diff options
Diffstat (limited to 'qemu/roms/u-boot/board/gdsys/p1022/controlcenterd-id.c')
-rw-r--r-- | qemu/roms/u-boot/board/gdsys/p1022/controlcenterd-id.c | 1224 |
1 files changed, 1224 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/board/gdsys/p1022/controlcenterd-id.c b/qemu/roms/u-boot/board/gdsys/p1022/controlcenterd-id.c new file mode 100644 index 000000000..3fca3c53b --- /dev/null +++ b/qemu/roms/u-boot/board/gdsys/p1022/controlcenterd-id.c @@ -0,0 +1,1224 @@ +/* + * (C) Copyright 2013 + * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, + * MA 02110-1301, USA. + */ + +/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */ + +#ifdef CCDM_ID_DEBUG +#define DEBUG +#endif + +#include <common.h> +#include <malloc.h> +#include <fs.h> +#include <i2c.h> +#include <mmc.h> +#include <tpm.h> +#include <sha1.h> +#include <asm/byteorder.h> +#include <asm/unaligned.h> +#include <pca9698.h> + +#undef CCDM_FIRST_STAGE +#undef CCDM_SECOND_STAGE +#undef CCDM_AUTO_FIRST_STAGE + +#ifdef CONFIG_DEVELOP +#define CCDM_DEVELOP +#endif + +#ifdef CONFIG_TRAILBLAZER +#define CCDM_FIRST_STAGE +#undef CCDM_SECOND_STAGE +#else +#undef CCDM_FIRST_STAGE +#define CCDM_SECOND_STAGE +#endif + +#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \ + !defined(CCCM_FIRST_STAGE) +#define CCDM_AUTO_FIRST_STAGE +#endif + +/* enums from TCG specs */ +enum { + /* capability areas */ + TPM_CAP_NV_INDEX = 0x00000011, + TPM_CAP_HANDLE = 0x00000014, + /* resource types */ + TPM_RT_KEY = 0x00000001, +}; + +/* CCDM specific contants */ +enum { + /* NV indices */ + NV_COMMON_DATA_INDEX = 0x40000001, + /* magics for key blob chains */ + MAGIC_KEY_PROGRAM = 0x68726500, + MAGIC_HMAC = 0x68616300, + MAGIC_END_OF_CHAIN = 0x00000000, + /* sizes */ + NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t), +}; + +/* other constants */ +enum { + ESDHC_BOOT_IMAGE_SIG_OFS = 0x40, + ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48, + ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50, + ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58, + ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60, +}; + +struct key_program { + uint32_t magic; + uint32_t code_crc; + uint32_t code_size; + uint8_t code[]; +}; + +struct h_reg { + bool valid; + uint8_t digest[20]; +}; + + +enum access_mode { + HREG_NONE = 0, + HREG_RD = 1, + HREG_WR = 2, + HREG_RDWR = 3, +}; + +/* register constants */ +enum { + FIX_HREG_DEVICE_ID_HASH = 0, + FIX_HREG_SELF_HASH = 1, + FIX_HREG_STAGE2_HASH = 2, + FIX_HREG_VENDOR = 3, + COUNT_FIX_HREGS +}; + + +/* hre opcodes */ +enum { + /* opcodes w/o data */ + HRE_NOP = 0x00, + HRE_SYNC = HRE_NOP, + HRE_CHECK0 = 0x01, + /* opcodes w/o data, w/ sync dst */ + /* opcodes w/ data */ + HRE_LOAD = 0x81, + /* opcodes w/data, w/sync dst */ + HRE_XOR = 0xC1, + HRE_AND = 0xC2, + HRE_OR = 0xC3, + HRE_EXTEND = 0xC4, + HRE_LOADKEY = 0xC5, +}; + +/* hre errors */ +enum { + HRE_E_OK = 0, + HRE_E_TPM_FAILURE, + HRE_E_INVALID_HREG, +}; + +static uint64_t device_id; +static uint64_t device_cl; +static uint64_t device_type; + +static uint32_t platform_key_handle; + +static void(*bl2_entry)(void); + +static struct h_reg pcr_hregs[24]; +static struct h_reg fix_hregs[COUNT_FIX_HREGS]; +static struct h_reg var_hregs[8]; +static uint32_t hre_tpm_err; +static int hre_err = HRE_E_OK; + +#define IS_PCR_HREG(spec) ((spec) & 0x20) +#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08) +#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10) +#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7)) + + +static const uint8_t prg_stage1_prepare[] = { + 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */ + 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */ + 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */ + 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */ + 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */ + 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */ + 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */ + 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */ + 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */ + 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */ +}; + +static const uint8_t prg_stage2_prepare[] = { + 