summaryrefslogtreecommitdiffstats
path: root/qemu/qemu-tech.texi
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/qemu-tech.texi')
-rw-r--r--qemu/qemu-tech.texi699
1 files changed, 0 insertions, 699 deletions
diff --git a/qemu/qemu-tech.texi b/qemu/qemu-tech.texi
deleted file mode 100644
index bdb2285f4..000000000
--- a/qemu/qemu-tech.texi
+++ /dev/null
@@ -1,699 +0,0 @@
-\input texinfo @c -*- texinfo -*-
-@c %**start of header
-@setfilename qemu-tech.info
-
-@documentlanguage en
-@documentencoding UTF-8
-
-@settitle QEMU Internals
-@exampleindent 0
-@paragraphindent 0
-@c %**end of header
-
-@ifinfo
-@direntry
-* QEMU Internals: (qemu-tech). The QEMU Emulator Internals.
-@end direntry
-@end ifinfo
-
-@iftex
-@titlepage
-@sp 7
-@center @titlefont{QEMU Internals}
-@sp 3
-@end titlepage
-@end iftex
-
-@ifnottex
-@node Top
-@top
-
-@menu
-* Introduction::
-* QEMU Internals::
-* Regression Tests::
-* Index::
-@end menu
-@end ifnottex
-
-@contents
-
-@node Introduction
-@chapter Introduction
-
-@menu
-* intro_features:: Features
-* intro_x86_emulation:: x86 and x86-64 emulation
-* intro_arm_emulation:: ARM emulation
-* intro_mips_emulation:: MIPS emulation
-* intro_ppc_emulation:: PowerPC emulation
-* intro_sparc_emulation:: Sparc32 and Sparc64 emulation
-* intro_xtensa_emulation:: Xtensa emulation
-* intro_other_emulation:: Other CPU emulation
-@end menu
-
-@node intro_features
-@section Features
-
-QEMU is a FAST! processor emulator using a portable dynamic
-translator.
-
-QEMU has two operating modes:
-
-@itemize @minus
-
-@item
-Full system emulation. In this mode (full platform virtualization),
-QEMU emulates a full system (usually a PC), including a processor and
-various peripherals. It can be used to launch several different
-Operating Systems at once without rebooting the host machine or to
-debug system code.
-
-@item
-User mode emulation. In this mode (application level virtualization),
-QEMU can launch processes compiled for one CPU on another CPU, however
-the Operating Systems must match. This can be used for example to ease
-cross-compilation and cross-debugging.
-@end itemize
-
-As QEMU requires no host kernel driver to run, it is very safe and
-easy to use.
-
-QEMU generic features:
-
-@itemize
-
-@item User space only or full system emulation.
-
-@item Using dynamic translation to native code for reasonable speed.
-
-@item
-Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
-HPPA, Sparc32 and Sparc64. Previous versions had some support for
-Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
-
-@item Self-modifying code support.
-
-@item Precise exceptions support.
-
-@item
-Floating point library supporting both full software emulation and
-native host FPU instructions.
-
-@end itemize
-
-QEMU user mode emulation features:
-@itemize
-@item Generic Linux system call converter, including most ioctls.
-
-@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
-
-@item Accurate signal handling by remapping host signals to target signals.
-@end itemize
-
-Linux user emulator (Linux host only) can be used to launch the Wine
-Windows API emulator (@url{http://www.winehq.org}). A BSD user emulator for BSD
-hosts is under development. It would also be possible to develop a
-similar user emulator for Solaris.
-
-QEMU full system emulation features:
-@itemize
-@item
-QEMU uses a full software MMU for maximum portability.
-
-@item
-QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
-execute some of the guest code natively, while
-continuing to emulate the rest of the machine.
-
-@item
-Various hardware devices can be emulated and in some cases, host
-devices (e.g. serial and parallel ports, USB, drives) can be used
-transparently by the guest Operating System. Host device passthrough
-can be used for talking to external physical peripherals (e.g. a
-webcam, modem or tape drive).
-
-@item
-Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
-SMP host system, QEMU can use only one CPU fully due to difficulty in
-implementing atomic memory accesses efficiently.
-
-@end itemize
-
-@node intro_x86_emulation
-@section x86 and x86-64 emulation
-
-QEMU x86 target features:
-
-@itemize
-
-@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
-LDT/GDT and IDT are emulated. VM86 mode is also supported to run
-DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
-and SSE4 as well as x86-64 SVM.
