summaryrefslogtreecommitdiffstats
path: root/qemu/linux-user/elfload.c
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/linux-user/elfload.c')
-rw-r--r--qemu/linux-user/elfload.c3120
1 files changed, 3120 insertions, 0 deletions
diff --git a/qemu/linux-user/elfload.c b/qemu/linux-user/elfload.c
new file mode 100644
index 000000000..17883686f
--- /dev/null
+++ b/qemu/linux-user/elfload.c
@@ -0,0 +1,3120 @@
+/* This is the Linux kernel elf-loading code, ported into user space */
+#include <sys/time.h>
+#include <sys/param.h>
+
+#include <stdio.h>
+#include <sys/types.h>
+#include <fcntl.h>
+#include <errno.h>
+#include <unistd.h>
+#include <sys/mman.h>
+#include <sys/resource.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+
+#include "qemu.h"
+#include "disas/disas.h"
+
+#ifdef _ARCH_PPC64
+#undef ARCH_DLINFO
+#undef ELF_PLATFORM
+#undef ELF_HWCAP
+#undef ELF_HWCAP2
+#undef ELF_CLASS
+#undef ELF_DATA
+#undef ELF_ARCH
+#endif
+
+#define ELF_OSABI ELFOSABI_SYSV
+
+/* from personality.h */
+
+/*
+ * Flags for bug emulation.
+ *
+ * These occupy the top three bytes.
+ */
+enum {
+ ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
+ FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
+ descriptors (signal handling) */
+ MMAP_PAGE_ZERO = 0x0100000,
+ ADDR_COMPAT_LAYOUT = 0x0200000,
+ READ_IMPLIES_EXEC = 0x0400000,
+ ADDR_LIMIT_32BIT = 0x0800000,
+ SHORT_INODE = 0x1000000,
+ WHOLE_SECONDS = 0x2000000,
+ STICKY_TIMEOUTS = 0x4000000,
+ ADDR_LIMIT_3GB = 0x8000000,
+};
+
+/*
+ * Personality types.
+ *
+ * These go in the low byte. Avoid using the top bit, it will
+ * conflict with error returns.
+ */
+enum {
+ PER_LINUX = 0x0000,
+ PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
+ PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
+ PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+ PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
+ PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
+ PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
+ PER_BSD = 0x0006,
+ PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
+ PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_LINUX32 = 0x0008,
+ PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
+ PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
+ PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
+ PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
+ PER_RISCOS = 0x000c,
+ PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
+ PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+ PER_OSF4 = 0x000f, /* OSF/1 v4 */
+ PER_HPUX = 0x0010,
+ PER_MASK = 0x00ff,
+};
+
+/*
+ * Return the base personality without flags.
+ */
+#define personality(pers) (pers & PER_MASK)
+
+/* this flag is uneffective under linux too, should be deleted */
+#ifndef MAP_DENYWRITE
+#define MAP_DENYWRITE 0
+#endif
+
+/* should probably go in elf.h */
+#ifndef ELIBBAD
+#define ELIBBAD 80
+#endif
+
+#ifdef TARGET_WORDS_BIGENDIAN
+#define ELF_DATA ELFDATA2MSB
+#else
+#define ELF_DATA ELFDATA2LSB
+#endif
+
+#ifdef TARGET_ABI_MIPSN32
+typedef abi_ullong target_elf_greg_t;
+#define tswapreg(ptr) tswap64(ptr)
+#else
+typedef abi_ulong target_elf_greg_t;
+#define tswapreg(ptr) tswapal(ptr)
+#endif
+
+#ifdef USE_UID16
+typedef abi_ushort target_uid_t;
+typedef abi_ushort target_gid_t;
+#else
+typedef abi_uint target_uid_t;
+typedef abi_uint target_gid_t;
+#endif
+typedef abi_int target_pid_t;
+
+#ifdef TARGET_I386
+
+#define ELF_PLATFORM get_elf_platform()
+
+static const char *get_elf_platform(void)
+{
+ static char elf_platform[] = "i386";
+ int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
+ if (family > 6)
+ family = 6;
+ if (family >= 3)
+ elf_platform[1] = '0' + family;
+ return elf_platform;
+}
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ X86CPU *cpu = X86_CPU(thread_cpu);
+
+ return cpu->env.features[FEAT_1_EDX];
+}
+
+#ifdef TARGET_X86_64
+#define ELF_START_MMAP 0x2aaaaab000ULL
+#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_X86_64
+
+static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ regs->rax = 0;
+ regs->rsp = infop->start_stack;
+ regs->rip = infop->entry;
+}
+
+#define ELF_NREG 27
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/*
+ * Note that ELF_NREG should be 29 as there should be place for
+ * TRAPNO and ERR "registers" as well but linux doesn't dump
+ * those.
+ *
+ * See linux kernel: arch/x86/include/asm/elf.h
+ */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
+{
+ (*regs)[0] = env->regs[15];
+ (*regs)[1] = env->regs[14];
+ (*regs)[2] = env->regs[13];
+ (*regs)[3] = env->regs[12];
+ (*regs)[4] = env->regs[R_EBP];
+ (*regs)[5] = env->regs[R_EBX];
+ (*regs)[6] = env->regs[11];
+ (*regs)[7] = env->regs[10];
+ (*regs)[8] = env->regs[9];
+ (*regs)[9] = env->regs[8];
+ (*regs)[10] = env->regs[R_EAX];
+ (*regs)[11] = env->regs[R_ECX];
+ (*regs)[12] = env->regs[R_EDX];
+ (*regs)[13] = env->regs[R_ESI];
+ (*regs)[14] = env->regs[R_EDI];
+ (*regs)[15] = env->regs[R_EAX]; /* XXX */
+ (*regs)[16] = env->eip;
+ (*regs)[17] = env->segs[R_CS].selector & 0xffff;
+ (*regs)[18] = env->eflags;
+ (*regs)[19] = env->regs[R_ESP];
+ (*regs)[20] = env->segs[R_SS].selector & 0xffff;
+ (*regs)[21] = env->segs[R_FS].selector & 0xffff;
+ (*regs)[22] = env->segs[R_GS].selector & 0xffff;
+ (*regs)[23] = env->segs[R_DS].selector & 0xffff;
+ (*regs)[24] = env->segs[R_ES].selector & 0xffff;
+ (*regs)[25] = env->segs[R_FS].selector & 0xffff;
+ (*regs)[26] = env->segs[R_GS].selector & 0xffff;
+}
+
+#else
+
+#define ELF_START_MMAP 0x80000000
+
+/*
+ * This is used to ensure we don't load something for the wrong architecture.
+ */
+#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
+
+/*
+ * These are used to set parameters in the core dumps.
+ */
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_386
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->esp = infop->start_stack;
+ regs->eip = infop->entry;
+
+ /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
+ starts %edx contains a pointer to a function which might be
+ registered using `atexit'. This provides a mean for the
+ dynamic linker to call DT_FINI functions for shared libraries
+ that have been loaded before the code runs.
+
+ A value of 0 tells we have no such handler. */
+ regs->edx = 0;
+}
+
+#define ELF_NREG 17
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/*
+ * Note that ELF_NREG should be 19 as there should be place for
+ * TRAPNO and ERR "registers" as well but linux doesn't dump
+ * those.
+ *
+ * See linux kernel: arch/x86/include/asm/elf.h
+ */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
+{
+ (*regs)[0] = env->regs[R_EBX];
+ (*regs)[1] = env->regs[R_ECX];
+ (*regs)[2] = env->regs[R_EDX];
+ (*regs)[3] = env->regs[R_ESI];
+ (*regs)[4] = env->regs[R_EDI];
+ (*regs)[5] = env->regs[R_EBP];
+ (*regs)[6] = env->regs[R_EAX];
+ (*regs)[7] = env->segs[R_DS].selector & 0xffff;
+ (*regs)[8] = env->segs[R_ES].selector & 0xffff;
+ (*regs)[9] = env->segs[R_FS].selector & 0xffff;
+ (*regs)[10] = env->segs[R_GS].selector & 0xffff;
+ (*regs)[11] = env->regs[R_EAX]; /* XXX */
+ (*regs)[12] = env->eip;
+ (*regs)[13] = env->segs[R_CS].selector & 0xffff;
+ (*regs)[14] = env->eflags;
+ (*regs)[15] = env->regs[R_ESP];
+ (*regs)[16] = env->segs[R_SS].selector & 0xffff;
+}
+#endif
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif
+
+#ifdef TARGET_ARM
+
+#ifndef TARGET_AARCH64
+/* 32 bit ARM definitions */
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ((x) == ELF_MACHINE)
+
+#define ELF_ARCH ELF_MACHINE
+#define ELF_CLASS ELFCLASS32
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+
+ regs->ARM_cpsr = 0x10;
+ if (infop->entry & 1)
+ regs->ARM_cpsr |= CPSR_T;
+ regs->ARM_pc = infop->entry & 0xfffffffe;
+ regs->ARM_sp = infop->start_stack;
+ /* FIXME - what to for failure of get_user()? */
+ get_user_ual(regs->ARM_r2, stack + 8); /* envp */
+ get_user_ual(regs->ARM_r1, stack + 4); /* envp */
+ /* XXX: it seems that r0 is zeroed after ! */
+ regs->ARM_r0 = 0;
+ /* For uClinux PIC binaries. */
+ /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
+ regs->ARM_r10 = infop->start_data;
+}
+
+#define ELF_NREG 18
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
+{
+ (*regs)[0] = tswapreg(env->regs[0]);
+ (*regs)[1] = tswapreg(env->regs[1]);
+ (*regs)[2] = tswapreg(env->regs[2]);
+ (*regs)[3] = tswapreg(env->regs[3]);
+ (*regs)[4] = tswapreg(env->regs[4]);
+ (*regs)[5] = tswapreg(env->regs[5]);
+ (*regs)[6] = tswapreg(env->regs[6]);
+ (*regs)[7] = tswapreg(env->regs[7]);
+ (*regs)[8] = tswapreg(env->regs[8]);
+ (*regs)[9] = tswapreg(env->regs[9]);
+ (*regs)[10] = tswapreg(env->regs[10]);
+ (*regs)[11] = tswapreg(env->regs[11]);
+ (*regs)[12] = tswapreg(env->regs[12]);
+ (*regs)[13] = tswapreg(env->regs[13]);
+ (*regs)[14] = tswapreg(env->regs[14]);
+ (*regs)[15] = tswapreg(env->regs[15]);
+
+ (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
+ (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum
+{
+ ARM_HWCAP_ARM_SWP = 1 << 0,
+ ARM_HWCAP_ARM_HALF = 1 << 1,
+ ARM_HWCAP_ARM_THUMB = 1 << 2,
+ ARM_HWCAP_ARM_26BIT = 1 << 3,
+ ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
+ ARM_HWCAP_ARM_FPA = 1 << 5,
+ ARM_HWCAP_ARM_VFP = 1 << 6,
+ ARM_HWCAP_ARM_EDSP = 1 << 7,
+ ARM_HWCAP_ARM_JAVA = 1 << 8,
+ ARM_HWCAP_ARM_IWMMXT = 1 << 9,
+ ARM_HWCAP_ARM_CRUNCH = 1 << 10,
+ ARM_HWCAP_ARM_THUMBEE = 1 << 11,
+ ARM_HWCAP_ARM_NEON = 1 << 12,
+ ARM_HWCAP_ARM_VFPv3 = 1 << 13,
+ ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
+ ARM_HWCAP_ARM_TLS = 1 << 15,
+ ARM_HWCAP_ARM_VFPv4 = 1 << 16,
+ ARM_HWCAP_ARM_IDIVA = 1 << 17,
+ ARM_HWCAP_ARM_IDIVT = 1 << 18,
+ ARM_HWCAP_ARM_VFPD32 = 1 << 19,
+ ARM_HWCAP_ARM_LPAE = 1 << 20,
+ ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
+};
+
+enum {
+ ARM_HWCAP2_ARM_AES = 1 << 0,
+ ARM_HWCAP2_ARM_PMULL = 1 << 1,
+ ARM_HWCAP2_ARM_SHA1 = 1 << 2,
+ ARM_HWCAP2_ARM_SHA2 = 1 << 3,
+ ARM_HWCAP2_ARM_CRC32 = 1 << 4,
+};
+
+/* The commpage only exists for 32 bit kernels */
+
+#define TARGET_HAS_VALIDATE_GUEST_SPACE
+/* Return 1 if the proposed guest space is suitable for the guest.
