summaryrefslogtreecommitdiffstats
path: root/qemu/include/fpu
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/include/fpu')
-rw-r--r--qemu/include/fpu/softfloat.h749
1 files changed, 0 insertions, 749 deletions
diff --git a/qemu/include/fpu/softfloat.h b/qemu/include/fpu/softfloat.h
deleted file mode 100644
index c93706253..000000000
--- a/qemu/include/fpu/softfloat.h
+++ /dev/null
@@ -1,749 +0,0 @@
-/*
- * QEMU float support
- *
- * The code in this source file is derived from release 2a of the SoftFloat
- * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
- * some later contributions) are provided under that license, as detailed below.
- * It has subsequently been modified by contributors to the QEMU Project,
- * so some portions are provided under:
- * the SoftFloat-2a license
- * the BSD license
- * GPL-v2-or-later
- *
- * Any future contributions to this file after December 1st 2014 will be
- * taken to be licensed under the Softfloat-2a license unless specifically
- * indicated otherwise.
- */
-
-/*
-===============================================================================
-This C header file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/* BSD licensing:
- * Copyright (c) 2006, Fabrice Bellard
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its contributors
- * may be used to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/* Portions of this work are licensed under the terms of the GNU GPL,
- * version 2 or later. See the COPYING file in the top-level directory.
- */
-
-#ifndef SOFTFLOAT_H
-#define SOFTFLOAT_H
-
-#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
-#include <sunmath.h>
-#endif
-
-
-/* This 'flag' type must be able to hold at least 0 and 1. It should
- * probably be replaced with 'bool' but the uses would need to be audited
- * to check that they weren't accidentally relying on it being a larger type.
- */
-typedef uint8_t flag;
-
-#define LIT64( a ) a##LL
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point ordering relations
-*----------------------------------------------------------------------------*/
-enum {
- float_relation_less = -1,
- float_relation_equal = 0,
- float_relation_greater = 1,
- float_relation_unordered = 2
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point types.
-*----------------------------------------------------------------------------*/
-/* Use structures for soft-float types. This prevents accidentally mixing
- them with native int/float types. A sufficiently clever compiler and
- sane ABI should be able to see though these structs. However
- x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
-//#define USE_SOFTFLOAT_STRUCT_TYPES
-#ifdef USE_SOFTFLOAT_STRUCT_TYPES
-typedef struct {
- uint16_t v;
-} float16;
-#define float16_val(x) (((float16)(x)).v)
-#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
-#define const_float16(x) { x }
-typedef struct {
- uint32_t v;
-} float32;
-/* The cast ensures an error if the wrong type is passed. */
-#define float32_val(x) (((float32)(x)).v)
-#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
-#define const_float32(x) { x }
-typedef struct {
- uint64_t v;
-} float64;
-#define float64_val(x) (((float64)(x)).v)
-#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
-#define const_float64(x) { x }
-#else
-typedef uint16_t float16;
-typedef uint32_t float32;
-typedef uint64_t float64;
-#define float16_val(x) (x)
-#define float32_val(x) (x)
-#define float64_val(x) (x)
-#define make_float16(x) (x)
-#define make_float32(x) (x)
-#define make_float64(x) (x)
-#define const_float16(x) (x)
-#define const_float32(x) (x)
-#define const_float64(x) (x)
-#endif
-typedef struct {
- uint64_t low;
- uint16_t high;
-} floatx80;
-#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
-#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
-typedef struct {
-#ifdef HOST_WORDS_BIGENDIAN
- uint64_t high, low;
-#else
- uint64_t low, high;
-#endif
-} float128;
-#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
-#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point underflow tininess-detection mode.
-*----------------------------------------------------------------------------*/
-enum {
- float_tininess_after_rounding = 0,
- float_tininess_before_rounding = 1
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point rounding mode.
-*----------------------------------------------------------------------------*/
-enum {
- float_round_nearest_even = 0,
- float_round_down = 1,
- float_round_up = 2,
- float_round_to_zero = 3,
- float_round_ties_away = 4,
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point exception flags.