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */ + 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */ + 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */ + 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */ + 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */ +}; + +static const uint8_t prg_stage2_success[] = { + 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */ + 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */ + 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */ + 0xe4, 0xd2, 0x81, 0xe0, /* data */ +}; + +static const uint8_t prg_stage_fail[] = { + 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */ + 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */ + 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */ + 0xea, 0xdf, 0x14, 0x4b, /* data */ + 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */ + 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */ +}; + +static const uint8_t vendor[] = "Guntermann & Drunck"; + + +/** + * @brief read a bunch of data from MMC into memory. + * + * @param mmc pointer to the mmc structure to use. + * @param src offset where the data starts on MMC/SD device (in bytes). + * @param dst pointer to the location where the read data should be stored. + * @param size number of bytes to read from the MMC/SD device. + * @return number of bytes read or -1 on error. + */ +static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size) +{ + int result = 0; + u32 blk_len, ofs; + ulong block_no, n, cnt; + u8 *tmp_buf = NULL; + + if (size <= 0) + goto end; + + blk_len = mmc->read_bl_len; + tmp_buf = malloc(blk_len); + if (!tmp_buf) + goto failure; + block_no = src / blk_len; + ofs = src % blk_len; + + if (ofs) { + n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1, + tmp_buf); + if (!n) + goto failure; + result = min(size, blk_len - ofs); + memcpy(dst, tmp_buf + ofs, result); + dst += result; + size -= result; + } + cnt = size / blk_len; + if (cnt) { + n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no, cnt, + dst); + if (n != cnt) + goto failure; + size -= cnt * blk_len; + result += cnt * blk_len; + dst += cnt * blk_len; + block_no += cnt; + } + if (size) { + n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1, + tmp_buf); + if (!n) + goto failure; + memcpy(dst, tmp_buf, size); + result += size; + } + goto end; +failure: + result = -1; +end: + if (tmp_buf) + free(tmp_buf); + return result; +} + +/** + * @brief returns a location where the 2nd stage bootloader can be(/ is) placed. + * + * @return pointer to the location for/of the 2nd stage bootloader + */ +static u8 *get_2nd_stage_bl_location(ulong target_addr) +{ + ulong addr; +#ifdef CCDM_SECOND_STAGE + addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR); +#else + addr = target_addr; +#endif + return (u8 *)(addr); +} + + +#ifdef CCDM_SECOND_STAGE +/** + * @brief returns a location where the image can be(/ is) placed. + * + * @return pointer to the location for/of the image + */ +static u8 *get_image_location(void) +{ + ulong addr; + /* TODO use other area? */ + addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR); + return (u8 *)(addr); +} +#endif + +/** + * @brief get the size of a given (TPM) NV area + * @param index NV index of the area to get size for + * @param size pointer to the size + * @return 0 on success, != 0 on error + */ +static int get_tpm_nv_size(uint32_t index, uint32_t *size) +{ + uint32_t err; + uint8_t info[72]; + uint8_t *ptr; + uint16_t v16; + + err = tpm_get_capability(TPM_CAP_NV_INDEX, index, + info, sizeof(info)); + if (err) { + printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n", + index, err); + return 1; + } + + /* skip tag and nvIndex */ + ptr = info + 6; + /* skip 2 pcr info fields */ + v16 = get_unaligned_be16(ptr); + ptr += 2 + v16 + 1 + 20; + v16 = get_unaligned_be16(ptr); + ptr += 2 + v16 + 1 + 20; + /* skip permission and flags */ + ptr += 6 + 3; + + *size = get_unaligned_be32(ptr); + return 0; +} + +/** + * @brief search for a key by usage auth and pub key hash. + * @param auth usage auth of the key to search for + * @param pubkey_digest (SHA1) hash of the pub key structure of the key + * @param[out] handle the handle of the