This is for detecting floating bus lines.
+ *
+ */
+const static unsigned long long pattern[] = {
+ 0xaaaaaaaaaaaaaaaaULL,
+ 0xccccccccccccccccULL,
+ 0xf0f0f0f0f0f0f0f0ULL,
+ 0xff00ff00ff00ff00ULL,
+ 0xffff0000ffff0000ULL,
+ 0xffffffff00000000ULL,
+ 0x00000000ffffffffULL,
+ 0x0000ffff0000ffffULL,
+ 0x00ff00ff00ff00ffULL,
+ 0x0f0f0f0f0f0f0f0fULL,
+ 0x3333333333333333ULL,
+ 0x5555555555555555ULL
+};
+const unsigned long long otherpattern = 0x0123456789abcdefULL;
+
+
+static int memory_post_dataline(unsigned long long * pmem)
+{
+ unsigned long long temp64 = 0;
+ int num_patterns = ARRAY_SIZE(pattern);
+ int i;
+ unsigned int hi, lo, pathi, patlo;
+ int ret = 0;
+
+ for ( i = 0; i < num_patterns; i++) {
+ move64(&(pattern[i]), pmem++);
+ /*
+ * Put a different pattern on the data lines: otherwise they
+ * may float long enough to read back what we wrote.
+ */
+ move64(&otherpattern, pmem--);
+ move64(pmem, &temp64);
+
+#ifdef INJECT_DATA_ERRORS
+ temp64 ^= 0x00008000;
+#endif
+
+ if (temp64 != pattern[i]){
+ pathi = (pattern[i]>>32) & 0xffffffff;
+ patlo = pattern[i] & 0xffffffff;
+
+ hi = (temp64>>32) & 0xffffffff;
+ lo = temp64 & 0xffffffff;
+
+ post_log("Memory (date line) error at %08x, "
+ "wrote %08x%08x, read %08x%08x !\n",
+ pmem, pathi, patlo, hi, lo);
+ ret = -1;
+ }
+ }
+ return ret;
+}
+
+static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
+{
+ ulong *target;
+ ulong *end;
+ ulong readback;
+ ulong xor;
+ int ret = 0;
+
+ end = (ulong *)((ulong)base + size); /* pointer arith! */
+ xor = 0;
+ for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
+ target = (ulong *)((ulong)testaddr ^ xor);
+ if((target >= base) && (target < end)) {
+ *testaddr = ~*target;
+ readback = *target;
+
+#ifdef INJECT_ADDRESS_ERRORS
+ if(xor == 0x00008000) {
+ readback = *testaddr;
+ }
+#endif
+ if(readback == *testaddr) {
+ post_log("Memory (address line) error at %08x<->%08x, "
+ "XOR value %08x !\n",
+ testaddr, target, xor);
+ ret = -1;
+ }
+ }
+ }
+ return ret;
+}
+
+static int memory_post_test1(unsigned long start,
+ unsigned long size,
+ unsigned long val)
+{
+ unsigned long i;
+ ulong *mem = (ulong *) start;
+ ulong readback;
+ int ret = 0;
+
+ for (i = 0; i < size / sizeof (ulong); i++) {
+ mem[i] = val;
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
+ readback = mem[i];
+ if (readback != val) {
+ post_log("Memory error at %08x, "
+ "wrote %08x, read %08x !\n",
+ mem + i, val, readback);
+
+ ret = -1;
+ break;
+ }
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ return ret;
+}
+
+static int memory_post_test2(unsigned long start, unsigned long size)
+{
+ unsigned long i;
+ ulong *mem = (ulong *) start;
+ ulong readback;
+ int ret = 0;
+
+ for (i = 0; i < size / sizeof (ulong); i++) {
+ mem[i] = 1 << (i % 32);
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
+ readback = mem[i];
+ if (readback != (1 << (i % 32))) {
+ post_log("Memory error at %08x, "
+ "wrote %08x, read %08x !\n",
+ mem + i, 1 << (i % 32), readback);
+
+ ret = -1;
+ break;
+ }
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ return ret;
+}
+
+static int memory_post_test3(unsigned long start, unsigned long size)
+{
+ unsigned long i;
+ ulong *mem = (ulong *) start;
+ ulong readback;
+ int ret = 0;
+
+ for (i = 0; i < size / sizeof (ulong); i++) {
+ mem[i] = i;
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
+ readback = mem[i];
+ if (readback != i) {
+ post_log("Memory error at %08x, "
+ "wrote %08x, read %08x !\n",
+ mem + i, i, readback);
+
+ ret = -1;
+ break;
+ }
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ return ret;
+}
+
+static int memory_post_test4(unsigned long start, unsigned long size)
+{
+ unsigned long i;
+ ulong *mem = (ulong *) start;
+ ulong readback;
+ int ret = 0;
+
+ for (i = 0; i < size / sizeof (ulong); i++) {
+ mem[i] = ~i;
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