-
-@item Support of host page sizes bigger than 4KB in user mode emulation.
-
-@item QEMU can emulate itself on x86.
-
-@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
-It can be used to test other x86 virtual CPUs.
-
-@end itemize
-
-Current QEMU limitations:
-
-@itemize
-
-@item Limited x86-64 support.
-
-@item IPC syscalls are missing.
-
-@item The x86 segment limits and access rights are not tested at every
-memory access (yet). Hopefully, very few OSes seem to rely on that for
-normal use.
-
-@end itemize
-
-@node intro_arm_emulation
-@section ARM emulation
-
-@itemize
-
-@item Full ARM 7 user emulation.
-
-@item NWFPE FPU support included in user Linux emulation.
-
-@item Can run most ARM Linux binaries.
-
-@end itemize
-
-@node intro_mips_emulation
-@section MIPS emulation
-
-@itemize
-
-@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
-including privileged instructions, FPU and MMU, in both little and big
-endian modes.
-
-@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
-
-@end itemize
-
-Current QEMU limitations:
-
-@itemize
-
-@item Self-modifying code is not always handled correctly.
-
-@item 64 bit userland emulation is not implemented.
-
-@item The system emulation is not complete enough to run real firmware.
-
-@item The watchpoint debug facility is not implemented.
-
-@end itemize
-
-@node intro_ppc_emulation
-@section PowerPC emulation
-
-@itemize
-
-@item Full PowerPC 32 bit emulation, including privileged instructions,
-FPU and MMU.
-
-@item Can run most PowerPC Linux binaries.
-
-@end itemize
-
-@node intro_sparc_emulation
-@section Sparc32 and Sparc64 emulation
-
-@itemize
-
-@item Full SPARC V8 emulation, including privileged
-instructions, FPU and MMU. SPARC V9 emulation includes most privileged
-and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
-
-@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
-some 64-bit SPARC Linux binaries.
-
-@end itemize
-
-Current QEMU limitations:
-
-@itemize
-
-@item IPC syscalls are missing.
-
-@item Floating point exception support is buggy.
-
-@item Atomic instructions are not correctly implemented.
-
-@item There are still some problems with Sparc64 emulators.
-
-@end itemize
-
-@node intro_xtensa_emulation
-@section Xtensa emulation
-
-@itemize
-
-@item Core Xtensa ISA emulation, including most options: code density,
-loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
-MAC16, miscellaneous operations, boolean, FP coprocessor, coprocessor
-context, debug, multiprocessor synchronization,
-conditional store, exceptions, relocatable vectors, unaligned exception,
-interrupts (including high priority and timer), hardware alignment,
-region protection, region translation, MMU, windowed registers, thread
-pointer, processor ID.
-
-@item Not implemented options: data/instruction cache (including cache
-prefetch and locking), XLMI, processor interface. Also options not
-covered by the core ISA (e.g. FLIX, wide branches) are not implemented.
-
-@item Can run most Xtensa Linux binaries.
-
-@item New core configuration that requires no additional instructions
-may be created from overlay with minimal amount of hand-written code.
-
-@end itemize
-
-@node intro_other_emulation
-@section Other CPU emulation
-
-In addition to the above, QEMU supports emulation of other CPUs with
-varying levels of success. These are:
-
-@itemize
-
-@item
-Alpha
-@item
-CRIS
-@item
-M68k
-@item
-SH4
-@end itemize
-
-@node QEMU Internals
-@chapter QEMU Internals
-
-@menu
-* QEMU compared to other emulators::
-* Portable dynamic translation::
-* Condition code optimisations::
-* CPU state optimisations::
-* Translation cache::
-* Direct block chaining::
-* Self-modifying code and translated code invalidation::
-* Exception support::
-* MMU emulation::
-* Device emulation::
-* Hardware interrupts::
-* User emulation specific details::
-* Bibliography::
-@end menu
-
-@node QEMU compared to other emulators
-@section QEMU compared to other emulators
-
-Like bochs [1], QEMU emulates an x86 CPU. But QEMU is much faster than
-bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
-emulation while QEMU can emulate several processors.
-
-Like Valgrind [2], QEMU does user space emulation and dynamic
-translation. Valgrind is mainly a memory debugger while QEMU has no
-support for it (QEMU could be used to detect out of bound memory
-accesses as Valgrind, but it has no support to track uninitialised data
-as Valgrind does). The Valgrind dynamic translator generates better code
-than QEMU (in particular it does register allocation) but it is closely
-tied to an x86 host and target and has no support for precise exceptions
-and system emulation.