+ * Return 0 if the proposed guest space isn't suitable, but another
+ * address space should be tried.
+ * Return -1 if there is no way the proposed guest space can be
+ * valid regardless of the base.
+ * The guest code may leave a page mapped and populate it if the
+ * address is suitable.
+ */
+static int validate_guest_space(unsigned long guest_base,
+ unsigned long guest_size)
+{
+ unsigned long real_start, test_page_addr;
+
+ /* We need to check that we can force a fault on access to the
+ * commpage at 0xffff0fxx
+ */
+ test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
+
+ /* If the commpage lies within the already allocated guest space,
+ * then there is no way we can allocate it.
+ */
+ if (test_page_addr >= guest_base
+ && test_page_addr <= (guest_base + guest_size)) {
+ return -1;
+ }
+
+ /* Note it needs to be writeable to let us initialise it */
+ real_start = (unsigned long)
+ mmap((void *)test_page_addr, qemu_host_page_size,
+ PROT_READ | PROT_WRITE,
+ MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+
+ /* If we can't map it then try another address */
+ if (real_start == -1ul) {
+ return 0;
+ }
+
+ if (real_start != test_page_addr) {
+ /* OS didn't put the page where we asked - unmap and reject */
+ munmap((void *)real_start, qemu_host_page_size);
+ return 0;
+ }
+
+ /* Leave the page mapped
+ * Populate it (mmap should have left it all 0'd)
+ */
+
+ /* Kernel helper versions */
+ __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
+
+ /* Now it's populated make it RO */
+ if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
+ perror("Protecting guest commpage");
+ exit(-1);
+ }
+
+ return 1; /* All good */
+}
+
+#define ELF_HWCAP get_elf_hwcap()
+#define ELF_HWCAP2 get_elf_hwcap2()
+
+static uint32_t get_elf_hwcap(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ hwcaps |= ARM_HWCAP_ARM_SWP;
+ hwcaps |= ARM_HWCAP_ARM_HALF;
+ hwcaps |= ARM_HWCAP_ARM_THUMB;
+ hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
+
+ /* probe for the extra features */
+#define GET_FEATURE(feat, hwcap) \
+ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
+ /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
+ GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
+ GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
+ GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
+ GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
+ GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
+ GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
+ GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
+ GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
+ GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
+ GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
+ /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
+ * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
+ * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
+ * to our VFP_FP16 feature bit.
+ */
+ GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
+ GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
+
+ return hwcaps;
+}
+
+static uint32_t get_elf_hwcap2(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
+ GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
+ GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
+ GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
+ GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
+ return hwcaps;
+}
+
+#undef GET_FEATURE
+
+#else
+/* 64 bit ARM definitions */
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ((x) == ELF_MACHINE)
+
+#define ELF_ARCH ELF_MACHINE
+#define ELF_CLASS ELFCLASS64
+#define ELF_PLATFORM "aarch64"
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+
+ regs->pc = infop->entry & ~0x3ULL;
+ regs->sp = stack;
+}
+
+#define ELF_NREG 34
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUARMState *env)
+{
+ int i;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[i] = tswapreg(env->xregs[i]);
+ }
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum {
+ ARM_HWCAP_A64_FP = 1 << 0,
+ ARM_HWCAP_A64_ASIMD = 1 << 1,
+ ARM_HWCAP_A64_EVTSTRM = 1 << 2,
+ ARM_HWCAP_A64_AES = 1 << 3,
+ ARM_HWCAP_A64_PMULL = 1 << 4,
+ ARM_HWCAP_A64_SHA1 = 1 << 5,
+ ARM_HWCAP_A64_SHA2 = 1 << 6,
+ ARM_HWCAP_A64_CRC32 = 1 << 7,
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ hwcaps |= ARM_HWCAP_A64_FP;
+ hwcaps |= ARM_HWCAP_A64_ASIMD;
+
+ /* probe for the extra features */
+#define GET_FEATURE(feat, hwcap) \
+ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
+ GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
+ GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
+ GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
+ GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
+ GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
+#undef GET_FEATURE
+
+ return hwcaps;
+}
+
+#endif /* not TARGET_AARCH64 */
+#endif /* TARGET_ARM */
+
+#ifdef TARGET_UNICORE32
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ((x) == EM_UNICORE32)
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_DATA ELFDATA2LSB
+#define ELF_ARCH EM_UNICORE32
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+ regs->UC32_REG_asr = 0x10;
+ regs->UC32_REG_pc = infop->entry & 0xfffffffe;
+ regs->UC32_REG_sp = infop->start_stack;
+ /* FIXME - what to for failure of get_user()? */
+ get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
+ get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
+ /* XXX: it seems that r0 is zeroed after ! */
+ regs->UC32_REG_00 = 0;
+}
+
+#define ELF_NREG 34
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
+{
+ (*regs)[0] = env->regs[0];
+ (*regs)[1] = env->regs[1];
+ (*regs)[2] = env->regs[2];
+ (*regs)[3] = env->regs[3];
+ (*regs)[4] = env->regs[4];
+ (*regs)[5] = env->regs[5];
+ (*regs)[6] = env->regs[6];
+ (*regs)[7] = env->regs[7];
+ (*regs)[8] = env->regs[8];
+ (*regs)[9] = env->regs[9];
+ (*regs)[10] = env->regs[10];
+ (*regs)[11] = env->regs[11];
+ (*regs)[12] = env->regs[12];
+ (*regs)[13] = env->regs[13];
+ (*regs)[14] = env->regs[14];
+ (*regs)[15] = env->regs[15];
+ (*regs)[16] = env->regs[16];
+ (*regs)[17] = env->regs[17];
+ (*regs)[18] = env->regs[18];
+ (*regs)[19] = env->regs[19];
+ (*regs)[20] = env->regs[20];
+ (*regs)[21] = env->regs[21];
+ (*regs)[22] = env->regs[22];
+ (*regs)[23] = env->regs[23];
+ (*regs)[24] = env->regs[24];
+ (*regs)[25] = env->regs[25];
+ (*regs)[26] = env->regs[26];
+ (*regs)[27] = env->regs[27];
+ (*regs)[28] = env->regs[28];
+ (*regs)[29] = env->regs[29];
+ (*regs)[30] = env->regs[30];
+ (*regs)[31] = env->regs[31];
+
+ (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
+ (*regs)[33] = env->regs[0]; /* XXX */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
+
+#endif
+
+#ifdef TARGET_SPARC
+#ifdef TARGET_SPARC64
+
+#define ELF_START_MMAP 0x80000000
+#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
+ | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
+#ifndef TARGET_ABI32
+#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
+#else
+#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
+#endif
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_SPARCV9
+
+#define STACK_BIAS 2047
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+#ifndef TARGET_ABI32
+ regs->tstate = 0;
+#endif
+ regs->pc = infop->entry;
+ regs->npc = regs->pc + 4;
+ regs->y = 0;
+#ifdef TARGET_ABI32
+ regs->u_regs[14] = infop->start_stack - 16 * 4;
+#else
+ if (personality(infop->personality) == PER_LINUX32)
+ regs->u_regs[14] = infop->start_stack - 16 * 4;
+ else
+ regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
+#endif
+}
+
+#else
+#define ELF_START_MMAP 0x80000000
+#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
+ | HWCAP_SPARC_MULDIV)
+#define elf_check_arch(x) ( (x) == EM_SPARC )
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_SPARC
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->psr = 0;
+ regs->pc = infop->entry;
+ regs->npc = regs->pc + 4;
+ regs->y = 0;
+ regs->u_regs[14] = infop->start_stack - 16 * 4;
+}
+
+#endif
+#endif
+
+#ifdef TARGET_PPC
+
+#define ELF_START_MMAP 0x80000000
+
+#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
+
+#define elf_check_arch(x) ( (x) == EM_PPC64 )
+
+#define ELF_CLASS ELFCLASS64
+
+#else
+
+#define elf_check_arch(x) ( (x) == EM_PPC )
+
+#define ELF_CLASS ELFCLASS32
+
+#endif
+
+#define ELF_ARCH EM_PPC
+
+/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
+ See arch/powerpc/include/asm/cputable.h. */
+enum {
+ QEMU_PPC_FEATURE_32 = 0x80000000,
+ QEMU_PPC_FEATURE_64 = 0x40000000,
+ QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
+ QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
+ QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
+ QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
+ QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
+ QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
+ QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
+ QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
+ QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
+ QEMU_PPC_FEATURE_NO_TB = 0x00100000,
+ QEMU_PPC_FEATURE_POWER4 = 0x00080000,
+ QEMU_PPC_FEATURE_POWER5 = 0x00040000,
+ QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
+ QEMU_PPC_FEATURE_CELL = 0x00010000,
+ QEMU_PPC_FEATURE_BOOKE = 0x00008000,
+ QEMU_PPC_FEATURE_SMT = 0x00004000,
+ QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
+ QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
+ QEMU_PPC_FEATURE_PA6T = 0x00000800,
+ QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
+ QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
+ QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
+ QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
+ QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
+
+ QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
+ QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
+
+ /* Feature definitions in AT_HWCAP2. */
+ QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
+ QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
+ QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
+ QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
+ QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
+ QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
+ uint32_t features = 0;
+
+ /* We don't have to be terribly complete here; the high points are
+ Altivec/FP/SPE support. Anything else is just a bonus. */
+#define GET_FEATURE(flag, feature) \
+ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
+#define GET_FEATURE2(flag, feature) \
+ do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
+ GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
+ GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
+ GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
+ GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
+ GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
+ GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
+ GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
+ GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
+ GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
+ GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
+ GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
+ PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
+ QEMU_PPC_FEATURE_ARCH_2_06);
+#undef GET_FEATURE
+#undef GET_FEATURE2
+
+ return features;
+}
+
+#define ELF_HWCAP2 get_elf_hwcap2()
+
+static uint32_t get_elf_hwcap2(void)
+{
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
+ uint32_t features = 0;
+
+#define GET_FEATURE(flag, feature) \
+ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
+#define GET_FEATURE2(flag, feature) \
+ do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
+
+ GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
+ GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
+ GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
+ PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
+
+#undef GET_FEATURE
+#undef GET_FEATURE2
+
+ return features;
+}
+
+/*
+ * The requirements here are:
+ * - keep the final alignment of sp (sp & 0xf)
+ * - make sure the 32-bit value at the first 16 byte aligned position of
+ * AUXV is greater than 16 for glibc compatibility.
