diff options
Diffstat (limited to 'qemu/linux-user/vm86.c')
-rw-r--r-- | qemu/linux-user/vm86.c | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/qemu/linux-user/vm86.c b/qemu/linux-user/vm86.c new file mode 100644 index 000000000..22a4eb962 --- /dev/null +++ b/qemu/linux-user/vm86.c @@ -0,0 +1,495 @@ +/* + * vm86 linux syscall support + * + * Copyright (c) 2003 Fabrice Bellard + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <http://www.gnu.org/licenses/>. + */ +#include <stdlib.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <errno.h> +#include <unistd.h> + +#include "qemu.h" + +//#define DEBUG_VM86 + +#ifdef DEBUG_VM86 +# define LOG_VM86(...) qemu_log(__VA_ARGS__); +#else +# define LOG_VM86(...) do { } while (0) +#endif + + +#define set_flags(X,new,mask) \ +((X) = ((X) & ~(mask)) | ((new) & (mask))) + +#define SAFE_MASK (0xDD5) +#define RETURN_MASK (0xDFF) + +static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) +{ + return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1; +} + +static inline void vm_putw(CPUX86State *env, uint32_t segptr, + unsigned int reg16, unsigned int val) +{ + cpu_stw_data(env, segptr + (reg16 & 0xffff), val); +} + +static inline void vm_putl(CPUX86State *env, uint32_t segptr, + unsigned int reg16, unsigned int val) +{ + cpu_stl_data(env, segptr + (reg16 & 0xffff), val); +} + +static inline unsigned int vm_getb(CPUX86State *env, + uint32_t segptr, unsigned int reg16) +{ + return cpu_ldub_data(env, segptr + (reg16 & 0xffff)); +} + +static inline unsigned int vm_getw(CPUX86State *env, + uint32_t segptr, unsigned int reg16) +{ + return cpu_lduw_data(env, segptr + (reg16 & 0xffff)); +} + +static inline unsigned int vm_getl(CPUX86State *env, + uint32_t segptr, unsigned int reg16) +{ + return cpu_ldl_data(env, segptr + (reg16 & 0xffff)); +} + +void save_v86_state(CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + struct target_vm86plus_struct * target_v86; + + if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0)) + /* FIXME - should return an error */ + return; + /* put the VM86 registers in the userspace register structure */ + target_v86->regs.eax = tswap32(env->regs[R_EAX]); + target_v86->regs.ebx = tswap32(env->regs[R_EBX]); + target_v86->regs.ecx = tswap32(env->regs[R_ECX]); + target_v86->regs.edx = tswap32(env->regs[R_EDX]); + target_v86->regs.esi = tswap32(env->regs[R_ESI]); + target_v86->regs.edi = tswap32(env->regs[R_EDI]); + target_v86->regs.ebp = tswap32(env->regs[R_EBP]); + target_v86->regs.esp = tswap32(env->regs[R_ESP]); + target_v86->regs.eip = tswap32(env->eip); + target_v86->regs.cs = tswap16(env->segs[R_CS].selector); + target_v86->regs.ss = tswap16(env->segs[R_SS].selector); + target_v86->regs.ds = tswap16(env->segs[R_DS].selector); + target_v86->regs.es = tswap16(env->segs[R_ES].selector); + target_v86->regs.fs = tswap16(env->segs[R_FS].selector); + target_v86->regs.gs = tswap16(env->segs[R_GS].selector); + set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask); + target_v86->regs.eflags = tswap32(env->eflags); + unlock_user_struct(target_v86, ts->target_v86, 1); + LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", + env->eflags, env->segs[R_CS].selector, env->eip); + + /* restore 32 bit registers */ + env->regs[R_EAX] = ts->vm86_saved_regs.eax; + env->regs[R_EBX] = ts->vm86_saved_regs.ebx; + env->regs[R_ECX] = ts->vm86_saved_regs.ecx; + env->regs[R_EDX] = ts->vm86_saved_regs.edx; + env->regs[R_ESI] = ts->vm86_saved_regs.esi; + env->regs[R_EDI] = ts->vm86_saved_regs.edi; + env->regs[R_EBP] = ts->vm86_saved_regs.ebp; + env->regs[R_ESP] = ts->vm86_saved_regs.esp; + env->eflags = ts->vm86_saved_regs.eflags; + env->eip = ts->vm86_saved_regs.eip; + + cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); + cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); + cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); + cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); + cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); + cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); +} + +/* return from vm86 mode to 32 bit. The vm86() syscall will return + 'retval' */ +static inline void return_to_32bit(CPUX86State *env, int retval) +{ + LOG_VM86("return_to_32bit: ret=0x%x\n", retval); + save_v86_state(env); + env->regs[R_EAX] = retval; +} + +static inline int set_IF(CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + + ts->v86flags |= VIF_MASK; + if (ts->v86flags & VIP_MASK) { + return_to_32bit(env, TARGET_VM86_STI); + return 1; + } + return 0; +} + +static inline void clear_IF(CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + + ts->v86flags &= ~VIF_MASK; +} + +static inline void clear_TF(CPUX86State *env) +{ + env->eflags &= ~TF_MASK; +} + +static inline void clear_AC(CPUX86State *env) +{ + env->eflags &= ~AC_MASK; +} + +static inline int set_vflags_long(unsigned long eflags, CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + + set_flags(ts->v86flags, eflags, ts->v86mask); + set_flags(env->eflags, eflags, SAFE_MASK); + if (eflags & IF_MASK) + return set_IF(env); + else + clear_IF(env); + return 0; +} + +static inline int set_vflags_short(unsigned short flags, CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + + set_flags(ts->v86flags, flags, ts->v86mask & 0xffff); + set_flags(env->eflags, flags, SAFE_MASK); + if (flags & IF_MASK) + return set_IF(env); + else + clear_IF(env); + return 0; +} + +static inline unsigned int get_vflags(CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + unsigned int flags; + + flags = env->eflags & RETURN_MASK; + if (ts->v86flags & VIF_MASK) + flags |= IF_MASK; + flags |= IOPL_MASK; + return flags | (ts->v86flags & ts->v86mask); +} + +#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff) + +/* handle VM86 interrupt (NOTE: the CPU core currently does not + support TSS interrupt revectoring, so this code is always executed) */ +static void do_int(CPUX86State *env, int intno) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + uint32_t int_addr, segoffs, ssp; + unsigned int sp; + + if (env->segs[R_CS].selector == TARGET_BIOSSEG) + goto cannot_handle; + if (is_revectored(intno, &ts->vm86plus.int_revectored)) + goto cannot_handle; + if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, + &ts->vm86plus.int21_revectored)) + goto cannot_handle; + int_addr = (intno << 2); + segoffs = cpu_ldl_data(env, int_addr); + if ((segoffs >> 16) == TARGET_BIOSSEG) + goto cannot_handle; + LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", + intno, segoffs >> 16, segoffs & 0xffff); + /* save old state */ + ssp = env->segs[R_SS].selector << 4; + sp = env->regs[R_ESP] & 0xffff; + vm_putw(env, ssp, sp - 2, get_vflags(env)); + vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector); + vm_putw(env, ssp, sp - 6, env->eip); + ADD16(env->regs[R_ESP], -6); + /* goto interrupt handler */ + env->eip = segoffs & 0xffff; + cpu_x86_load_seg(env, R_CS, segoffs >> 16); + clear_TF(env); + clear_IF(env); + clear_AC(env); + return; + cannot_handle: + LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno); + return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); +} + +void handle_vm86_trap(CPUX86State *env, int trapno) +{ + if (trapno == 1 || trapno == 3) { + return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8)); + } else { + do_int(env, trapno); + } +} + +#define CHECK_IF_IN_TRAP() \ + if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \ + (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \ + newflags |= TF_MASK + +#define VM86_FAULT_RETURN \ + if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \ + (ts->v86flags & (IF_MASK | VIF_MASK))) \ + return_to_32bit(env, TARGET_VM86_PICRETURN); \ + return + +void handle_vm86_fault(CPUX86State *env) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + uint32_t csp, ssp; + unsigned int ip, sp, newflags, newip, newcs, opcode, intno; + int data32, pref_done; + + csp = env->segs[R_CS].selector << 4; + ip = env->eip & 0xffff; + + ssp = env->segs[R_SS].selector << 4; + sp = env->regs[R_ESP] & 0xffff; + + LOG_VM86("VM86 exception %04x:%08x\n", + env->segs[R_CS].selector, env->eip); + + data32 = 0; + pref_done = 0; + do { + opcode = vm_getb(env, csp, ip); + ADD16(ip, 1); + switch (opcode) { + case 0x66: /* 32-bit data */ data32=1; break; + case 0x67: /* 32-bit address */ break; + case 0x2e: /* CS */ break; + case 0x3e: /* DS */ break; + case 0x26: /* ES */ break; + case 0x36: /* SS */ break; + case 0x65: /* GS */ break; + case 0x64: /* FS */ break; + case 0xf2: /* repnz */ break; + case 0xf3: /* rep */ break; + default: pref_done = 1; + } + } while (!pref_done); + + /* VM86 mode */ + switch(opcode) { + case 0x9c: /* pushf */ + if (data32) { + vm_putl(env, ssp, sp - 4, get_vflags(env)); + ADD16(env->regs[R_ESP], -4); + } else { + vm_putw(env, ssp, sp - 2, get_vflags(env)); + ADD16(env->regs[R_ESP], -2); + } + env->eip = ip; + VM86_FAULT_RETURN; + + case 0x9d: /* popf */ + if (data32) { + newflags = vm_getl(env, ssp, sp); + ADD16(env->regs[R_ESP], 4); + } else { + newflags = vm_getw(env, ssp, sp); + ADD16(env->regs[R_ESP], 2); + } + env->eip = ip; + CHECK_IF_IN_TRAP(); + if (data32) { + if (set_vflags_long(newflags, env)) + return; + } else { + if (set_vflags_short(newflags, env)) + return; + } + VM86_FAULT_RETURN; + + case 0xcd: /* int */ + intno = vm_getb(env, csp, ip); + ADD16(ip, 1); + env->eip = ip; + if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) { + if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> + (intno &7)) & 1) { + return_to_32bit(env, TARGET_VM86_INTx + (intno << 8)); + return; + } + } + do_int(env, intno); + break; + + case 0xcf: /* iret */ + if (data32) { + newip = vm_getl(env, ssp, sp) & 0xffff; + newcs = vm_getl(env, ssp, sp + 4) & 0xffff; + newflags = vm_getl(env, ssp, sp + 8); + ADD16(env->regs[R_ESP], 12); + } else { + newip = vm_getw(env, ssp, sp); + newcs = vm_getw(env, ssp, sp + 2); + newflags = vm_getw(env, ssp, sp + 4); + ADD16(env->regs[R_ESP], 6); + } + env->eip = newip; + cpu_x86_load_seg(env, R_CS, newcs); + CHECK_IF_IN_TRAP(); + if (data32) { + if (set_vflags_long(newflags, env)) + return; + } else { + if (set_vflags_short(newflags, env)) + return; + } + VM86_FAULT_RETURN; + + case 0xfa: /* cli */ + env->eip = ip; + clear_IF(env); + VM86_FAULT_RETURN; + + case 0xfb: /* sti */ + env->eip = ip; + if (set_IF(env)) + return; + VM86_FAULT_RETURN; + + default: + /* real VM86 GPF exception */ + return_to_32bit(env, TARGET_VM86_UNKNOWN); + break; + } +} + +int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr) +{ + CPUState *cs = CPU(x86_env_get_cpu(env)); + TaskState *ts = cs->opaque; + struct target_vm86plus_struct * target_v86; + int ret; + + switch (subfunction) { + case TARGET_VM86_REQUEST_IRQ: + case TARGET_VM86_FREE_IRQ: + case TARGET_VM86_GET_IRQ_BITS: + case TARGET_VM86_GET_AND_RESET_IRQ: + gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction); + ret = -TARGET_EINVAL; + goto out; + case TARGET_VM86_PLUS_INSTALL_CHECK: + /* NOTE: on old vm86 stuff this will return the error + from verify_area(), because the subfunction is + interpreted as (invalid) address to vm86_struct. + So the installation check works. + */ + ret = 0; + goto out; + } + + /* save current CPU regs */ + ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */ + ts->vm86_saved_regs.ebx = env->regs[R_EBX]; + ts->vm86_saved_regs.ecx = env->regs[R_ECX]; + ts->vm86_saved_regs.edx = env->regs[R_EDX]; + ts->vm86_saved_regs.esi = env->regs[R_ESI]; + ts->vm86_saved_regs.edi = env->regs[R_EDI]; + ts->vm86_saved_regs.ebp = env->regs[R_EBP]; + ts->vm86_saved_regs.esp = env->regs[R_ESP]; + ts->vm86_saved_regs.eflags = env->eflags; + ts->vm86_saved_regs.eip = env->eip; + ts->vm86_saved_regs.cs = env->segs[R_CS].selector; + ts->vm86_saved_regs.ss = env->segs[R_SS].selector; + ts->vm86_saved_regs.ds = env->segs[R_DS].selector; + ts->vm86_saved_regs.es = env->segs[R_ES].selector; + ts->vm86_saved_regs.fs = env->segs[R_FS].selector; + ts->vm86_saved_regs.gs = env->segs[R_GS].selector; + + ts->target_v86 = vm86_addr; + if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1)) + return -TARGET_EFAULT; + /* build vm86 CPU state */ + ts->v86flags = tswap32(target_v86->regs.eflags); + env->eflags = (env->eflags & ~SAFE_MASK) | + (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK; + + ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type); + switch (ts->vm86plus.cpu_type) { + case TARGET_CPU_286: + ts->v86mask = 0; + break; + case TARGET_CPU_386: + ts->v86mask = NT_MASK | IOPL_MASK; + break; + case TARGET_CPU_486: + ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK; + break; + default: + ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; + break; + } + + env->regs[R_EBX] = tswap32(target_v86->regs.ebx); + env->regs[R_ECX] = tswap32(target_v86->regs.ecx); + env->regs[R_EDX] = tswap32(target_v86->regs.edx); + env->regs[R_ESI] = tswap32(target_v86->regs.esi); + env->regs[R_EDI] = tswap32(target_v86->regs.edi); + env->regs[R_EBP] = tswap32(target_v86->regs.ebp); + env->regs[R_ESP] = tswap32(target_v86->regs.esp); + env->eip = tswap32(target_v86->regs.eip); + cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs)); + cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss)); + cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds)); + cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es)); + cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs)); + cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs)); + ret = tswap32(target_v86->regs.eax); /* eax will be restored at + the end of the syscall */ + memcpy(&ts->vm86plus.int_revectored, + &target_v86->int_revectored, 32); + memcpy(&ts->vm86plus.int21_revectored, + &target_v86->int21_revectored, 32); + ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags); + memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, + target_v86->vm86plus.vm86dbg_intxxtab, 32); + unlock_user_struct(target_v86, vm86_addr, 0); + + LOG_VM86("do_vm86: cs:ip=%04x:%04x\n", + env->segs[R_CS].selector, env->eip); + /* now the virtual CPU is ready for vm86 execution ! */ + out: + return ret; +} |