-
-EM86 [3] is the closest project to user space QEMU (and QEMU still uses
-some of its code, in particular the ELF file loader). EM86 was limited
-to an alpha host and used a proprietary and slow interpreter (the
-interpreter part of the FX!32 Digital Win32 code translator [4]).
-
-TWIN from Willows Software was a Windows API emulator like Wine. It is less
-accurate than Wine but includes a protected mode x86 interpreter to launch
-x86 Windows executables. Such an approach has greater potential because most
-of the Windows API is executed natively but it is far more difficult to
-develop because all the data structures and function parameters exchanged
-between the API and the x86 code must be converted.
-
-User mode Linux [5] was the only solution before QEMU to launch a
-Linux kernel as a process while not needing any host kernel
-patches. However, user mode Linux requires heavy kernel patches while
-QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
-slower.
-
-The Plex86 [6] PC virtualizer is done in the same spirit as the now
-obsolete qemu-fast system emulator. It requires a patched Linux kernel
-to work (you cannot launch the same kernel on your PC), but the
-patches are really small. As it is a PC virtualizer (no emulation is
-done except for some privileged instructions), it has the potential of
-being faster than QEMU. The downside is that a complicated (and
-potentially unsafe) host kernel patch is needed.
-
-The commercial PC Virtualizers (VMWare [7], VirtualPC [8]) are faster
-than QEMU (without virtualization), but they all need specific, proprietary
-and potentially unsafe host drivers. Moreover, they are unable to
-provide cycle exact simulation as an emulator can.
-
-VirtualBox [9], Xen [10] and KVM [11] are based on QEMU. QEMU-SystemC
-[12] uses QEMU to simulate a system where some hardware devices are
-developed in SystemC.
-
-@node Portable dynamic translation
-@section Portable dynamic translation
-
-QEMU is a dynamic translator. When it first encounters a piece of code,
-it converts it to the host instruction set. Usually dynamic translators
-are very complicated and highly CPU dependent. QEMU uses some tricks
-which make it relatively easily portable and simple while achieving good
-performances.
-
-After the release of version 0.9.1, QEMU switched to a new method of
-generating code, Tiny Code Generator or TCG. TCG relaxes the
-dependency on the exact version of the compiler used. The basic idea
-is to split every target instruction into a couple of RISC-like TCG
-ops (see @code{target-i386/translate.c}). Some optimizations can be
-performed at this stage, including liveness analysis and trivial
-constant expression evaluation. TCG ops are then implemented in the
-host CPU back end, also known as TCG target (see
-@code{tcg/i386/tcg-target.inc.c}). For more information, please take a
-look at @code{tcg/README}.
-
-@node Condition code optimisations
-@section Condition code optimisations
-
-Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
-is important for CPUs where every instruction sets the condition
-codes. It tends to be less important on conventional RISC systems
-where condition codes are only updated when explicitly requested. On
-Sparc64, costly update of both 32 and 64 bit condition codes can be
-avoided with lazy evaluation.
-
-Instead of computing the condition codes after each x86 instruction,
-QEMU just stores one operand (called @code{CC_SRC}), the result
-(called @code{CC_DST}) and the type of operation (called
-@code{CC_OP}). When the condition codes are needed, the condition
-codes can be calculated using this information. In addition, an
-optimized calculation can be performed for some instruction types like
-conditional branches.
-
-@code{CC_OP} is almost never explicitly set in the generated code
-because it is known at translation time.
-
-The lazy condition code evaluation is used on x86, m68k, cris and
-Sparc. ARM uses a simplified variant for the N and Z flags.
-
-@node CPU state optimisations
-@section CPU state optimisations
-
-The target CPUs have many internal states which change the way it
-evaluates instructions. In order to achieve a good speed, the
-translation phase considers that some state information of the virtual
-CPU cannot change in it. The state is recorded in the Translation
-Block (TB). If the state changes (e.g. privilege level), a new TB will
-be generated and the previous TB won't be used anymore until the state
-matches the state recorded in the previous TB. For example, if the SS,
-DS and ES segments have a zero base, then the translator does not even
-generate an addition for the segment base.
-
-[The FPU stack pointer register is not handled that way yet].