-*----------------------------------------------------------------------------*/
-enum {
- float_flag_invalid = 1,
- float_flag_divbyzero = 4,
- float_flag_overflow = 8,
- float_flag_underflow = 16,
- float_flag_inexact = 32,
- float_flag_input_denormal = 64,
- float_flag_output_denormal = 128
-};
-
-typedef struct float_status {
- signed char float_detect_tininess;
- signed char float_rounding_mode;
- signed char float_exception_flags;
- signed char floatx80_rounding_precision;
- /* should denormalised results go to zero and set the inexact flag? */
- flag flush_to_zero;
- /* should denormalised inputs go to zero and set the input_denormal flag? */
- flag flush_inputs_to_zero;
- flag default_nan_mode;
-} float_status;
-
-static inline void set_float_detect_tininess(int val, float_status *status)
-{
- status->float_detect_tininess = val;
-}
-static inline void set_float_rounding_mode(int val, float_status *status)
-{
- status->float_rounding_mode = val;
-}
-static inline void set_float_exception_flags(int val, float_status *status)
-{
- status->float_exception_flags = val;
-}
-static inline void set_floatx80_rounding_precision(int val,
- float_status *status)
-{
- status->floatx80_rounding_precision = val;
-}
-static inline void set_flush_to_zero(flag val, float_status *status)
-{
- status->flush_to_zero = val;
-}
-static inline void set_flush_inputs_to_zero(flag val, float_status *status)
-{
- status->flush_inputs_to_zero = val;
-}
-static inline void set_default_nan_mode(flag val, float_status *status)
-{
- status->default_nan_mode = val;
-}
-static inline int get_float_detect_tininess(float_status *status)
-{
- return status->float_detect_tininess;
-}
-static inline int get_float_rounding_mode(float_status *status)
-{
- return status->float_rounding_mode;
-}
-static inline int get_float_exception_flags(float_status *status)
-{
- return status->float_exception_flags;
-}
-static inline int get_floatx80_rounding_precision(float_status *status)
-{
- return status->floatx80_rounding_precision;
-}
-static inline flag get_flush_to_zero(float_status *status)
-{
- return status->flush_to_zero;
-}
-static inline flag get_flush_inputs_to_zero(float_status *status)
-{
- return status->flush_inputs_to_zero;
-}
-static inline flag get_default_nan_mode(float_status *status)
-{
- return status->default_nan_mode;
-}
-
-/*----------------------------------------------------------------------------
-| Routine to raise any or all of the software IEC/IEEE floating-point
-| exception flags.
-*----------------------------------------------------------------------------*/
-void float_raise(int8_t flags, float_status *status);
-
-/*----------------------------------------------------------------------------
-| If `a' is denormal and we are in flush-to-zero mode then set the
-| input-denormal exception and return zero. Otherwise just return the value.
-*----------------------------------------------------------------------------*/
-float32 float32_squash_input_denormal(float32 a, float_status *status);
-float64 float64_squash_input_denormal(float64 a, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Options to indicate which negations to perform in float*_muladd()
-| Using these differs from negating an input or output before calling
-| the muladd function in that this means that a NaN doesn't have its
-| sign bit inverted before it is propagated.
-| We also support halving the result before rounding, as a special
-| case to support the ARM fused-sqrt-step instruction FRSQRTS.
-*----------------------------------------------------------------------------*/
-enum {
- float_muladd_negate_c = 1,
- float_muladd_negate_product = 2,
- float_muladd_negate_result = 4,
- float_muladd_halve_result = 8,
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE integer-to-floating-point conversion routines.