+ * AT_IGNOREPPC is used for that.
+ * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
+ * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
+ */
+#define DLINFO_ARCH_ITEMS 5
+#define ARCH_DLINFO \
+ do { \
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
+ NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
+ NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
+ NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
+ /* \
+ * Now handle glibc compatibility. \
+ */ \
+ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
+ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
+ } while (0)
+
+static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
+{
+ _regs->gpr[1] = infop->start_stack;
+#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
+ if (get_ppc64_abi(infop) < 2) {
+ uint64_t val;
+ get_user_u64(val, infop->entry + 8);
+ _regs->gpr[2] = val + infop->load_bias;
+ get_user_u64(val, infop->entry);
+ infop->entry = val + infop->load_bias;
+ } else {
+ _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
+ }
+#endif
+ _regs->nip = infop->entry;
+}
+
+/* See linux kernel: arch/powerpc/include/asm/elf.h. */
+#define ELF_NREG 48
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
+{
+ int i;
+ target_ulong ccr = 0;
+
+ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
+ (*regs)[i] = tswapreg(env->gpr[i]);
+ }
+
+ (*regs)[32] = tswapreg(env->nip);
+ (*regs)[33] = tswapreg(env->msr);
+ (*regs)[35] = tswapreg(env->ctr);
+ (*regs)[36] = tswapreg(env->lr);
+ (*regs)[37] = tswapreg(env->xer);
+
+ for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
+ ccr |= env->crf[i] << (32 - ((i + 1) * 4));
+ }
+ (*regs)[38] = tswapreg(ccr);
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif
+
+#ifdef TARGET_MIPS
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_MIPS )
+
+#ifdef TARGET_MIPS64
+#define ELF_CLASS ELFCLASS64
+#else
+#define ELF_CLASS ELFCLASS32
+#endif
+#define ELF_ARCH EM_MIPS
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->cp0_status = 2 << CP0St_KSU;
+ regs->cp0_epc = infop->entry;
+ regs->regs[29] = infop->start_stack;
+}
+
+/* See linux kernel: arch/mips/include/asm/elf.h. */
+#define ELF_NREG 45
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/mips/include/asm/reg.h. */
+enum {
+#ifdef TARGET_MIPS64
+ TARGET_EF_R0 = 0,
+#else
+ TARGET_EF_R0 = 6,
+#endif
+ TARGET_EF_R26 = TARGET_EF_R0 + 26,
+ TARGET_EF_R27 = TARGET_EF_R0 + 27,
+ TARGET_EF_LO = TARGET_EF_R0 + 32,
+ TARGET_EF_HI = TARGET_EF_R0 + 33,
+ TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
+ TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
+ TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
+ TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
+};
+
+/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
+{
+ int i;
+
+ for (i = 0; i < TARGET_EF_R0; i++) {
+ (*regs)[i] = 0;
+ }
+ (*regs)[TARGET_EF_R0] = 0;
+
+ for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
+ (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
+ }
+
+ (*regs)[TARGET_EF_R26] = 0;
+ (*regs)[TARGET_EF_R27] = 0;
+ (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
+ (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
+ (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
+ (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
+ (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
+ (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif /* TARGET_MIPS */
+
+#ifdef TARGET_MICROBLAZE
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_MICROBLAZE
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->r1 = infop->start_stack;
+
+}
+
+#define ELF_EXEC_PAGESIZE 4096
+
+#define USE_ELF_CORE_DUMP
+#define ELF_NREG 38
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
+{
+ int i, pos = 0;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[pos++] = tswapreg(env->regs[i]);
+ }
+
+ for (i = 0; i < 6; i++) {
+ (*regs)[pos++] = tswapreg(env->sregs[i]);
+ }
+}
+
+#endif /* TARGET_MICROBLAZE */
+
+#ifdef TARGET_OPENRISC
+
+#define ELF_START_MMAP 0x08000000
+
+#define elf_check_arch(x) ((x) == EM_OPENRISC)
+
+#define ELF_ARCH EM_OPENRISC
+#define ELF_CLASS ELFCLASS32
+#define ELF_DATA ELFDATA2MSB
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->gpr[1] = infop->start_stack;
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 8192
+
+/* See linux kernel arch/openrisc/include/asm/elf.h. */
+#define ELF_NREG 34 /* gprs and pc, sr */
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUOpenRISCState *env)
+{
+ int i;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[i] = tswapreg(env->gpr[i]);
+ }
+
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(env->sr);
+}
+#define ELF_HWCAP 0
+#define ELF_PLATFORM NULL
+
+#endif /* TARGET_OPENRISC */
+
+#ifdef TARGET_SH4
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_SH )
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_SH
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ /* Check other registers XXXXX */
+ regs->pc = infop->entry;
+ regs->regs[15] = infop->start_stack;
+}
+
+/* See linux kernel: arch/sh/include/asm/elf.h. */
+#define ELF_NREG 23
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/sh/include/asm/ptrace.h. */
+enum {
+ TARGET_REG_PC = 16,
+ TARGET_REG_PR = 17,
+ TARGET_REG_SR = 18,
+ TARGET_REG_GBR = 19,
+ TARGET_REG_MACH = 20,
+ TARGET_REG_MACL = 21,
+ TARGET_REG_SYSCALL = 22
+};
+
+static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUSH4State *env)
+{
+ int i;
+
+ for (i = 0; i < 16; i++) {
+ (*regs[i]) = tswapreg(env->gregs[i]);
+ }
+
+ (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
+ (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
+ (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
+ (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
+ (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
+ (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
+ (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum {
+ SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
+ SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
+ SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
+ SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
+ SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
+ SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
+ SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
+ SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
+ SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
+ SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
+ uint32_t hwcap = 0;
+
+ hwcap |= SH_CPU_HAS_FPU;
+
+ if (cpu->env.features & SH_FEATURE_SH4A) {
+ hwcap |= SH_CPU_HAS_LLSC;
+ }
+
+ return hwcap;
+}
+
+#endif
+
+#ifdef TARGET_CRIS
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_CRIS )
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_CRIS
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->erp = infop->entry;
+}
+
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif
+
+#ifdef TARGET_M68K
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_68K )
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_68K
+
+/* ??? Does this need to do anything?
+ #define ELF_PLAT_INIT(_r) */
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->usp = infop->start_stack;
+ regs->sr = 0;
+ regs->pc = infop->entry;
+}
+
+/* See linux kernel: arch/m68k/include/asm/elf.h. */
+#define ELF_NREG 20
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
+{
+ (*regs)[0] = tswapreg(env->dregs[1]);
+ (*regs)[1] = tswapreg(env->dregs[2]);
+ (*regs)[2] = tswapreg(env->dregs[3]);
+ (*regs)[3] = tswapreg(env->dregs[4]);
+ (*regs)[4] = tswapreg(env->dregs[5]);
+ (*regs)[5] = tswapreg(env->dregs[6]);
+ (*regs)[6] = tswapreg(env->dregs[7]);
+ (*regs)[7] = tswapreg(env->aregs[0]);
+ (*regs)[8] = tswapreg(env->aregs[1]);
+ (*regs)[9] = tswapreg(env->aregs[2]);
+ (*regs)[10] = tswapreg(env->aregs[3]);
+ (*regs)[11] = tswapreg(env->aregs[4]);
+ (*regs)[12] = tswapreg(env->aregs[5]);
+ (*regs)[13] = tswapreg(env->aregs[6]);
+ (*regs)[14] = tswapreg(env->dregs[0]);
+ (*regs)[15] = tswapreg(env->aregs[7]);
+ (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
+ (*regs)[17] = tswapreg(env->sr);
+ (*regs)[18] = tswapreg(env->pc);
+ (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif
+
+#ifdef TARGET_ALPHA
+
+#define ELF_START_MMAP (0x30000000000ULL)
+
+#define elf_check_arch(x) ( (x) == ELF_ARCH )
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_ALPHA
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->ps = 8;
+ regs->usp = infop->start_stack;
+}
+
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif /* TARGET_ALPHA */
+
+#ifdef TARGET_S390X
+
+#define ELF_START_MMAP (0x20000000000ULL)
+
+#define elf_check_arch(x) ( (x) == ELF_ARCH )
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_DATA ELFDATA2MSB
+#define ELF_ARCH EM_S390
+
+static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ regs->psw.addr = infop->entry;
+ regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
+ regs->gprs[15] = infop->start_stack;
+}
+
+#endif /* TARGET_S390X */
+
+#ifndef ELF_PLATFORM
+#define ELF_PLATFORM (NULL)
+#endif
+
+#ifndef ELF_HWCAP
+#define ELF_HWCAP 0
+#endif
+
+#ifdef TARGET_ABI32
+#undef ELF_CLASS
+#define ELF_CLASS ELFCLASS32
+#undef bswaptls
+#define bswaptls(ptr) bswap32s(ptr)
+#endif
+
+#include "elf.h"
+
+struct exec
+{
+ unsigned int a_info; /* Use macros N_MAGIC, etc for access */
+ unsigned int a_text; /* length of text, in bytes */
+ unsigned int a_data; /* length of data, in bytes */
+ unsigned int a_bss; /* length of uninitialized data area, in bytes */
+ unsigned int a_syms; /* length of symbol table data in file, in bytes */
+ unsigned int a_entry; /* start address */
+ unsigned int a_trsize; /* length of relocation info for text, in bytes */
+ unsigned int a_drsize; /* length of relocation info for data, in bytes */
+};
+
+
+#define N_MAGIC(exec) ((exec).a_info & 0xffff)
+#define OMAGIC 0407
+#define NMAGIC 0410
+#define ZMAGIC 0413
+#define QMAGIC 0314
+
+/* Necessary parameters */
+#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
+#define TARGET_ELF_PAGESTART(_v) ((_v) & \
+ ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
+#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
+
+#define DLINFO_ITEMS 14
+
+static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
+{
+ memcpy(to, from, n);
+}
+
+#ifdef BSWAP_NEEDED
+static void bswap_ehdr(struct elfhdr *ehdr)
+{
+ bswap16s(&ehdr->e_type); /* Object file type */
+ bswap16s(&ehdr->e_machine); /* Architecture */
+ bswap32s(&ehdr->e_version); /* Object file version */
+ bswaptls(&ehdr->e_entry); /* Entry point virtual address */
+ bswaptls(&ehdr->e_phoff); /* Program header table file offset */
+ bswaptls(&ehdr->e_shoff); /* Section header table file offset */
+ bswap32s(&ehdr->e_flags); /* Processor-specific flags */
+ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
+ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
+ bswap16s(&ehdr->e_phnum); /* Program header table entry count */
+ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
+ bswap16s(&ehdr->e_shnum); /* Section header table entry count */
+ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
+}
+
+static void bswap_phdr(struct elf_phdr *phdr, int phnum)
+{
+ int i;
+ for (i = 0; i < phnum; ++i, ++phdr) {
+ bswap32s(&phdr->p_type); /* Segment type */
+ bswap32s(&phdr->p_flags); /* Segment flags */
+ bswaptls(&phdr->p_offset); /* Segment file offset */
+ bswaptls(&phdr->p_vaddr); /* Segment virtual address */
+ bswaptls(&phdr->p_paddr); /* Segment physical address */
+ bswaptls(&phdr->p_filesz); /* Segment size in file */
+ bswaptls(&phdr->p_memsz); /* Segment size in memory */
+ bswaptls(&phdr->p_align); /* Segment alignment */
+ }
+}
+
+static void bswap_shdr(struct elf_shdr *shdr, int shnum)
+{
+ int i;
+ for (i = 0; i < shnum; ++i, ++shdr) {
+ bswap32s(&shdr->sh_name);
+ bswap32s(&shdr->sh_type);
+ bswaptls(&shdr->sh_flags);
+ bswaptls(&shdr->sh_addr);
+ bswaptls(&shdr->sh_offset);
+ bswaptls(&shdr->sh_size);
+ bswap32s(&shdr->sh_link);
+ bswap32s(&shdr->sh_info);
+ bswaptls(&shdr->sh_addralign);
+ bswaptls(&shdr->sh_entsize);
+ }
+}
+
+static void bswap_sym(struct elf_sym *sym)
+{
+ bswap32s(&sym->st_name);
+ bswaptls(&sym->st_value);
+ bswaptls(&sym->st_size);
+ bswap16s(&sym->st_shndx);
+}
+#else
+static inline void bswap_ehdr(struct elfhdr *ehdr) { }
+static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
+static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
+static inline void bswap_sym(struct elf_sym *sym) { }
+#endif
+
+#ifdef USE_ELF_CORE_DUMP
+static int elf_core_dump(int, const CPUArchState *);
+#endif /* USE_ELF_CORE_DUMP */
+static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
+
+/* Verify the portions of EHDR within E_IDENT for the target.