key iff found + * @return 0 if key was found in TPM; != 0 if not. + */ +static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20], + uint32_t *handle) +{ + uint16_t key_count; + uint32_t key_handles[10]; + uint8_t buf[288]; + uint8_t *ptr; + uint32_t err; + uint8_t digest[20]; + size_t buf_len; + unsigned int i; + + /* fetch list of already loaded keys in the TPM */ + err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf)); + if (err) + return -1; + key_count = get_unaligned_be16(buf); + ptr = buf + 2; + for (i = 0; i < key_count; ++i, ptr += 4) + key_handles[i] = get_unaligned_be32(ptr); + + /* now search a(/ the) key which we can access with the given auth */ + for (i = 0; i < key_count; ++i) { + buf_len = sizeof(buf); + err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len); + if (err && err != TPM_AUTHFAIL) + return -1; + if (err) + continue; + sha1_csum(buf, buf_len, digest); + if (!memcmp(digest, pubkey_digest, 20)) { + *handle = key_handles[i]; + return 0; + } + } + return 1; +} + +/** + * @brief read CCDM common data from TPM NV + * @return 0 if CCDM common data was found and read, !=0 if something failed. + */ +static int read_common_data(void) +{ + uint32_t size; + uint32_t err; + uint8_t buf[256]; + sha1_context ctx; + + if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) || + size < NV_COMMON_DATA_MIN_SIZE) + return 1; + err = tpm_nv_read_value(NV_COMMON_DATA_INDEX, + buf, min(sizeof(buf), size)); + if (err) { + printf("tpm_nv_read_value() failed: %u\n", err); + return 1; + } + + device_id = get_unaligned_be64(buf); + device_cl = get_unaligned_be64(buf + 8); + device_type = get_unaligned_be64(buf + 16); + + sha1_starts(&ctx); + sha1_update(&ctx, buf, 24); + sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest); + fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true; + + platform_key_handle = get_unaligned_be32(buf + 24); + + return 0; +} + +/** + * @brief compute hash of bootloader itself. + * @param[out] dst hash register where the hash should be stored + * @return 0 on success, != 0 on failure. + * + * @note MUST be called at a time where the boot loader is accessible at the + * configured location (; so take care when code is reallocated). + */ +static int compute_self_hash(struct h_reg *dst) +{ + sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE, + CONFIG_SYS_MONITOR_LEN, dst->digest); + dst->valid = true; + return 0; +} + +int ccdm_compute_self_hash(void) +{ + if (!fix_hregs[FIX_HREG_SELF_HASH].valid) + compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]); + return 0; +} + +/** + * @brief compute the hash of the 2nd stage boot loader (on SD card) + * @param[out] dst hash register to store the computed hash + * @return 0 on success, != 0 on failure + * + * Determines the size and location of the 2nd stage boot loader on SD card, + * loads the 2nd stage boot loader and computes the (SHA1) hash value. + * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at + * the desired memory location and the variable @a bl2_entry is set. + * + * @note This sets the variable @a bl2_entry to the entry point when the + * 2nd stage boot loader is loaded at its configured memory location. + */ +static int compute_second_stage_hash(struct h_reg *dst) +{ + int result = 0; + u32 code_len, code_offset, target_addr, exec_entry; + struct mmc *mmc; + u8 *load_addr = NULL; + u8 buf[128]; + + mmc = find_mmc_device(0); + if (!mmc) + goto failure; + mmc_init(mmc); + + if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0) + goto failure; + + code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS); + code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS); + target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS); + exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS); + + load_addr = get_2nd_stage_bl_location(target_addr); + if (load_addr == (u8 *)target_addr) + bl2_entry = (void(*)(void))exec_entry; + + if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0) + goto failure; + + sha1_csum(load_addr, code_len, dst->digest); + dst->valid = true; + + goto end; +failure: + result = 1; + bl2_entry = NULL; +end: + return result; +} + +/** + * @brief get pointer to hash register by