-*----------------------------------------------------------------------------*/
-float32 int32_to_float32(int32_t, float_status *status);
-float64 int32_to_float64(int32_t, float_status *status);
-float32 uint32_to_float32(uint32_t, float_status *status);
-float64 uint32_to_float64(uint32_t, float_status *status);
-floatx80 int32_to_floatx80(int32_t, float_status *status);
-float128 int32_to_float128(int32_t, float_status *status);
-float32 int64_to_float32(int64_t, float_status *status);
-float64 int64_to_float64(int64_t, float_status *status);
-floatx80 int64_to_floatx80(int64_t, float_status *status);
-float128 int64_to_float128(int64_t, float_status *status);
-float32 uint64_to_float32(uint64_t, float_status *status);
-float64 uint64_to_float64(uint64_t, float_status *status);
-float128 uint64_to_float128(uint64_t, float_status *status);
-
-/* We provide the int16 versions for symmetry of API with float-to-int */
-static inline float32 int16_to_float32(int16_t v, float_status *status)
-{
- return int32_to_float32(v, status);
-}
-
-static inline float32 uint16_to_float32(uint16_t v, float_status *status)
-{
- return uint32_to_float32(v, status);
-}
-
-static inline float64 int16_to_float64(int16_t v, float_status *status)
-{
- return int32_to_float64(v, status);
-}
-
-static inline float64 uint16_to_float64(uint16_t v, float_status *status)
-{
- return uint32_to_float64(v, status);
-}
-
-/*----------------------------------------------------------------------------
-| Software half-precision conversion routines.
-*----------------------------------------------------------------------------*/
-float16 float32_to_float16(float32, flag, float_status *status);
-float32 float16_to_float32(float16, flag, float_status *status);
-float16 float64_to_float16(float64 a, flag ieee, float_status *status);
-float64 float16_to_float64(float16 a, flag ieee, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Software half-precision operations.
-*----------------------------------------------------------------------------*/
-int float16_is_quiet_nan( float16 );
-int float16_is_signaling_nan( float16 );
-float16 float16_maybe_silence_nan( float16 );
-
-static inline int float16_is_any_nan(float16 a)
-{
- return ((float16_val(a) & ~0x8000) > 0x7c00);
-}
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated half-precision NaN.
-*----------------------------------------------------------------------------*/
-extern const float16 float16_default_nan;
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE single-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int16_t float32_to_int16(float32, float_status *status);
-uint16_t float32_to_uint16(float32, float_status *status);
-int16_t float32_to_int16_round_to_zero(float32, float_status *status);
-uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
-int32_t float32_to_int32(float32, float_status *status);
-int32_t float32_to_int32_round_to_zero(float32, float_status *status);
-uint32_t float32_to_uint32(float32, float_status *status);
-uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
-int64_t float32_to_int64(float32, float_status *status);
-uint64_t float32_to_uint64(float32, float_status *status);
-uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
-int64_t float32_to_int64_round_to_zero(float32, float_status *status);
-float64 float32_to_float64(float32, float_status *status);
-floatx80 float32_to_floatx80(float32, float_status *status);
-float128 float32_to_float128(float32, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE single-precision operations.
-*----------------------------------------------------------------------------*/
-float32 float32_round_to_int(float32, float_status *status);
-float32 float32_add(float32, float32, float_status *status);
-float32 float32_sub(float32, float32, float_status *status);
-float32 float32_mul(float32, float32, float_status *status);
-float32 float32_div(float32, float32, float_status *status);
-float32 float32_rem(float32, float32, float_status *status);
-float32 float32_muladd(float32, float32, float32, int, float_status *status);
-float32 float32_sqrt(float32, float_status *status);
-float32 float32_exp2(float32, float_status *status);
-float32 float32_log2(float32, float_status *status);
-int float32_eq(float32, float32, float_status *status);
-int float32_le(float32, float32, float_status *status);
-int float32_lt(float32, float32, float_status *status);
-int float32_unordered(float32, float32, float_status *status);
-int float32_eq_quiet(float32, float32, float_status *status);
-int float32_le_quiet(float32, float32, float_status *status);
-int float32_lt_quiet(float32, float32, float_status *status);
-int float32_unordered_quiet(float32, float32, float_status *status);
-int float32_compare(float32, float32, float_status *status);
-int float32_compare_quiet(float32, float32, float_status *status);
-float32 float32_min(float32, float32, float_status *status);
-float32 float32_max(float32, float32, float_status *status);
-float32 float32_minnum(float32, float32, float_status *status);
-float32 float32_maxnum(float32, float32, float_status *status);
-float32 float32_minnummag(float32, float32, float_status *status);
-float32 float32_maxnummag(float32, float32, float_status *status);
-int float32_is_quiet_nan( float32 );
-int float32_is_signaling_nan( float32 );
-float32 float32_maybe_silence_nan( float32 );
-float32 float32_scalbn(float32, int, float_status *status);
-
-static inline float32 float32_abs(float32 a)
-{
- /* Note that abs does *not* handle NaN specially, nor does
- * it flush denormal inputs to zero.