+ This can be performed before bswapping the entire header. */
+static bool elf_check_ident(struct elfhdr *ehdr)
+{
+ return (ehdr->e_ident[EI_MAG0] == ELFMAG0
+ && ehdr->e_ident[EI_MAG1] == ELFMAG1
+ && ehdr->e_ident[EI_MAG2] == ELFMAG2
+ && ehdr->e_ident[EI_MAG3] == ELFMAG3
+ && ehdr->e_ident[EI_CLASS] == ELF_CLASS
+ && ehdr->e_ident[EI_DATA] == ELF_DATA
+ && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
+}
+
+/* Verify the portions of EHDR outside of E_IDENT for the target.
+ This has to wait until after bswapping the header. */
+static bool elf_check_ehdr(struct elfhdr *ehdr)
+{
+ return (elf_check_arch(ehdr->e_machine)
+ && ehdr->e_ehsize == sizeof(struct elfhdr)
+ && ehdr->e_phentsize == sizeof(struct elf_phdr)
+ && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
+}
+
+/*
+ * 'copy_elf_strings()' copies argument/envelope strings from user
+ * memory to free pages in kernel mem. These are in a format ready
+ * to be put directly into the top of new user memory.
+ *
+ */
+static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
+ abi_ulong p)
+{
+ char *tmp, *tmp1, *pag = NULL;
+ int len, offset = 0;
+
+ if (!p) {
+ return 0; /* bullet-proofing */
+ }
+ while (argc-- > 0) {
+ tmp = argv[argc];
+ if (!tmp) {
+ fprintf(stderr, "VFS: argc is wrong");
+ exit(-1);
+ }
+ tmp1 = tmp;
+ while (*tmp++);
+ len = tmp - tmp1;
+ if (p < len) { /* this shouldn't happen - 128kB */
+ return 0;
+ }
+ while (len) {
+ --p; --tmp; --len;
+ if (--offset < 0) {
+ offset = p % TARGET_PAGE_SIZE;
+ pag = (char *)page[p/TARGET_PAGE_SIZE];
+ if (!pag) {
+ pag = g_try_malloc0(TARGET_PAGE_SIZE);
+ page[p/TARGET_PAGE_SIZE] = pag;
+ if (!pag)
+ return 0;
+ }
+ }
+ if (len == 0 || offset == 0) {
+ *(pag + offset) = *tmp;
+ }
+ else {
+ int bytes_to_copy = (len > offset) ? offset : len;
+ tmp -= bytes_to_copy;
+ p -= bytes_to_copy;
+ offset -= bytes_to_copy;
+ len -= bytes_to_copy;
+ memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
+ }
+ }
+ }
+ return p;
+}
+
+static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
+ struct image_info *info)
+{
+ abi_ulong stack_base, size, error, guard;
+ int i;
+
+ /* Create enough stack to hold everything. If we don't use
+ it for args, we'll use it for something else. */
+ size = guest_stack_size;
+ if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
+ size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
+ }
+ guard = TARGET_PAGE_SIZE;
+ if (guard < qemu_real_host_page_size) {
+ guard = qemu_real_host_page_size;
+ }
+
+ error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (error == -1) {
+ perror("mmap stack");
+ exit(-1);
+ }
+
+ /* We reserve one extra page at the top of the stack as guard. */
+ target_mprotect(error, guard, PROT_NONE);
+
+ info->stack_limit = error + guard;
+ stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
+ p += stack_base;
+
+ for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
+ if (bprm->page[i]) {
+ info->rss++;
+ /* FIXME - check return value of memcpy_to_target() for failure */
+ memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
+ g_free(bprm->page[i]);
+ }
+ stack_base += TARGET_PAGE_SIZE;
+ }
+ return p;
+}
+
+/* Map and zero the bss. We need to explicitly zero any fractional pages
+ after the data section (i.e. bss). */
+static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
+{
+ uintptr_t host_start, host_map_start, host_end;
+
+ last_bss = TARGET_PAGE_ALIGN(last_bss);
+
+ /* ??? There is confusion between qemu_real_host_page_size and
+ qemu_host_page_size here and elsewhere in target_mmap, which
+ may lead to the end of the data section mapping from the file
+ not being mapped. At least there was an explicit test and
+ comment for that here, suggesting that "the file size must
+ be known". The comment probably pre-dates the introduction
+ of the fstat system call in target_mmap which does in fact
+ find out the size. What isn't clear is if the workaround
+ here is still actually needed. For now, continue with it,
+ but merge it with the "normal" mmap that would allocate the bss. */
+
+ host_start = (uintptr_t) g2h(elf_bss);
+ host_end = (uintptr_t) g2h(last_bss);
+ host_map_start = (host_start + qemu_real_host_page_size - 1);
+ host_map_start &= -qemu_real_host_page_size;
+
+ if (host_map_start < host_end) {
+ void *p = mmap((void *)host_map_start, host_end - host_map_start,
+ prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (p == MAP_FAILED) {
+ perror("cannot mmap brk");
+ exit(-1);
+ }
+ }
+
+ /* Ensure that the bss page(s) are valid */
+ if ((page_get_flags(last_bss-1) & prot) != prot) {
+ page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
+ }
+
+ if (host_start < host_map_start) {
+ memset((void *)host_start, 0, host_map_start - host_start);
+ }
+}
+
+#ifdef CONFIG_USE_FDPIC
+static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
+{
+ uint16_t n;
+ struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
+
+ /* elf32_fdpic_loadseg */
+ n = info->nsegs;
+ while (n--) {
+ sp -= 12;
+ put_user_u32(loadsegs[n].addr, sp+0);
+ put_user_u32(loadsegs[n].p_vaddr, sp+4);
+ put_user_u32(loadsegs[n].p_memsz, sp+8);
+ }
+
+ /* elf32_fdpic_loadmap */
+ sp -= 4;
+ put_user_u16(0, sp+0); /* version */
+ put_user_u16(info->nsegs, sp+2); /* nsegs */
+
+ info->personality = PER_LINUX_FDPIC;
+ info->loadmap_addr = sp;
+
+ return sp;
+}
+#endif
+
+static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
+ struct elfhdr *exec,
+ struct image_info *info,
+ struct image_info *interp_info)
+{
+ abi_ulong sp;
+ abi_ulong sp_auxv;
+ int size;
+ int i;
+ abi_ulong u_rand_bytes;
+ uint8_t k_rand_bytes[16];
+ abi_ulong u_platform;
+ const char *k_platform;
+ const int n = sizeof(elf_addr_t);
+
+ sp = p;
+
+#ifdef CONFIG_USE_FDPIC
+ /* Needs to be before we load the env/argc/... */
+ if (elf_is_fdpic(exec)) {
+ /* Need 4 byte alignment for these structs */
+ sp &= ~3;
+ sp = loader_build_fdpic_loadmap(info, sp);
+ info->other_info = interp_info;
+ if (interp_info) {
+ interp_info->other_info = info;
+ sp = loader_build_fdpic_loadmap(interp_info, sp);
+ }
+ }
+#endif
+
+ u_platform = 0;
+ k_platform = ELF_PLATFORM;
+ if (k_platform) {
+ size_t len = strlen(k_platform) + 1;
+ sp -= (len + n - 1) & ~(n - 1);
+ u_platform = sp;
+ /* FIXME - check return value of memcpy_to_target() for failure */
+ memcpy_to_target(sp, k_platform, len);
+ }
+
+ /*
+ * Generate 16 random bytes for userspace PRNG seeding (not
+ * cryptically secure but it's not the aim of QEMU).
+ */
+ for (i = 0; i < 16; i++) {
+ k_rand_bytes[i] = rand();
+ }
+ sp -= 16;
+ u_rand_bytes = sp;
+ /* FIXME - check return value of memcpy_to_target() for failure */
+ memcpy_to_target(sp, k_rand_bytes, 16);
+
+ /*
+ * Force 16 byte _final_ alignment here for generality.
+ */
+ sp = sp &~ (abi_ulong)15;
+ size = (DLINFO_ITEMS + 1) * 2;
+ if (k_platform)
+ size += 2;
+#ifdef DLINFO_ARCH_ITEMS
+ size += DLINFO_ARCH_ITEMS * 2;
+#endif
+#ifdef ELF_HWCAP2
+ size += 2;
+#endif
+ size += envc + argc + 2;
+ size += 1; /* argc itself */
+ size *= n;
+ if (size & 15)
+ sp -= 16 - (size & 15);
+
+ /* This is correct because Linux defines
+ * elf_addr_t as Elf32_Off / Elf64_Off
+ */
+#define NEW_AUX_ENT(id, val) do { \
+ sp -= n; put_user_ual(val, sp); \
+ sp -= n; put_user_ual(id, sp); \
+ } while(0)
+
+ sp_auxv = sp;
+ NEW_AUX_ENT (AT_NULL, 0);
+
+ /* There must be exactly DLINFO_ITEMS entries here. */
+ NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
+ NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
+ NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
+ NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
+ NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
+ NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
+ NEW_AUX_ENT(AT_ENTRY, info->entry);
+ NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
+ NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
+ NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
+ NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
+ NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
+ NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
+ NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
+
+#ifdef ELF_HWCAP2
+ NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
+#endif
+
+ if (k_platform)
+ NEW_AUX_ENT(AT_PLATFORM, u_platform);
+#ifdef ARCH_DLINFO
+ /*
+ * ARCH_DLINFO must come last so platform specific code can enforce
+ * special alignment requirements on the AUXV if necessary (eg. PPC).