-
-@node Translation cache
-@section Translation cache
-
-A 32 MByte cache holds the most recently used translations. For
-simplicity, it is completely flushed when it is full. A translation unit
-contains just a single basic block (a block of x86 instructions
-terminated by a jump or by a virtual CPU state change which the
-translator cannot deduce statically).
-
-@node Direct block chaining
-@section Direct block chaining
-
-After each translated basic block is executed, QEMU uses the simulated
-Program Counter (PC) and other cpu state information (such as the CS
-segment base value) to find the next basic block.
-
-In order to accelerate the most common cases where the new simulated PC
-is known, QEMU can patch a basic block so that it jumps directly to the
-next one.
-
-The most portable code uses an indirect jump. An indirect jump makes
-it easier to make the jump target modification atomic. On some host
-architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
-directly patched so that the block chaining has no overhead.
-
-@node Self-modifying code and translated code invalidation
-@section Self-modifying code and translated code invalidation
-
-Self-modifying code is a special challenge in x86 emulation because no
-instruction cache invalidation is signaled by the application when code
-is modified.
-
-When translated code is generated for a basic block, the corresponding
-host page is write protected if it is not already read-only. Then, if
-a write access is done to the page, Linux raises a SEGV signal. QEMU
-then invalidates all the translated code in the page and enables write
-accesses to the page.
-
-Correct translated code invalidation is done efficiently by maintaining
-a linked list of every translated block contained in a given page. Other
-linked lists are also maintained to undo direct block chaining.
-
-On RISC targets, correctly written software uses memory barriers and
-cache flushes, so some of the protection above would not be
-necessary. However, QEMU still requires that the generated code always
-matches the target instructions in memory in order to handle
-exceptions correctly.
-
-@node Exception support
-@section Exception support
-
-longjmp() is used when an exception such as division by zero is
-encountered.
-
-The host SIGSEGV and SIGBUS signal handlers are used to get invalid
-memory accesses. The simulated program counter is found by
-retranslating the corresponding basic block and by looking where the
-host program counter was at the exception point.
-
-The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
-in some cases it is not computed because of condition code
-optimisations. It is not a big concern because the emulated code can
-still be restarted in any cases.
-
-@node MMU emulation
-@section MMU emulation
-
-For system emulation QEMU supports a soft MMU. In that mode, the MMU
-virtual to physical address translation is done at every memory
-access. QEMU uses an address translation cache to speed up the
-translation.
-
-In order to avoid flushing the translated code each time the MMU
-mappings change, QEMU uses a physically indexed translation cache. It
-means that each basic block is indexed with its physical address.
-
-When MMU mappings change, only the chaining of the basic blocks is
-reset (i.e. a basic block can no longer jump directly to another one).
-
-@node Device emulation
-@section Device emulation
-
-Systems emulated by QEMU are organized by boards. At initialization
-phase, each board instantiates a number of CPUs, devices, RAM and
-ROM. Each device in turn can assign I/O ports or memory areas (for
-MMIO) to its handlers. When the emulation starts, an access to the
-ports or MMIO memory areas assigned to the device causes the
-corresponding handler to be called.
-
-RAM and ROM are handled more optimally, only the offset to the host
-memory needs to be added to the guest address.
-
-The video RAM of VGA and other display cards is special: it can be
-read or written directly like RAM, but write accesses cause the memory
-to be marked with VGA_DIRTY flag as well.
-
-QEMU supports some device classes like serial and parallel ports, USB,
-drives and network devices, by providing APIs for easier connection to
-the generic, higher level implementations. The API hides the
-implementation details from the devices, like native device use or
-advanced block device formats like QCOW.
-
-Usually the devices implement a reset method and register support for
-saving and loading of the device state. The devices can also use
-timers, especially together with the use of bottom halves (BHs).
-
-@node Hardware interrupts
-@section Hardware interrupts
-
-In order to be faster, QEMU does not check at every basic block if a
-hardware interrupt is pending. Instead, the user must asynchronously
-call a specific function to tell that an interrupt is pending. This
-function resets the chaining of the currently executing basic
-block. It ensures that the execution will return soon in the main loop
-of the CPU emulator. Then the main loop can test if the interrupt is
-pending and handle it.
-
-@node User emulation specific details
-@section User emulation specific details
-
-@subsection Linux system call translation
-
-QEMU includes a generic system call translator for Linux. It means that
-the parameters of the system calls can be converted to fix the
-endianness and 32/64 bit issues. The IOCTLs are converted with a generic
-type description system (see @file{ioctls.h} and @file{thunk.c}).