- */
- return make_float32(float32_val(a) & 0x7fffffff);
-}
-
-static inline float32 float32_chs(float32 a)
-{
- /* Note that chs does *not* handle NaN specially, nor does
- * it flush denormal inputs to zero.
- */
- return make_float32(float32_val(a) ^ 0x80000000);
-}
-
-static inline int float32_is_infinity(float32 a)
-{
- return (float32_val(a) & 0x7fffffff) == 0x7f800000;
-}
-
-static inline int float32_is_neg(float32 a)
-{
- return float32_val(a) >> 31;
-}
-
-static inline int float32_is_zero(float32 a)
-{
- return (float32_val(a) & 0x7fffffff) == 0;
-}
-
-static inline int float32_is_any_nan(float32 a)
-{
- return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
-}
-
-static inline int float32_is_zero_or_denormal(float32 a)
-{
- return (float32_val(a) & 0x7f800000) == 0;
-}
-
-static inline float32 float32_set_sign(float32 a, int sign)
-{
- return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
-}
-
-#define float32_zero make_float32(0)
-#define float32_one make_float32(0x3f800000)
-#define float32_ln2 make_float32(0x3f317218)
-#define float32_pi make_float32(0x40490fdb)
-#define float32_half make_float32(0x3f000000)
-#define float32_infinity make_float32(0x7f800000)
-
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
-*----------------------------------------------------------------------------*/
-extern const float32 float32_default_nan;
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE double-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int16_t float64_to_int16(float64, float_status *status);
-uint16_t float64_to_uint16(float64, float_status *status);
-int16_t float64_to_int16_round_to_zero(float64, float_status *status);
-uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
-int32_t float64_to_int32(float64, float_status *status);
-int32_t float64_to_int32_round_to_zero(float64, float_status *status);
-uint32_t float64_to_uint32(float64, float_status *status);
-uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
-int64_t float64_to_int64(float64, float_status *status);
-int64_t float64_to_int64_round_to_zero(float64, float_status *status);
-uint64_t float64_to_uint64(float64 a, float_status *status);
-uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
-float32 float64_to_float32(float64, float_status *status);
-floatx80 float64_to_floatx80(float64, float_status *status);
-float128 float64_to_float128(float64, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE double-precision operations.