+ */
+ ARCH_DLINFO;
+#endif
+#undef NEW_AUX_ENT
+
+ info->saved_auxv = sp;
+ info->auxv_len = sp_auxv - sp;
+
+ sp = loader_build_argptr(envc, argc, sp, p, 0);
+ /* Check the right amount of stack was allocated for auxvec, envp & argv. */
+ assert(sp_auxv - sp == size);
+ return sp;
+}
+
+#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
+/* If the guest doesn't have a validation function just agree */
+static int validate_guest_space(unsigned long guest_base,
+ unsigned long guest_size)
+{
+ return 1;
+}
+#endif
+
+unsigned long init_guest_space(unsigned long host_start,
+ unsigned long host_size,
+ unsigned long guest_start,
+ bool fixed)
+{
+ unsigned long current_start, real_start;
+ int flags;
+
+ assert(host_start || host_size);
+
+ /* If just a starting address is given, then just verify that
+ * address. */
+ if (host_start && !host_size) {
+ if (validate_guest_space(host_start, host_size) == 1) {
+ return host_start;
+ } else {
+ return (unsigned long)-1;
+ }
+ }
+
+ /* Setup the initial flags and start address. */
+ current_start = host_start & qemu_host_page_mask;
+ flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
+ if (fixed) {
+ flags |= MAP_FIXED;
+ }
+
+ /* Otherwise, a non-zero size region of memory needs to be mapped
+ * and validated. */
+ while (1) {
+ unsigned long real_size = host_size;
+
+ /* Do not use mmap_find_vma here because that is limited to the
+ * guest address space. We are going to make the
+ * guest address space fit whatever we're given.
+ */
+ real_start = (unsigned long)
+ mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
+ if (real_start == (unsigned long)-1) {
+ return (unsigned long)-1;
+ }
+
+ /* Ensure the address is properly aligned. */
+ if (real_start & ~qemu_host_page_mask) {
+ munmap((void *)real_start, host_size);
+ real_size = host_size + qemu_host_page_size;
+ real_start = (unsigned long)
+ mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
+ if (real_start == (unsigned long)-1) {
+ return (unsigned long)-1;
+ }
+ real_start = HOST_PAGE_ALIGN(real_start);
+ }
+
+ /* Check to see if the address is valid. */
+ if (!host_start || real_start == current_start) {
+ int valid = validate_guest_space(real_start - guest_start,
+ real_size);
+ if (valid == 1) {
+ break;
+ } else if (valid == -1) {
+ return (unsigned long)-1;
+ }
+ /* valid == 0, so try again. */
+ }
+
+ /* That address didn't work. Unmap and try a different one.
+ * The address the host picked because is typically right at
+ * the top of the host address space and leaves the guest with
+ * no usable address space. Resort to a linear search. We
+ * already compensated for mmap_min_addr, so this should not
+ * happen often. Probably means we got unlucky and host
+ * address space randomization put a shared library somewhere
+ * inconvenient.
+ */
+ munmap((void *)real_start, host_size);
+ current_start += qemu_host_page_size;
+ if (host_start == current_start) {
+ /* Theoretically possible if host doesn't have any suitably
+ * aligned areas. Normally the first mmap will fail.
+ */
+ return (unsigned long)-1;
+ }
+ }
+
+ qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
+
+ return real_start;
+}
+
+static void probe_guest_base(const char *image_name,
+ abi_ulong loaddr, abi_ulong hiaddr)
+{
+ /* Probe for a suitable guest base address, if the user has not set
+ * it explicitly, and set guest_base appropriately.
+ * In case of error we will print a suitable message and exit.
+ */
+#if defined(CONFIG_USE_GUEST_BASE)
+ const char *errmsg;
+ if (!have_guest_base && !reserved_va) {
+ unsigned long host_start, real_start, host_size;
+
+ /* Round addresses to page boundaries. */
+ loaddr &= qemu_host_page_mask;
+ hiaddr = HOST_PAGE_ALIGN(hiaddr);
+
+ if (loaddr < mmap_min_addr) {
+ host_start = HOST_PAGE_ALIGN(mmap_min_addr);
+ } else {
+ host_start = loaddr;
+ if (host_start != loaddr) {
+ errmsg = "Address overflow loading ELF binary";
+ goto exit_errmsg;
+ }
+ }
+ host_size = hiaddr - loaddr;
+
+ /* Setup the initial guest memory space with ranges gleaned from
+ * the ELF image that is being loaded.
+ */
+ real_start = init_guest_space(host_start, host_size, loaddr, false);
+ if (real_start == (unsigned long)-1) {
+ errmsg = "Unable to find space for application";
+ goto exit_errmsg;
+ }
+ guest_base = real_start - loaddr;
+
+ qemu_log("Relocating guest address space from 0x"
+ TARGET_ABI_FMT_lx " to 0x%lx\n",
+ loaddr, real_start);
+ }
+ return;
+
+exit_errmsg:
+ fprintf(stderr, "%s: %s\n", image_name, errmsg);
+ exit(-1);
+#endif
+}
+
+
+/* Load an ELF image into the address space.
+
+ IMAGE_NAME is the filename of the image, to use in error messages.
+ IMAGE_FD is the open file descriptor for the image.
+
+ BPRM_BUF is a copy of the beginning of the file; this of course
+ contains the elf file header at offset 0. It is assumed that this
+ buffer is sufficiently aligned to present no problems to the host
+ in accessing data at aligned offsets within the buffer.
+
+ On return: INFO values will be filled in, as necessary or available. */
+
+static void load_elf_image(const char *image_name, int image_fd,
+ struct image_info *info, char **pinterp_name,
+ char bprm_buf[BPRM_BUF_SIZE])
+{
+ struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
+ struct elf_phdr *phdr;
+ abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
+ int i, retval;
+ const char *errmsg;
+
+ /* First of all, some simple consistency checks */
+ errmsg = "Invalid ELF image for this architecture";
+ if (!elf_check_ident(ehdr)) {
+ goto exit_errmsg;
+ }
+ bswap_ehdr(ehdr);
+ if (!elf_check_ehdr(ehdr)) {
+ goto exit_errmsg;
+ }
+
+ i = ehdr->e_phnum * sizeof(struct elf_phdr);
+ if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
+ phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
+ } else {
+ phdr = (struct elf_phdr *) alloca(i);
+ retval = pread(image_fd, phdr, i, ehdr->e_phoff);
+ if (retval != i) {
+ goto exit_read;
+ }
+ }
+ bswap_phdr(phdr, ehdr->e_phnum);
+
+#ifdef CONFIG_USE_FDPIC
+ info->nsegs = 0;
+ info->pt_dynamic_addr = 0;
+#endif
+
+ /* Find the maximum size of the image and allocate an appropriate
+ amount of memory to handle that. */
+ loaddr = -1, hiaddr = 0;
+ for (i = 0; i < ehdr->e_phnum; ++i) {
+ if (phdr[i].p_type == PT_LOAD) {
+ abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
+ if (a < loaddr) {
+ loaddr = a;
+ }
+ a = phdr[i].p_vaddr + phdr[i].p_memsz;
+ if (a > hiaddr) {
+ hiaddr = a;
+ }
+#ifdef CONFIG_USE_FDPIC
+ ++info->nsegs;
+#endif
+ }
+ }
+
+ load_addr = loaddr;
+ if (ehdr->e_type == ET_DYN) {
+ /* The image indicates that it can be loaded anywhere. Find a
+ location that can hold the memory space required. If the
+ image is pre-linked, LOADDR will be non-zero. Since we do
+ not supply MAP_FIXED here we'll use that address if and
+ only if it remains available. */
+ load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
+ MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
+ -1, 0);
+ if (load_addr == -1) {
+ goto exit_perror;
+ }
+ } else if (pinterp_name != NULL) {
+ /* This is the main executable. Make sure that the low
+ address does not conflict with MMAP_MIN_ADDR or the
+ QEMU application itself. */
+ probe_guest_base(image_name, loaddr, hiaddr);
+ }
+ load_bias = load_addr - loaddr;
+
+#ifdef CONFIG_USE_FDPIC
+ {
+ struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
+ g_malloc(sizeof(*loadsegs) * info->nsegs);
+
+ for (i = 0; i < ehdr->e_phnum; ++i) {
+ switch (phdr[i].p_type) {
+ case PT_DYNAMIC:
+ info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
+ break;
+ case PT_LOAD:
+ loadsegs->addr = phdr[i].p_vaddr + load_bias;
+ loadsegs->p_vaddr = phdr[i].p_vaddr;
+ loadsegs->p_memsz = phdr[i].p_memsz;
+ ++loadsegs;
+ break;
+ }
+ }
+ }
+#endif
+
+ info->load_bias = load_bias;
+ info->load_addr = load_addr;
+ info->entry = ehdr->e_entry + load_bias;
+ info->start_code = -1;
+ info->end_code = 0;
+ info->start_data = -1;
+ info->end_data = 0;
+ info->brk = 0;
+ info->elf_flags = ehdr->e_flags;
+
+ for (i = 0; i < ehdr->e_phnum; i++) {
+ struct elf_phdr *eppnt = phdr + i;
+ if (eppnt->p_type == PT_LOAD) {
+ abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
+ int elf_prot = 0;
+
+ if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
+ if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
+ if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
+
+ vaddr = load_bias + eppnt->p_vaddr;
+ vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
+ vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
+
+ error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
+ elf_prot, MAP_PRIVATE | MAP_FIXED,
+ image_fd, eppnt->p_offset - vaddr_po);
+ if (error == -1) {
+ goto exit_perror;
+ }
+
+ vaddr_ef = vaddr + eppnt->p_filesz;
+ vaddr_em = vaddr + eppnt->p_memsz;
+
+ /* If the load segment requests extra zeros (e.g. bss), map it. */
+ if (vaddr_ef < vaddr_em) {
+ zero_bss(vaddr_ef, vaddr_em, elf_prot);
+ }
+
+ /* Find the full program boundaries. */
+ if (elf_prot & PROT_EXEC) {
+ if (vaddr < info->start_code) {
+ info->start_code = vaddr;
+ }
+ if (vaddr_ef > info->end_code) {
+ info->end_code = vaddr_ef;
+ }
+ }
+ if (elf_prot & PROT_WRITE) {
+ if (vaddr < info->start_data) {
+ info->start_data = vaddr;
+ }
+ if (vaddr_ef > info->end_data) {
+ info->end_data = vaddr_ef;
+ }
+ if (vaddr_em > info->brk) {
+ info->brk = vaddr_em;
+ }
+ }
+ } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
+ char *interp_name;
+
+ if (*pinterp_name) {
+ errmsg = "Multiple PT_INTERP entries";
+ goto exit_errmsg;
+ }
+ interp_name = malloc(eppnt->p_filesz);
+ if (!interp_name) {
+ goto exit_perror;
+ }
+
+ if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
+ memcpy(interp_name, bprm_buf + eppnt->p_offset,
+ eppnt->p_filesz);
+ } else {
+ retval = pread(image_fd, interp_name, eppnt->p_filesz,
+ eppnt->p_offset);
+ if (retval != eppnt->p_filesz) {
+ goto exit_perror;
+ }
+ }
+ if (interp_name[eppnt->p_filesz - 1] != 0) {
+ errmsg = "Invalid PT_INTERP entry";
+ goto exit_errmsg;
+ }
+ *pinterp_name = interp_name;
+ }
+ }
+
+ if (info->end_data == 0) {
+ info->start_data = info->end_code;
+ info->end_data = info->end_code;
+ info->brk = info->end_code;
+ }
+
+ if (qemu_log_enabled()) {