-
-QEMU supports host CPUs which have pages bigger than 4KB. It records all
-the mappings the process does and try to emulated the @code{mmap()}
-system calls in cases where the host @code{mmap()} call would fail
-because of bad page alignment.
-
-@subsection Linux signals
-
-Normal and real-time signals are queued along with their information
-(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
-request is done to the virtual CPU. When it is interrupted, one queued
-signal is handled by generating a stack frame in the virtual CPU as the
-Linux kernel does. The @code{sigreturn()} system call is emulated to return
-from the virtual signal handler.
-
-Some signals (such as SIGALRM) directly come from the host. Other
-signals are synthesized from the virtual CPU exceptions such as SIGFPE
-when a division by zero is done (see @code{main.c:cpu_loop()}).
-
-The blocked signal mask is still handled by the host Linux kernel so
-that most signal system calls can be redirected directly to the host
-Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
-calls need to be fully emulated (see @file{signal.c}).
-
-@subsection clone() system call and threads
-
-The Linux clone() system call is usually used to create a thread. QEMU
-uses the host clone() system call so that real host threads are created
-for each emulated thread. One virtual CPU instance is created for each
-thread.
-
-The virtual x86 CPU atomic operations are emulated with a global lock so
-that their semantic is preserved.
-
-Note that currently there are still some locking issues in QEMU. In
-particular, the translated cache flush is not protected yet against
-reentrancy.
-
-@subsection Self-virtualization
-
-QEMU was conceived so that ultimately it can emulate itself. Although
-it is not very useful, it is an important test to show the power of the
-emulator.
-
-Achieving self-virtualization is not easy because there may be address
-space conflicts. QEMU user emulators solve this problem by being an
-executable ELF shared object as the ld-linux.so ELF interpreter. That
-way, it can be relocated at load time.
-
-@node Bibliography
-@section Bibliography
-
-@table @asis
-
-@item [1]
-@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
-by Kevin Lawton et al.
-
-@item [2]
-@url{http://www.valgrind.org/}, Valgrind, an open-source memory debugger
-for GNU/Linux.
-
-@item [3]
-@url{http://ftp.dreamtime.org/pub/linux/Linux-Alpha/em86/v0.2/docs/em86.html},
-the EM86 x86 emulator on Alpha-Linux.
-
-@item [4]
-@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
-DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
-Chernoff and Ray Hookway.
-
-@item [5]
-@url{http://user-mode-linux.sourceforge.net/},
-The User-mode Linux Kernel.
-
-@item [6]
-@url{http://www.plex86.org/},
-The new Plex86 project.
-
-@item [7]
-@url{http://www.vmware.com/},
-The VMWare PC virtualizer.
-
-@item [8]
-@url{https://www.microsoft.com/download/details.aspx?id=3702},
-The VirtualPC PC virtualizer.
-
-@item [9]
-@url{http://virtualbox.org/},
-The VirtualBox PC virtualizer.
-
-@item [10]
-@url{http://www.xen.org/},
-The Xen hypervisor.
-
-@item [11]
-@url{http://www.linux-kvm.org/},
-Kernel Based Virtual Machine (KVM).
-
-@item [12]
-@url{http://www.greensocs.com/projects/QEMUSystemC},
-QEMU-SystemC, a hardware co-simulator.
-
-@end table
-
-@node Regression Tests
-@chapter Regression Tests
-
-In the directory @file{tests/}, various interesting testing programs
-are available. They are used for regression testing.
-
-@menu
-* test-i386::
-* linux-test::
-@end menu
-
-@node test-i386
-@section @file{test-i386}
-
-This program executes most of the 16 bit and 32 bit x86 instructions and
-generates a text output. It can be compared with the output obtained with
-a real CPU or another emulator. The target @code{make test} runs this
-program and a @code{diff} on the generated output.
-
-The Linux system call @code{modify_ldt()} is used to create x86 selectors
-to test some 16 bit addressing and 32 bit with segmentation cases.
-
-The Linux system call @code{vm86()} is used to test vm86 emulation.
-
-Various exceptions are raised to test most of the x86 user space
-exception reporting.
-
-@node linux-test
-@section @file{linux-test}
-
-This program tests various Linux system calls. It is used to verify
-that the system call parameters are correctly converted between target
-and host CPUs.
-
-@node Index
-@chapter Index
-@printindex cp
-
-@bye