+ readback = mem[i];
+ if (readback != ~i) {
+ post_log("Memory error at %08x, "
+ "wrote %08x, read %08x !\n",
+ mem + i, ~i, readback);
+
+ ret = -1;
+ break;
+ }
+ if (i % 1024 == 0)
+ WATCHDOG_RESET();
+ }
+
+ return ret;
+}
+
+static int memory_post_test_lines(unsigned long start, unsigned long size)
+{
+ int ret = 0;
+
+ ret = memory_post_dataline((unsigned long long *)start);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_addrline((ulong *)start, (ulong *)start,
+ size);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_addrline((ulong *)(start+size-8),
+ (ulong *)start, size);
+ WATCHDOG_RESET();
+
+ return ret;
+}
+
+static int memory_post_test_patterns(unsigned long start, unsigned long size)
+{
+ int ret = 0;
+
+ ret = memory_post_test1(start, size, 0x00000000);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test1(start, size, 0xffffffff);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test1(start, size, 0x55555555);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test1(start, size, 0xaaaaaaaa);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test2(start, size);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test3(start, size);
+ WATCHDOG_RESET();
+ if (!ret)
+ ret = memory_post_test4(start, size);
+ WATCHDOG_RESET();
+
+ return ret;
+}
+
+static int memory_post_test_regions(unsigned long start, unsigned long size)
+{
+ unsigned long i;
+ int ret = 0;
+
+ for (i = 0; i < (size >> 20) && (!ret); i++) {
+ if (!ret)
+ ret = memory_post_test_patterns(start + (i << 20),
+ 0x800);
+ if (!ret)
+ ret = memory_post_test_patterns(start + (i << 20) +
+ 0xff800, 0x800);
+ }
+
+ return ret;
+}
+
+static int memory_post_tests(unsigned long start, unsigned long size)
+{
+ int ret = 0;
+
+ ret = memory_post_test_lines(start, size);
+ if (!ret)
+ ret = memory_post_test_patterns(start, size);
+
+ return ret;
+}
+
+/*
+ * !! this is only valid, if you have contiguous memory banks !!
+ */
+__attribute__((weak))
+int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
+{
+ bd_t *bd = gd->bd;
+
+ *vstart = CONFIG_SYS_SDRAM_BASE;
+ *size = (gd->ram_size >= 256 << 20 ?
+ 256 << 20 : gd->ram_size) - (1 << 20);
+
+ /* Limit area to be tested with the board info struct */
+ if ((*vstart) + (*size) > (ulong)bd)
+ *size = (ulong)bd - *vstart;
+
+ return 0;
+}
+
+__attribute__((weak))
+int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
+{
+ return 1;
+}
+
+__attribute__((weak))
+int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
+{
+ return 0;
+}
+
+__attribute__((weak))
+void arch_memory_failure_handle(void)
+{
+ return;
+}
+
+int memory_regions_post_test(int flags)
+{
+ int ret = 0;
+ phys_addr_t phys_offset = 0;
+ u32 memsize, vstart;
+
+ arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
+
+ ret = memory_post_test_lines(vstart, memsize);
+ if (!ret)
+ ret = memory_post_test_regions(vstart, memsize);
+
+ return ret;
+}
+
+int memory_post_test(int flags)
+{
+ int ret = 0;
+ phys_addr_t phys_offset = 0;
+ u32 memsize, vstart;
+
+ arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
+
+ do {
+ if (flags & POST_SLOWTEST) {
+ ret = memory_post_tests(vstart, memsize);
+ } else { /* POST_NORMAL */
+ ret = memory_post_test_regions(vstart, memsize);
+ }
+ } while (!ret &&
+ !arch_memory_test_advance(&vstart, &memsize, &phys_offset));
+
+ arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
+ if (ret)
+ arch_memory_failure_handle();
+
+ return ret;
+}
+
+#endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
diff --git a/qemu/roms/u-boot/post/drivers/rtc.c b/qemu/roms/u-boot/post/drivers/rtc.c
new file mode 100644
index 000000000..cd19f7568
--- /dev/null
+++ b/qemu/roms/u-boot/post/drivers/rtc.c
@@ -0,0 +1,179 @@
+/*
+ * (C) Copyright 2002
+ * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+
+/*
+ * RTC test
+ *
+ * The Real Time Clock (RTC) operation is verified by this test.