+ load_symbols(ehdr, image_fd, load_bias);
+ }
+
+ close(image_fd);
+ return;
+
+ exit_read:
+ if (retval >= 0) {
+ errmsg = "Incomplete read of file header";
+ goto exit_errmsg;
+ }
+ exit_perror:
+ errmsg = strerror(errno);
+ exit_errmsg:
+ fprintf(stderr, "%s: %s\n", image_name, errmsg);
+ exit(-1);
+}
+
+static void load_elf_interp(const char *filename, struct image_info *info,
+ char bprm_buf[BPRM_BUF_SIZE])
+{
+ int fd, retval;
+
+ fd = open(path(filename), O_RDONLY);
+ if (fd < 0) {
+ goto exit_perror;
+ }
+
+ retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
+ if (retval < 0) {
+ goto exit_perror;
+ }
+ if (retval < BPRM_BUF_SIZE) {
+ memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
+ }
+
+ load_elf_image(filename, fd, info, NULL, bprm_buf);
+ return;
+
+ exit_perror:
+ fprintf(stderr, "%s: %s\n", filename, strerror(errno));
+ exit(-1);
+}
+
+static int symfind(const void *s0, const void *s1)
+{
+ target_ulong addr = *(target_ulong *)s0;
+ struct elf_sym *sym = (struct elf_sym *)s1;
+ int result = 0;
+ if (addr < sym->st_value) {
+ result = -1;
+ } else if (addr >= sym->st_value + sym->st_size) {
+ result = 1;
+ }
+ return result;
+}
+
+static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
+{
+#if ELF_CLASS == ELFCLASS32
+ struct elf_sym *syms = s->disas_symtab.elf32;
+#else
+ struct elf_sym *syms = s->disas_symtab.elf64;
+#endif
+
+ // binary search
+ struct elf_sym *sym;
+
+ sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
+ if (sym != NULL) {
+ return s->disas_strtab + sym->st_name;
+ }
+
+ return "";
+}
+
+/* FIXME: This should use elf_ops.h */
+static int symcmp(const void *s0, const void *s1)
+{
+ struct elf_sym *sym0 = (struct elf_sym *)s0;
+ struct elf_sym *sym1 = (struct elf_sym *)s1;
+ return (sym0->st_value < sym1->st_value)
+ ? -1
+ : ((sym0->st_value > sym1->st_value) ? 1 : 0);
+}
+
+/* Best attempt to load symbols from this ELF object. */
+static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
+{
+ int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
+ struct elf_shdr *shdr;
+ char *strings = NULL;
+ struct syminfo *s = NULL;
+ struct elf_sym *new_syms, *syms = NULL;
+
+ shnum = hdr->e_shnum;
+ i = shnum * sizeof(struct elf_shdr);
+ shdr = (struct elf_shdr *)alloca(i);
+ if (pread(fd, shdr, i, hdr->e_shoff) != i) {
+ return;
+ }
+
+ bswap_shdr(shdr, shnum);
+ for (i = 0; i < shnum; ++i) {
+ if (shdr[i].sh_type == SHT_SYMTAB) {
+ sym_idx = i;
+ str_idx = shdr[i].sh_link;
+ goto found;
+ }
+ }
+
+ /* There will be no symbol table if the file was stripped. */
+ return;
+
+ found:
+ /* Now know where the strtab and symtab are. Snarf them. */
+ s = malloc(sizeof(*s));
+ if (!s) {
+ goto give_up;
+ }
+
+ i = shdr[str_idx].sh_size;
+ s->disas_strtab = strings = malloc(i);
+ if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
+ goto give_up;
+ }
+
+ i = shdr[sym_idx].sh_size;
+ syms = malloc(i);
+ if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
+ goto give_up;
+ }
+
+ nsyms = i / sizeof(struct elf_sym);
+ for (i = 0; i < nsyms; ) {
+ bswap_sym(syms + i);
+ /* Throw away entries which we do not need. */
+ if (syms[i].st_shndx == SHN_UNDEF
+ || syms[i].st_shndx >= SHN_LORESERVE
+ || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
+ if (i < --nsyms) {
+ syms[i] = syms[nsyms];
+ }
+ } else {
+#if defined(TARGET_ARM) || defined (TARGET_MIPS)
+ /* The bottom address bit marks a Thumb or MIPS16 symbol. */
+ syms[i].st_value &= ~(target_ulong)1;
+#endif
+ syms[i].st_value += load_bias;
+ i++;
+ }
+ }
+
+ /* No "useful" symbol. */
+ if (nsyms == 0) {
+ goto give_up;
+ }
+
+ /* Attempt to free the storage associated with the local symbols
+ that we threw away. Whether or not this has any effect on the
+ memory allocation depends on the malloc implementation and how
+ many symbols we managed to discard. */
+ new_syms = realloc(syms, nsyms * sizeof(*syms));
+ if (new_syms == NULL) {
+ goto give_up;
+ }
+ syms = new_syms;
+
+ qsort(syms, nsyms, sizeof(*syms), symcmp);
+
+ s->disas_num_syms = nsyms;
+#if ELF_CLASS == ELFCLASS32
+ s->disas_symtab.elf32 = syms;
+#else
+ s->disas_symtab.elf64 = syms;
+#endif
+ s->lookup_symbol = lookup_symbolxx;
+ s->next = syminfos;
+ syminfos = s;
+
+ return;
+
+give_up:
+ free(s);
+ free(strings);
+ free(syms);
+}
+
+int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
+{
+ struct image_info interp_info;
+ struct elfhdr elf_ex;
+ char *elf_interpreter = NULL;
+
+ info->start_mmap = (abi_ulong)ELF_START_MMAP;
+ info->mmap = 0;
+ info->rss = 0;
+
+ load_elf_image(bprm->filename, bprm->fd, info,
+ &elf_interpreter, bprm->buf);
+
+ /* ??? We need a copy of the elf header for passing to create_elf_tables.
+ If we do nothing, we'll have overwritten this when we re-use bprm->buf
+ when we load the interpreter. */
+ elf_ex = *(struct elfhdr *)bprm->buf;
+
+ bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
+ bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
+ bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
+ if (!bprm->p) {
+ fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
+ exit(-1);
+ }
+
+ /* Do this so that we can load the interpreter, if need be. We will
+ change some of these later */
+ bprm->p = setup_arg_pages(bprm->p, bprm, info);
+
+ if (elf_interpreter) {
+ load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
+
+ /* If the program interpreter is one of these two, then assume
+ an iBCS2 image. Otherwise assume a native linux image. */
+
+ if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
+ || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
+ info->personality = PER_SVR4;
+
+ /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
+ and some applications "depend" upon this behavior. Since
+ we do not have the power to recompile these, we emulate
+ the SVr4 behavior. Sigh. */
+ target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
+ MAP_FIXED | MAP_PRIVATE, -1, 0);
+ }
+ }
+
+ bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
+ info, (elf_interpreter ? &interp_info : NULL));
+ info->start_stack = bprm->p;
+
+ /* If we have an interpreter, set that as the program's entry point.
+ Copy the load_bias as well, to help PPC64 interpret the entry
+ point as a function descriptor. Do this after creating elf tables
+ so that we copy the original program entry point into the AUXV. */
+ if (elf_interpreter) {
+ info->load_bias = interp_info.load_bias;
+ info->entry = interp_info.entry;
+ free(elf_interpreter);
+ }
+
+#ifdef USE_ELF_CORE_DUMP
+ bprm->core_dump = &elf_core_dump;
+#endif
+
+ return 0;
+}
+
+#ifdef USE_ELF_CORE_DUMP
+/*
+ * Definitions to generate Intel SVR4-like core files.
+ * These mostly have the same names as the SVR4 types with "target_elf_"
+ * tacked on the front to prevent clashes with linux definitions,
+ * and the typedef forms have been avoided. This is mostly like
+ * the SVR4 structure, but more Linuxy, with things that Linux does
+ * not support and which gdb doesn't really use excluded.
+ *
+ * Fields we don't dump (their contents is zero) in linux-user qemu
+ * are marked with XXX.
+ *
+ * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
+ *
+ * Porting ELF coredump for target is (quite) simple process. First you
+ * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
+ * the target resides):
+ *
+ * #define USE_ELF_CORE_DUMP
+ *
+ * Next you define type of register set used for dumping. ELF specification
+ * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
+ *
+ * typedef <target_regtype> target_elf_greg_t;
+ * #define ELF_NREG <number of registers>
+ * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
+ *
+ * Last step is to implement target specific function that copies registers
+ * from given cpu into just specified register set. Prototype is:
+ *
+ * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
+ * const CPUArchState *env);
+ *
+ * Parameters:
+ * regs - copy register values into here (allocated and zeroed by caller)
+ * env - copy registers from here
+ *
+ * Example for ARM target is provided in this file.
+ */
+
+/* An ELF note in memory */
+struct memelfnote {
+ const char *name;
+ size_t namesz;
+ size_t namesz_rounded;
+ int type;
+ size_t datasz;
+ size_t datasz_rounded;
+ void *data;
+ size_t notesz;
+};
+
+struct target_elf_siginfo {
+ abi_int si_signo; /* signal number */
+ abi_int si_code; /* extra code */
+ abi_int si_errno; /* errno */
+};
+
+struct target_elf_prstatus {
+ struct target_elf_siginfo pr_info; /* Info associated with signal */
+ abi_short pr_cursig; /* Current signal */
+ abi_ulong pr_sigpend; /* XXX */
+ abi_ulong pr_sighold; /* XXX */
+ target_pid_t pr_pid;
+ target_pid_t pr_ppid;
+ target_pid_t pr_pgrp;
+ target_pid_t pr_sid;
+ struct target_timeval pr_utime; /* XXX User time */
+ struct target_timeval pr_stime; /* XXX System time */
+ struct target_timeval pr_cutime; /* XXX Cumulative user time */
+ struct target_timeval pr_cstime; /* XXX Cumulative system time */
+ target_elf_gregset_t pr_reg; /* GP registers */
+ abi_int pr_fpvalid; /* XXX */
+};
+
+#define ELF_PRARGSZ (80) /* Number of chars for args */
+
+struct target_elf_prpsinfo {
+ char pr_state; /* numeric process state */
+ char pr_sname; /* char for pr_state */
+ char pr_zomb; /* zombie */
+ char pr_nice; /* nice val */
+ abi_ulong pr_flag; /* flags */
+ target_uid_t pr_uid;
+ target_gid_t pr_gid;
+ target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
+ /* Lots missing */
+ char pr_fname[16]; /* filename of executable */
+ char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
+};
+
+/* Here is the structure in which status of each thread is captured. */
+struct elf_thread_status {
+ QTAILQ_ENTRY(elf_thread_status) ets_link;
+ struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
+#if 0
+ elf_fpregset_t fpu; /* NT_PRFPREG */
+ struct task_struct *thread;
+ elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
+#endif
+ struct memelfnote notes[1];
+ int num_notes;
+};
+
+struct elf_note_info {
+ struct memelfnote *notes;
+ struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
+ struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
+
+ QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
+#if 0
+ /*
+ * Current version of ELF coredump doesn't support
+ * dumping fp regs etc.