specification + * @param spec specification of a hash register + * @return pointer to hash register or NULL if @a spec does not qualify a + * valid hash register; NULL else. + */ +static struct h_reg *get_hreg(uint8_t spec) +{ + uint8_t idx; + + idx = HREG_IDX(spec); + if (IS_FIX_HREG(spec)) { + if (idx < ARRAY_SIZE(fix_hregs)) + return fix_hregs + idx; + hre_err = HRE_E_INVALID_HREG; + } else if (IS_PCR_HREG(spec)) { + if (idx < ARRAY_SIZE(pcr_hregs)) + return pcr_hregs + idx; + hre_err = HRE_E_INVALID_HREG; + } else if (IS_VAR_HREG(spec)) { + if (idx < ARRAY_SIZE(var_hregs)) + return var_hregs + idx; + hre_err = HRE_E_INVALID_HREG; + } + return NULL; +} + +/** + * @brief get pointer of a hash register by specification and usage. + * @param spec specification of a hash register + * @param mode access mode (read or write or read/write) + * @return pointer to hash register if found and valid; NULL else. + * + * This func uses @a get_reg() to determine the hash register for a given spec. + * If a register is found it is validated according to the desired access mode. + * The value of automatic registers (PCR register and fixed registers) is + * loaded or computed on read access. + */ +static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode) +{ + struct h_reg *result; + + result = get_hreg(spec); + if (!result) + return NULL; + + if (mode & HREG_WR) { + if (IS_FIX_HREG(spec)) { + hre_err = HRE_E_INVALID_HREG; + return NULL; + } + } + if (mode & HREG_RD) { + if (!result->valid) { + if (IS_PCR_HREG(spec)) { + hre_tpm_err = tpm_pcr_read(HREG_IDX(spec), + result->digest, 20); + result->valid = (hre_tpm_err == TPM_SUCCESS); + } else if (IS_FIX_HREG(spec)) { + switch (HREG_IDX(spec)) { + case FIX_HREG_DEVICE_ID_HASH: + read_common_data(); + break; + case FIX_HREG_SELF_HASH: + ccdm_compute_self_hash(); + break; + case FIX_HREG_STAGE2_HASH: + compute_second_stage_hash(result); + break; + case FIX_HREG_VENDOR: + memcpy(result->digest, vendor, 20); + result->valid = true; + break; + } + } else { + result->valid = true; + } + } + if (!result->valid) { + hre_err = HRE_E_INVALID_HREG; + return NULL; + } + } + + return result; +} + +static void *compute_and(void *_dst, const void *_src, size_t n) +{ + uint8_t *dst = _dst; + const uint8_t *src = _src; + size_t i; + + for (i = n; i-- > 0; ) + *dst++ &= *src++; + + return _dst; +} + +static void *compute_or(void *_dst, const void *_src, size_t n) +{ + uint8_t *dst = _dst; + const uint8_t *src = _src; + size_t i; + + for (i = n; i-- > 0; ) + *dst++ |= *src++; + + return _dst; +} + +static void *compute_xor(void *_dst, const void *_src, size_t n) +{ + uint8_t *dst = _dst; + const uint8_t *src = _src; + size_t i; + + for (i = n; i-- > 0; ) + *dst++ ^= *src++; + + return _dst; +} + +static void *compute_extend(void *_dst, const void *_src, size_t n) +{ + uint8_t digest[20]; + sha1_context ctx; + + sha1_starts(&ctx); + sha1_update(&ctx, _dst, n); + sha1_update(&ctx, _src, n); + sha1_finish(&ctx, digest); + memcpy(_dst, digest, min(n, sizeof(digest))); + + return _dst; +} + +static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg, + const void *key, size_t key_size) +{ + uint32_t parent_handle; + uint32_t key_handle; + + if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid) + return -1; + if (find_key(src_reg->digest, dst_reg->digest, &parent_handle)) + return -1; + hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size, + src_reg->digest, &key_handle); + if (hre_tpm_err) { + hre_err = HRE_E_TPM_FAILURE; + return -1; + } + /* TODO remember key handle somehow? */ + + return 0; +} + +/** + * @brief executes the next opcode on the hash register engine. + * @param[in,out] ip pointer to the opcode (instruction pointer) + * @param[in,out] code_size (remaining) size of the code + * @return new instruction pointer on success, NULL on error. + */ +static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size) +{ + bool dst_modified = false; + uint32_t ins; + uint8_t opcode; + uint8_t src_spec; + uint8_t dst_spec; + uint16_t data_size; + struct h_reg *src_reg, *dst_reg; + uint8_t buf[20]; + const uint8_t *src_buf, *data; + uint8_t *ptr; + int i; + void * (*bin_func)(void *, const void *, size_t); + + if (*code_size < 4) + return NULL; + + ins = get_unaligned_be32(*ip); + opcode = **ip; + data = *ip + 4; + src_spec = (ins >> 18) & 0x3f; + dst_spec = (ins >> 12) & 0x3f; + data_size = (ins & 0x7ff); + + debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins, + opcode, src_spec, dst_spec, data_size); + + if ((opcode & 0x80) && (data_size + 4) > *code_size) + return NULL; + + src_reg = access_hreg(src_spec, HREG_RD); + if (hre_err || hre_tpm_err) + return NULL; + dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR); + if (hre_err || hre_tpm_err) + return NULL; + + switch (opcode) { + case HRE_NOP: + goto end; + case HRE_CHECK0: + if (src_reg) { + for (i = 0; i < 20; ++i) { + if (src_reg->digest[i]) + return NULL; + } + } + break; + case HRE_LOAD: + bin_func = memcpy; + goto do_bin_func; + case HRE_XOR: + bin_func = compute_xor; + goto do_bin_func; + case HRE_AND: + bin_func = compute_and; + goto do_bin_func; + case HRE_OR: + bin_func = compute_or; + goto do_bin_func; + case HRE_EXTEND: + bin_func = compute_extend; +do_bin_func: + if (!dst_reg) + return NULL; + if (src_reg) { + src_buf = src_reg->digest; + } else { + if (!data_size) { + memset(buf, 0, 20); + src_buf = buf; + } else if (data_size == 1) { + memset(buf, *data, 20); + src_buf = buf; + } else if (data_size >= 20) { + src_buf = data; + } else { + src_buf = buf; + for (ptr = (uint8_t *)src_buf, i = 20; i > 0; + i -= data_size, ptr += data_size) + memcpy(ptr, data, min(i, data_size)); + } + } + bin_func(dst_reg->digest, src_buf, 20); + dst_reg->valid = true; + dst_modified = true; + break; + case HRE_LOADKEY: + if (hre_op_loadkey(src_reg, dst_reg, data, data_size)) + return NULL; + break; + default: + return NULL; + } + + if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) { + hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest, + dst_reg->digest); + if (hre_tpm_err) { + hre_err = HRE_E_TPM_FAILURE; + return NULL; + } + } +end: + *ip += 4; + *code_size -= 4; + if (opcode & 0x80) { + *ip += data_size; + *code_size -= data_size; + } + + return *ip; +} + +/** + * @brief runs a program on the hash register engine. + * @param code pointer to the (HRE) code. + * @param code_size size of the code (in bytes). + * @return 0 on success, != 0 on failure. + */ +static int hre_run_program(const uint8_t *code, size_t code_size) +{ + size_t code_left; + const uint8_t *ip = code; + + code_left = code_size; + hre_tpm_err = 0; + hre_err = HRE_E_OK; + while (code_left > 0) + if (!hre_execute_op(&ip, &code_left)) + return -1; + + return hre_err; +} + +static int check_hmac(struct key_program *hmac, + const uint8_t *data, size_t data_size) +{ + uint8_t key[20], computed_hmac[20]; + uint32_t type; + + type = get_unaligned_be32(hmac->code); + if (type != 0) + return 1; + memset(key, 0, sizeof(key)); + compute_extend(key, pcr_hregs[1].digest, 20); + compute_extend(key, pcr_hregs[2].digest, 20); + compute_extend(key, pcr_hregs[3].digest, 20); + compute_extend(key, pcr_hregs[4].digest, 20); + + sha1_hmac(key, sizeof(key), data, data_size, computed_hmac); + + return memcmp(computed_hmac, hmac->code + 4, 20); +} + +static int verify_program(struct key_program *prg) +{ + uint32_t crc; + crc = crc32(0, prg->code, prg->code_size); + + if (crc != prg->code_crc) { + printf("HRC crc mismatch: %08x != %08x\n", + crc, prg->code_crc); + return 1; + } + return 0; +} + +#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE) +static struct key_program *load_sd_key_program(void) +{ + u32 code_len, code_offset; + struct mmc *mmc; + u8 buf[128]; + struct key_program *result = NULL, *hmac = NULL; + struct key_program header; + + mmc = find_mmc_device(0); + if (!mmc) + return NULL; + mmc_init(mmc); + + if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0) + goto failure; + + code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS); + code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS); + + code_offset += code_len; + /* TODO: the following needs to be the size of the 2nd stage env */ + code_offset += CONFIG_ENV_SIZE; + + if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0) + goto failure; + + header.magic = get_unaligned_be32(buf); + header.code_crc = get_unaligned_be32(buf + 4); + header.code_size = get_unaligned_be32(buf + 8); + + if (header.magic != MAGIC_KEY_PROGRAM) + goto failure; + + result = malloc(sizeof(struct key_program) + header.code_size); + if (!result) + goto failure; + *result = header; + + printf("load key program chunk from SD card (%u bytes) ", + header.code_size); + code_offset += 12; + if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size) + < 0) + goto failure; + code_offset += header.code_size; + puts("\n"); + + if (verify_program(result)) + goto failure; + + if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0) + goto failure; + + header.magic = get_unaligned_be32(buf); + header.code_crc = get_unaligned_be32(buf + 4); + header.code_size = get_unaligned_be32(buf + 8); + + if (header.magic == MAGIC_HMAC) { + puts("check integrity\n"); + hmac = malloc(sizeof(struct key_program) + header.code_size); + if (!hmac) + goto failure; + *hmac = header; + code_offset += 12; + if (ccdm_mmc_read(mmc, code_offset, hmac->code, + hmac->code_size) < 0) + goto failure; + if (verify_program(hmac)) + goto failure; + if (check_hmac(hmac, result->code, result->code_size)) { + puts("key program integrity could not be verified\n"); + goto failure; + } + puts("key program verified\n"); + } + + goto end; +failure: + if (result) + free(result); + result = NULL; +end: + if (hmac) + free(hmac); + + return result; +} +#endif + +#ifdef CCDM_SECOND_STAGE +/** + * @brief load a key program from file system. + * @param ifname interface of the file system + * @param dev_part_str device part of the file system + * @param fs_type tyep of the file system + * @param path path of the file to load. + * @return the loaded structure or NULL on failure. + */ +static struct key_program *load_key_chunk(const char *ifname, + const char *dev_part_str, int fs_type, + const char *path) +{ + struct key_program *result = NULL; + struct key_program header; + uint32_t crc; + uint8_t buf[12]; + int i; + + if (fs_set_blk_dev(ifname, dev_part_str, fs_type)) + goto failure; + i = fs_read(path, (ulong)buf, 0, 12); + if (i < 12) + goto failure; + header.magic = get_unaligned_be32(buf); + header.code_crc = get_unaligned_be32(buf + 4); + header.code_size = get_unaligned_be32(buf + 8); + + if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM) + goto failure; + + result = malloc(sizeof(struct key_program) + header.code_size); + if (!result) + goto failure; + if (fs_set_blk_dev(ifname, dev_part_str, fs_type)) + goto failure; + i = fs_read(path, (ulong)result, 0, + sizeof(struct key_program) + header.code_size); + if (i <= 0) + goto failure; + *result = header; + + crc = crc32(0, result->code, result->code_size); + + if (crc != result->code_crc) { + printf("%s: HRC crc mismatch: %08x != %08x\n", + path, crc, result->code_crc); + goto failure; + } + goto end; +failure: + if (result) { + free(result); + result = NULL; + } +end: + return result; +} +#endif + +#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE) +static int first_stage_actions(void) +{ + int result = 0; + struct key_program *sd_prg = NULL; + + puts("CCDM S1: start actions\n"); +#ifndef CCDM_SECOND_STAGE + if (tpm_continue_self_test()) + goto failure; +#else + tpm_continue_self_test(); +#endif + mdelay(37); + + if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare))) + goto failure; + + sd_prg = load_sd_key_program(); + if (sd_prg) { + if (hre_run_program(sd_prg->code, sd_prg->code_size)) + goto failure; + puts("SD code run successfully\n"); + } else { + puts("no key program found on SD\n"); + goto failure; + } + goto end; +failure: + result = 1; +end: + if (sd_prg) + free(sd_prg); + printf("CCDM S1: actions done (%d)\n", result); + return result; +} +#endif + +#ifdef CCDM_FIRST_STAGE +static int first_stage_init(void) +{ + int res = 0; + puts("CCDM S1\n"); + if (tpm_init() || tpm_startup(TPM_ST_CLEAR)) + return 1; + res = first_stage_actions(); +#ifndef CCDM_SECOND_STAGE + if (!res) { + if (bl2_entry) + (*bl2_entry)(); + res = 1; + } +#endif + return res; +} +#endif + +#ifdef CCDM_SECOND_STAGE +static int second_stage_init(void) +{ + static const char mac_suffix[] = ".mac"; + bool did_first_stage_run = true; + int result = 0; + char *cptr, *mmcdev = NULL; + struct key_program *hmac_blob = NULL; + const char *image_path = "/ccdm.itb"; + char *mac_path = NULL; + ulong image_addr; + size_t image_size; + uint32_t err; + + printf("CCDM S2\n"); + if (tpm_init()) + return 1; + err = tpm_startup(TPM_ST_CLEAR); + if (err != TPM_INVALID_POSTINIT) + did_first_stage_run = false; + +#ifdef CCDM_AUTO_FIRST_STAGE + if (!did_first_stage_run && first_stage_actions()) + goto failure; +#else + if (!did_first_stage_run) + goto failure; +#endif + + if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare))) + goto failure; + + /* run "prepboot" from env to get "mmcdev" set */ + cptr = getenv("prepboot"); + if (cptr && !run_command(cptr, 0)) + mmcdev = getenv("mmcdev"); + if (!mmcdev) + goto failure; + + cptr = getenv("ramdiskimage"); + if (cptr) + image_path = cptr; + + mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1); + if (mac_path == NULL) + goto failure; + strcpy(mac_path, image_path); + strcat(mac_path, mac_suffix); + + /* read image from mmcdev (ccdm.itb) */ + image_addr = (ulong)get_image_location(); + if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT)) + goto failure; + image_size = fs_read(image_path, image_addr, 0, 0); + if (image_size <= 0) + goto failure; + printf("CCDM image found on %s, %d bytes\n", mmcdev, image_size); + + hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path); + if (!hmac_blob) { + puts("failed to load mac file\n"); + goto failure; + } + if (verify_program(hmac_blob)) { + puts("corrupted mac file\n"); + goto failure; + } + if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) { + puts("image integrity could not be verified\n"); + goto failure; + } + puts("CCDM image OK\n"); + + hre_run_program(prg_stage2_success, sizeof(prg_stage2_success)); + + goto end; +failure: + result = 1; + hre_run_program(prg_stage_fail, sizeof(prg_stage_fail)); +end: + if (hmac_blob) + free(hmac_blob); + if (mac_path) + free(mac_path); + + return result; +} +#endif + +int show_self_hash(void) +{ + struct h_reg *hash_ptr; +#ifdef CCDM_SECOND_STAGE + struct h_reg hash; + + hash_ptr = &hash; + if (compute_self_hash(hash_ptr)) + return 1; +#else + hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH]; +#endif + puts("self hash: "); + if (hash_ptr && hash_ptr->valid) + print_buffer(0, hash_ptr->digest, 1, 20, 20); + else + puts("INVALID\n"); + + return 0; +} + +/** + * @brief let the system hang. + * + * Called on error. + * Will stop the boot process; display a message and signal the error condition + * by blinking the "status" and the "finder" LED of the controller board. + * + * @note the develop version runs the blink cycle 2 times and then returns. + * The release version never returns. + */ +static void ccdm_hang(void) +{ + static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */ + static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */ + u64 f, s; + int i; +#ifdef CCDM_DEVELOP + int j; +#endif + + I2C_SET_BUS(0); + pca9698_direction_output(0x22, 0, 0); /* Finder */ + pca9698_direction_output(0x22, 4, 0); /* Status */ + + puts("### ERROR ### Please RESET the board ###\n"); + bootstage_error(BOOTSTAGE_ID_NEED_RESET); +#ifdef CCDM_DEVELOP + puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n"); + puts("** but we continue since this is a DEVELOP version **\n"); + puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n"); + for (j = 2; j-- > 0;) { + putc('#'); +#else + for (;;) { +#endif + f = f0; + s = s0; + for (i = 54; i-- > 0;) { + pca9698_set_value(0x22, 0, !(f & 1)); + pca9698_set_value(0x22, 4, (s & 1)); + f >>= 1; + s >>= 1; + mdelay(120); + } + } + puts("\ncontinue...\n"); +} + +int startup_ccdm_id_module(void) +{ + int result = 0; + unsigned int orig_i2c_bus; + + orig_i2c_bus = I2C_GET_BUS(); + I2C_SET_BUS(1); + + /* goto end; */ + +#ifdef CCDM_DEVELOP + show_self_hash(); +#endif +#ifdef CCDM_FIRST_STAGE + result = first_stage_init(); + if (result) { + puts("1st stage init failed\n"); + goto failure; + } +#endif +#ifdef CCDM_SECOND_STAGE + result = second_stage_init(); + if (result) { + puts("2nd stage init failed\n"); + goto failure; + } +#endif + + goto end; +failure: + result = 1; +end: + I2C_SET_BUS(orig_i2c_bus); + if (result) + ccdm_hang(); + + return result; +} |