+ * The following features are verified:
+ * o) RTC Power Fault
+ * This is verified by analyzing the rtc_get() return status.
+ * o) Time uniformity
+ * This is verified by reading RTC in polling within
+ * a short period of time.
+ * o) Passing month boundaries
+ * This is checked by setting RTC to a second before
+ * a month boundary and reading it after its passing the
+ * boundary. The test is performed for both leap- and
+ * nonleap-years.
+ */
+
+#include <post.h>
+#include <rtc.h>
+
+#if CONFIG_POST & CONFIG_SYS_POST_RTC
+
+static int rtc_post_skip (ulong * diff)
+{
+ struct rtc_time tm1;
+ struct rtc_time tm2;
+ ulong start1;
+ ulong start2;
+
+ rtc_get (&tm1);
+ start1 = get_timer (0);
+
+ while (1) {
+ rtc_get (&tm2);
+ start2 = get_timer (0);
+ if (tm1.tm_sec != tm2.tm_sec)
+ break;
+ if (start2 - start1 > 1500)
+ break;
+ }
+
+ if (tm1.tm_sec != tm2.tm_sec) {
+ *diff = start2 - start1;
+
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+static void rtc_post_restore (struct rtc_time *tm, unsigned int sec)
+{
+ time_t t = mktime (tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour,
+ tm->tm_min, tm->tm_sec) + sec;
+ struct rtc_time ntm;
+
+ to_tm (t, &ntm);
+
+ rtc_set (&ntm);
+}
+
+int rtc_post_test (int flags)
+{
+ ulong diff;
+ unsigned int i;
+ struct rtc_time svtm;
+ static unsigned int daysnl[] =
+ { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
+ static unsigned int daysl[] =
+ { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
+ unsigned int ynl = 1999;
+ unsigned int yl = 2000;
+ unsigned int skipped = 0;
+ int reliable;
+
+ /* Time reliability */
+ reliable = rtc_get (&svtm);
+
+ /* Time uniformity */
+ if (rtc_post_skip (&diff) != 0) {
+ post_log ("Timeout while waiting for a new second !\n");
+
+ return -1;
+ }
+
+ for (i = 0; i < 5; i++) {
+ if (rtc_post_skip (&diff) != 0) {
+ post_log ("Timeout while waiting for a new second !\n");
+
+ return -1;
+ }
+
+ if (diff < 950 || diff > 1050) {
+ post_log ("Invalid second duration !\n");
+
+ return -1;
+ }
+ }
+
+ /* Passing month boundaries */
+
+ if (rtc_post_skip (&diff) != 0) {
+ post_log ("Timeout while waiting for a new second !\n");
+
+ return -1;
+ }
+ rtc_get (&svtm);
+
+ for (i = 0; i < 12; i++) {
+ time_t t = mktime (ynl, i + 1, daysnl[i], 23, 59, 59);
+ struct rtc_time tm;
+
+ to_tm (t, &tm);
+ rtc_set (&tm);
+
+ skipped++;
+ if (rtc_post_skip (&diff) != 0) {
+ rtc_post_restore (&svtm, skipped);
+ post_log ("Timeout while waiting for a new second !\n");
+
+ return -1;
+ }
+
+ rtc_get (&tm);
+ if (tm.tm_mon == i + 1) {
+ rtc_post_restore (&svtm, skipped);
+ post_log ("Month %d boundary is not passed !\n", i + 1);
+
+ return -1;
+ }
+ }
+
+ for (i = 0; i < 12; i++) {
+ time_t t = mktime (yl, i + 1, daysl[i], 23, 59, 59);
+ struct rtc_time tm;
+
+ to_tm (t, &tm);
+ rtc_set (&tm);
+
+ skipped++;
+ if (rtc_post_skip (&diff) != 0) {
+ rtc_post_restore (&svtm, skipped);
+ post_log ("Timeout while waiting for a new second !\n");
+
+ return -1;
+ }
+
+ rtc_get (&tm);
+ if (tm.tm_mon == i + 1) {
+ rtc_post_restore (&svtm, skipped);
+ post_log ("Month %d boundary is not passed !\n", i + 1);
+
+ return -1;
+ }
+ }
+ rtc_post_restore (&svtm, skipped);
+
+ /* If come here, then RTC operates correcty, check the correctness
+ * of the time it reports.
+ */
+ if (reliable < 0) {
+ post_log ("RTC Time is not reliable! Power fault? \n");
+
+ return -1;
+ }
+
+ return 0;
+}
+
+#endif /* CONFIG_POST & CONFIG_SYS_POST_RTC */