+ */
+ elf_fpregset_t *fpu;
+ elf_fpxregset_t *xfpu;
+ int thread_status_size;
+#endif
+ int notes_size;
+ int numnote;
+};
+
+struct vm_area_struct {
+ target_ulong vma_start; /* start vaddr of memory region */
+ target_ulong vma_end; /* end vaddr of memory region */
+ abi_ulong vma_flags; /* protection etc. flags for the region */
+ QTAILQ_ENTRY(vm_area_struct) vma_link;
+};
+
+struct mm_struct {
+ QTAILQ_HEAD(, vm_area_struct) mm_mmap;
+ int mm_count; /* number of mappings */
+};
+
+static struct mm_struct *vma_init(void);
+static void vma_delete(struct mm_struct *);
+static int vma_add_mapping(struct mm_struct *, target_ulong,
+ target_ulong, abi_ulong);
+static int vma_get_mapping_count(const struct mm_struct *);
+static struct vm_area_struct *vma_first(const struct mm_struct *);
+static struct vm_area_struct *vma_next(struct vm_area_struct *);
+static abi_ulong vma_dump_size(const struct vm_area_struct *);
+static int vma_walker(void *priv, target_ulong start, target_ulong end,
+ unsigned long flags);
+
+static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
+static void fill_note(struct memelfnote *, const char *, int,
+ unsigned int, void *);
+static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
+static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
+static void fill_auxv_note(struct memelfnote *, const TaskState *);
+static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
+static size_t note_size(const struct memelfnote *);
+static void free_note_info(struct elf_note_info *);
+static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
+static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
+static int core_dump_filename(const TaskState *, char *, size_t);
+
+static int dump_write(int, const void *, size_t);
+static int write_note(struct memelfnote *, int);
+static int write_note_info(struct elf_note_info *, int);
+
+#ifdef BSWAP_NEEDED
+static void bswap_prstatus(struct target_elf_prstatus *prstatus)
+{
+ prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
+ prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
+ prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
+ prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
+ prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
+ prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
+ prstatus->pr_pid = tswap32(prstatus->pr_pid);
+ prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
+ prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
+ prstatus->pr_sid = tswap32(prstatus->pr_sid);
+ /* cpu times are not filled, so we skip them */
+ /* regs should be in correct format already */
+ prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
+}
+
+static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
+{
+ psinfo->pr_flag = tswapal(psinfo->pr_flag);
+ psinfo->pr_uid = tswap16(psinfo->pr_uid);
+ psinfo->pr_gid = tswap16(psinfo->pr_gid);
+ psinfo->pr_pid = tswap32(psinfo->pr_pid);
+ psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
+ psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
+ psinfo->pr_sid = tswap32(psinfo->pr_sid);
+}
+
+static void bswap_note(struct elf_note *en)
+{
+ bswap32s(&en->n_namesz);
+ bswap32s(&en->n_descsz);
+ bswap32s(&en->n_type);
+}
+#else
+static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
+static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
+static inline void bswap_note(struct elf_note *en) { }
+#endif /* BSWAP_NEEDED */
+
+/*
+ * Minimal support for linux memory regions. These are needed
+ * when we are finding out what memory exactly belongs to
+ * emulated process. No locks needed here, as long as
+ * thread that received the signal is stopped.
+ */
+
+static struct mm_struct *vma_init(void)
+{
+ struct mm_struct *mm;
+
+ if ((mm = g_malloc(sizeof (*mm))) == NULL)
+ return (NULL);
+
+ mm->mm_count = 0;
+ QTAILQ_INIT(&mm->mm_mmap);
+
+ return (mm);
+}
+
+static void vma_delete(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+
+ while ((vma = vma_first(mm)) != NULL) {
+ QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
+ g_free(vma);
+ }
+ g_free(mm);
+}
+
+static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
+ target_ulong end, abi_ulong flags)
+{
+ struct vm_area_struct *vma;
+
+ if ((vma = g_malloc0(sizeof (*vma))) == NULL)
+ return (-1);
+
+ vma->vma_start = start;
+ vma->vma_end = end;
+ vma->vma_flags = flags;
+
+ QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
+ mm->mm_count++;
+
+ return (0);
+}
+
+static struct vm_area_struct *vma_first(const struct mm_struct *mm)
+{
+ return (QTAILQ_FIRST(&mm->mm_mmap));
+}
+
+static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
+{
+ return (QTAILQ_NEXT(vma, vma_link));
+}
+
+static int vma_get_mapping_count(const struct mm_struct *mm)
+{
+ return (mm->mm_count);
+}
+
+/*
+ * Calculate file (dump) size of given memory region.
+ */
+static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
+{
+ /* if we cannot even read the first page, skip it */
+ if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
+ return (0);
+
+ /*
+ * Usually we don't dump executable pages as they contain
+ * non-writable code that debugger can read directly from
+ * target library etc. However, thread stacks are marked
+ * also executable so we read in first page of given region
+ * and check whether it contains elf header. If there is
+ * no elf header, we dump it.
+ */
+ if (vma->vma_flags & PROT_EXEC) {
+ char page[TARGET_PAGE_SIZE];
+
+ copy_from_user(page, vma->vma_start, sizeof (page));
+ if ((page[EI_MAG0] == ELFMAG0) &&
+ (page[EI_MAG1] == ELFMAG1) &&
+ (page[EI_MAG2] == ELFMAG2) &&
+ (page[EI_MAG3] == ELFMAG3)) {
+ /*
+ * Mappings are possibly from ELF binary. Don't dump
+ * them.
+ */
+ return (0);
+ }
+ }
+
+ return (vma->vma_end - vma->vma_start);
+}
+
+static int vma_walker(void *priv, target_ulong start, target_ulong end,
+ unsigned long flags)
+{
+ struct mm_struct *mm = (struct mm_struct *)priv;
+
+ vma_add_mapping(mm, start, end, flags);
+ return (0);
+}
+
+static void fill_note(struct memelfnote *note, const char *name, int type,
+ unsigned int sz, void *data)
+{
+ unsigned int namesz;
+
+ namesz = strlen(name) + 1;
+ note->name = name;
+ note->namesz = namesz;
+ note->namesz_rounded = roundup(namesz, sizeof (int32_t));
+ note->type = type;
+ note->datasz = sz;
+ note->datasz_rounded = roundup(sz, sizeof (int32_t));
+
+ note->data = data;
+
+ /*
+ * We calculate rounded up note size here as specified by
+ * ELF document.
+ */
+ note->notesz = sizeof (struct elf_note) +
+ note->namesz_rounded + note->datasz_rounded;
+}
+
+static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
+ uint32_t flags)
+{
+ (void) memset(elf, 0, sizeof(*elf));
+
+ (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
+ elf->e_ident[EI_CLASS] = ELF_CLASS;
+ elf->e_ident[EI_DATA] = ELF_DATA;
+ elf->e_ident[EI_VERSION] = EV_CURRENT;
+ elf->e_ident[EI_OSABI] = ELF_OSABI;
+
+ elf->e_type = ET_CORE;
+ elf->e_machine = machine;
+ elf->e_version = EV_CURRENT;
+ elf->e_phoff = sizeof(struct elfhdr);
+ elf->e_flags = flags;
+ elf->e_ehsize = sizeof(struct elfhdr);
+ elf->e_phentsize = sizeof(struct elf_phdr);
+ elf->e_phnum = segs;
+
+ bswap_ehdr(elf);
+}
+
+static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
+{
+ phdr->p_type = PT_NOTE;
+ phdr->p_offset = offset;
+ phdr->p_vaddr = 0;
+ phdr->p_paddr = 0;
+ phdr->p_filesz = sz;
+ phdr->p_memsz = 0;
+ phdr->p_flags = 0;
+ phdr->p_align = 0;
+
+ bswap_phdr(phdr, 1);
+}
+
+static size_t note_size(const struct memelfnote *note)
+{
+ return (note->notesz);
+}
+
+static void fill_prstatus(struct target_elf_prstatus *prstatus,
+ const TaskState *ts, int signr)
+{
+ (void) memset(prstatus, 0, sizeof (*prstatus));
+ prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
+ prstatus->pr_pid = ts->ts_tid;
+ prstatus->pr_ppid = getppid();
+ prstatus->pr_pgrp = getpgrp();
+ prstatus->pr_sid = getsid(0);
+
+ bswap_prstatus(prstatus);
+}
+
+static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
+{
+ char *base_filename;
+ unsigned int i, len;
+
+ (void) memset(psinfo, 0, sizeof (*psinfo));
+
+ len = ts->info->arg_end - ts->info->arg_start;
+ if (len >= ELF_PRARGSZ)
+ len = ELF_PRARGSZ - 1;
+ if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
+ return -EFAULT;
+ for (i = 0; i < len; i++)
+ if (psinfo->pr_psargs[i] == 0)
+ psinfo->pr_psargs[i] = ' ';
+ psinfo->pr_psargs[len] = 0;
+
+ psinfo->pr_pid = getpid();
+ psinfo->pr_ppid = getppid();
+ psinfo->pr_pgrp = getpgrp();
+ psinfo->pr_sid = getsid(0);
+ psinfo->pr_uid = getuid();
+ psinfo->pr_gid = getgid();
+
+ base_filename = g_path_get_basename(ts->bprm->filename);
+ /*
+ * Using strncpy here is fine: at max-length,
+ * this field is not NUL-terminated.
+ */
+ (void) strncpy(psinfo->pr_fname, base_filename,
+ sizeof(psinfo->pr_fname));
+
+ g_free(base_filename);
+ bswap_psinfo(psinfo);
+ return (0);
+}
+
+static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
+{
+ elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
+ elf_addr_t orig_auxv = auxv;
+ void *ptr;
+ int len = ts->info->auxv_len;
+
+ /*
+ * Auxiliary vector is stored in target process stack. It contains
+ * {type, value} pairs that we need to dump into note. This is not
+ * strictly necessary but we do it here for sake of completeness.
+ */
+
+ /* read in whole auxv vector and copy it to memelfnote */
+ ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
+ if (ptr != NULL) {
+ fill_note(note, "CORE", NT_AUXV, len, ptr);
+ unlock_user(ptr, auxv, len);
+ }
+}
+
+/*
+ * Constructs name of coredump file. We have following convention
+ * for the name:
+ * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
+ *
+ * Returns 0 in case of success, -1 otherwise (errno is set).
+ */
+static int core_dump_filename(const TaskState *ts, char *buf,
+ size_t bufsize)
+{
+ char timestamp[64];
+ char *filename = NULL;
+ char *base_filename = NULL;
+ struct timeval tv;
+ struct tm tm;
+
+ assert(bufsize >= PATH_MAX);
+
+ if (gettimeofday(&tv, NULL) < 0) {
+ (void) fprintf(stderr, "unable to get current timestamp: %s",
+ strerror(errno));
+ return (-1);
+ }
+
+ filename = strdup(ts->bprm->filename);
+ base_filename = strdup(basename(filename));
+ (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
+ localtime_r(&tv.tv_sec, &tm));
+ (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
+ base_filename, timestamp, (int)getpid());
+ free(base_filename);
+ free(filename);
+
+ return (0);
+}
+
+static int dump_write(int fd, const void *ptr, size_t size)
+{
+ const char *bufp = (const char *)ptr;
+ ssize_t bytes_written, bytes_left;
+ struct rlimit dumpsize;
+ off_t pos;
+
+ bytes_written = 0;
+ getrlimit(RLIMIT_CORE, &dumpsize);
+ if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
+ if (errno == ESPIPE) { /* not a seekable stream */
+ bytes_left = size;
+ } else {
+ return pos;
+ }
+ } else {
+ if (dumpsize.rlim_cur <= pos) {
+ return -1;
+ } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
+ bytes_left = size;
+ } else {
+ size_t limit_left=dumpsize.rlim_cur - pos;
+ bytes_left = limit_left >= size ? size : limit_left ;
+ }
+ }
+
+ /*
+ * In normal conditions, single write(2) should do but
+ * in case of socket etc. this mechanism is more portable.
+ */
+ do {
+ bytes_written = write(fd, bufp, bytes_left);
+ if (bytes_written < 0) {
+ if (errno == EINTR)
+ continue;
+ return (-1);
+ } else if (bytes_written == 0) { /* eof */
+ return (-1);
+ }
+ bufp += bytes_written;
+ bytes_left -= bytes_written;
+ } while (bytes_left > 0);
+
+ return (0);
+}
+
+static int write_note(struct memelfnote *men, int fd)
+{
+ struct elf_note en;
+
+ en.n_namesz = men->namesz;
+ en.n_type = men->type;
+ en.n_descsz = men->datasz;
+
+ bswap_note(&en);
+
+ if (dump_write(fd, &en, sizeof(en)) != 0)
+ return (-1);
+ if (dump_write(fd, men->name, men->namesz_rounded) != 0)
+ return (-1);
+ if (dump_write(fd, men->data, men->datasz_rounded) != 0)
+ return (-1);
+
+ return (0);
+}
+
+static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
+{
+ CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
+ struct elf_thread_status *ets;
+
+ ets = g_malloc0(sizeof (*ets));
+ ets->num_notes = 1; /* only prstatus is dumped */
+ fill_prstatus(&ets->prstatus, ts, 0);
+ elf_core_copy_regs(&ets->prstatus.pr_reg, env);
+ fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
+ &ets->prstatus);
+
+ QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
+
+ info->notes_size += note_size(&ets->notes[0]);
+}
+
+static void init_note_info(struct elf_note_info *info)
+{
+ /* Initialize the elf_note_info structure so that it is at
+ * least safe to call free_note_info() on it. Must be
+ * called before calling fill_note_info().
+ */
+ memset(info, 0, sizeof (*info));
+ QTAILQ_INIT(&info->thread_list);
+}
+
+static int fill_note_info(struct elf_note_info *info,
+ long signr, const CPUArchState *env)
+{
+#define NUMNOTES 3
+ CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
+ int i;
+
+ info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
+ if (info->notes == NULL)
+ return (-ENOMEM);
+ info->prstatus = g_malloc0(sizeof (*info->prstatus));
+ if (info->prstatus == NULL)
+ return (-ENOMEM);
+ info->psinfo = g_malloc0(sizeof (*info->psinfo));
+ if (info->prstatus == NULL)
+ return (-ENOMEM);
+
+ /*
+ * First fill in status (and registers) of current thread
+ * including process info & aux vector.
+ */
+ fill_prstatus(info->prstatus, ts, signr);
+ elf_core_copy_regs(&info->prstatus->pr_reg, env);
+ fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
+ sizeof (*info->prstatus), info->prstatus);
+ fill_psinfo(info->psinfo, ts);
+ fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
+ sizeof (*info->psinfo), info->psinfo);
+ fill_auxv_note(&info->notes[2], ts);
+ info->numnote = 3;
+
+ info->notes_size = 0;
+ for (i = 0; i < info->numnote; i++)
+ info->notes_size += note_size(&info->notes[i]);
+
+ /* read and fill status of all threads */
+ cpu_list_lock();
+ CPU_FOREACH(cpu) {
+ if (cpu == thread_cpu) {
+ continue;
+ }
+ fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
+ }
+ cpu_list_unlock();
+
+ return (0);
+}
+
+static void free_note_info(struct elf_note_info *info)
+{
+ struct elf_thread_status *ets;
+
+ while (!QTAILQ_EMPTY(&info->thread_list)) {
+ ets = QTAILQ_FIRST(&info->thread_list);
+ QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
+ g_free(ets);
+ }
+
+ g_free(info->prstatus);
+ g_free(info->psinfo);
+ g_free(info->notes);
+}
+
+static int write_note_info(struct elf_note_info *info, int fd)
+{
+ struct elf_thread_status *ets;
+ int i, error = 0;
+
+ /* write prstatus, psinfo and auxv for current thread */
+ for (i = 0; i < info->numnote; i++)
+ if ((error = write_note(&info->notes[i], fd)) != 0)
+ return (error);
+
+ /* write prstatus for each thread */
+ QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
+ if ((error = write_note(&ets->notes[0], fd)) != 0)
+ return (error);
+ }
+
+ return (0);
+}
+
+/*
+ * Write out ELF coredump.
+ *
+ * See documentation of ELF object file format in:
+ * http://www.caldera.com/developers/devspecs/gabi41.pdf
+ *
+ * Coredump format in linux is following:
+ *
+ * 0 +----------------------+ \
+ * | ELF header | ET_CORE |
+ * +----------------------+ |
+ * | ELF program headers | |--- headers
+ * | - NOTE section | |
+ * | - PT_LOAD sections | |
+ * +----------------------+ /
+ * | NOTEs: |
+ * | - NT_PRSTATUS |
+ * | - NT_PRSINFO |
+ * | - NT_AUXV |
+ * +----------------------+ <-- aligned to target page
+ * | Process memory dump |
+ * : :
+ * . .
+ * : :
+ * | |
+ * +----------------------+
+ *
+ * NT_PRSTATUS -> struct elf_prstatus (per thread)
+ * NT_PRSINFO -> struct elf_prpsinfo
+ * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
+ *
+ * Format follows System V format as close as possible. Current
+ * version limitations are as follows:
+ * - no floating point registers are dumped
+ *
+ * Function returns 0 in case of success, negative errno otherwise.
+ *
+ * TODO: make this work also during runtime: it should be
+ * possible to force coredump from running process and then
+ * continue processing. For example qemu could set up SIGUSR2
+ * handler (provided that target process haven't registered
+ * handler for that) that does the dump when signal is received.
+ */
+static int elf_core_dump(int signr, const CPUArchState *env)
+{
+ const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ const TaskState *ts = (const TaskState *)cpu->opaque;
+ struct vm_area_struct *vma = NULL;
+ char corefile[PATH_MAX];
+ struct elf_note_info info;
+ struct elfhdr elf;
+ struct elf_phdr phdr;
+ struct rlimit dumpsize;
+ struct mm_struct *mm = NULL;
+ off_t offset = 0, data_offset = 0;
+ int segs = 0;
+ int fd = -1;
+
+ init_note_info(&info);
+
+ errno = 0;
+ getrlimit(RLIMIT_CORE, &dumpsize);
+ if (dumpsize.rlim_cur == 0)
+ return 0;
+
+ if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
+ return (-errno);
+
+ if ((fd = open(corefile, O_WRONLY | O_CREAT,
+ S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
+ return (-errno);
+
+ /*
+ * Walk through target process memory mappings and
+ * set up structure containing this information. After
+ * this point vma_xxx functions can be used.
+ */
+ if ((mm = vma_init()) == NULL)
+ goto out;
+
+ walk_memory_regions(mm, vma_walker);
+ segs = vma_get_mapping_count(mm);
+
+ /*
+ * Construct valid coredump ELF header. We also
+ * add one more segment for notes.
+ */
+ fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
+ if (dump_write(fd, &elf, sizeof (elf)) != 0)
+ goto out;
+
+ /* fill in in-memory version of notes */
+ if (fill_note_info(&info, signr, env) < 0)
+ goto out;
+
+ offset += sizeof (elf); /* elf header */
+ offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
+
+ /* write out notes program header */
+ fill_elf_note_phdr(&phdr, info.notes_size, offset);
+
+ offset += info.notes_size;
+ if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
+ goto out;
+
+ /*
+ * ELF specification wants data to start at page boundary so
+ * we align it here.
+ */
+ data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
+
+ /*
+ * Write program headers for memory regions mapped in
+ * the target process.
+ */
+ for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
+ (void) memset(&phdr, 0, sizeof (phdr));
+
+ phdr.p_type = PT_LOAD;
+ phdr.p_offset = offset;
+ phdr.p_vaddr = vma->vma_start;
+ phdr.p_paddr = 0;
+ phdr.p_filesz = vma_dump_size(vma);
+ offset += phdr.p_filesz;
+ phdr.p_memsz = vma->vma_end - vma->vma_start;
+ phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
+ if (vma->vma_flags & PROT_WRITE)
+ phdr.p_flags |= PF_W;
+ if (vma->vma_flags & PROT_EXEC)
+ phdr.p_flags |= PF_X;
+ phdr.p_align = ELF_EXEC_PAGESIZE;
+
+ bswap_phdr(&phdr, 1);
+ dump_write(fd, &phdr, sizeof (phdr));
+ }
+
+ /*
+ * Next we write notes just after program headers. No
+ * alignment needed here.
+ */
+ if (write_note_info(&info, fd) < 0)
+ goto out;
+
+ /* align data to page boundary */
+ if (lseek(fd, data_offset, SEEK_SET) != data_offset)
+ goto out;
+
+ /*
+ * Finally we can dump process memory into corefile as well.
+ */
+ for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
+ abi_ulong addr;
+ abi_ulong end;
+
+ end = vma->vma_start + vma_dump_size(vma);
+
+ for (addr = vma->vma_start; addr < end;
+ addr += TARGET_PAGE_SIZE) {
+ char page[TARGET_PAGE_SIZE];
+ int error;
+
+ /*
+ * Read in page from target process memory and
+ * write it to coredump file.
+ */
+ error = copy_from_user(page, addr, sizeof (page));
+ if (error != 0) {
+ (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
+ addr);
+ errno = -error;
+ goto out;
+ }
+ if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
+ goto out;
+ }
+ }
+
+ out:
+ free_note_info(&info);
+ if (mm != NULL)
+ vma_delete(mm);
+ (void) close(fd);
+
+ if (errno != 0)
+ return (-errno);
+ return (0);
+}
+#endif /* USE_ELF_CORE_DUMP */
+
+void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ init_thread(regs, infop);
+}