-*----------------------------------------------------------------------------*/
-float64 float64_round_to_int(float64, float_status *status);
-float64 float64_trunc_to_int(float64, float_status *status);
-float64 float64_add(float64, float64, float_status *status);
-float64 float64_sub(float64, float64, float_status *status);
-float64 float64_mul(float64, float64, float_status *status);
-float64 float64_div(float64, float64, float_status *status);
-float64 float64_rem(float64, float64, float_status *status);
-float64 float64_muladd(float64, float64, float64, int, float_status *status);
-float64 float64_sqrt(float64, float_status *status);
-float64 float64_log2(float64, float_status *status);
-int float64_eq(float64, float64, float_status *status);
-int float64_le(float64, float64, float_status *status);
-int float64_lt(float64, float64, float_status *status);
-int float64_unordered(float64, float64, float_status *status);
-int float64_eq_quiet(float64, float64, float_status *status);
-int float64_le_quiet(float64, float64, float_status *status);
-int float64_lt_quiet(float64, float64, float_status *status);
-int float64_unordered_quiet(float64, float64, float_status *status);
-int float64_compare(float64, float64, float_status *status);
-int float64_compare_quiet(float64, float64, float_status *status);
-float64 float64_min(float64, float64, float_status *status);
-float64 float64_max(float64, float64, float_status *status);
-float64 float64_minnum(float64, float64, float_status *status);
-float64 float64_maxnum(float64, float64, float_status *status);
-float64 float64_minnummag(float64, float64, float_status *status);
-float64 float64_maxnummag(float64, float64, float_status *status);
-int float64_is_quiet_nan( float64 a );
-int float64_is_signaling_nan( float64 );
-float64 float64_maybe_silence_nan( float64 );
-float64 float64_scalbn(float64, int, float_status *status);
-
-static inline float64 float64_abs(float64 a)
-{
- /* Note that abs does *not* handle NaN specially, nor does
- * it flush denormal inputs to zero.
- */
- return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
-}
-
-static inline float64 float64_chs(float64 a)
-{
- /* Note that chs does *not* handle NaN specially, nor does
- * it flush denormal inputs to zero.
- */
- return make_float64(float64_val(a) ^ 0x8000000000000000LL);
-}
-
-static inline int float64_is_infinity(float64 a)
-{
- return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
-}
-
-static inline int float64_is_neg(float64 a)
-{
- return float64_val(a) >> 63;
-}
-
-static inline int float64_is_zero(float64 a)
-{
- return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
-}
-
-static inline int float64_is_any_nan(float64 a)
-{
- return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
-}
-
-static inline int float64_is_zero_or_denormal(float64 a)
-{
- return (float64_val(a) & 0x7ff0000000000000LL) == 0;
-}
-
-static inline float64 float64_set_sign(float64 a, int sign)
-{
- return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
- | ((int64_t)sign << 63));
-}
-
-#define float64_zero make_float64(0)
-#define float64_one make_float64(0x3ff0000000000000LL)
-#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
-#define float64_pi make_float64(0x400921fb54442d18LL)
-#define float64_half make_float64(0x3fe0000000000000LL)
-#define float64_infinity make_float64(0x7ff0000000000000LL)
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
-*----------------------------------------------------------------------------*/
-extern const float64 float64_default_nan;
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE extended double-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int32_t floatx80_to_int32(floatx80, float_status *status);
-int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
-int64_t floatx80_to_int64(floatx80, float_status *status);
-int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
-float32 floatx80_to_float32(floatx80, float_status *status);
-float64 floatx80_to_float64(floatx80, float_status *status);
-float128 floatx80_to_float128(floatx80, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE extended double-precision operations.
-*----------------------------------------------------------------------------*/
-floatx80 floatx80_round_to_int(floatx80, float_status *status);
-floatx80 floatx80_add(floatx80, floatx80, float_status *status);
-floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
-floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
-floatx80 floatx80_div(floatx80, floatx80, float_status *status);
-floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
-floatx80 floatx80_sqrt(floatx80, float_status *status);
-int floatx80_eq(floatx80, floatx80, float_status *status);
-int floatx80_le(floatx80, floatx80, float_status *status);
-int floatx80_lt(floatx80, floatx80, float_status *status);
-int floatx80_unordered(floatx80, floatx80, float_status *status);
-int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
-int floatx80_le_quiet(floatx80, floatx80, float_status *status);
-int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
-int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
-int floatx80_compare(floatx80, floatx80, float_status *status);
-int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
-int floatx80_is_quiet_nan( floatx80 );
-int floatx80_is_signaling_nan( floatx80 );
-floatx80 floatx80_maybe_silence_nan( floatx80 );
-floatx80 floatx80_scalbn(floatx80, int, float_status *status);
-
-static inline floatx80 floatx80_abs(floatx80 a)
-{
- a.high &= 0x7fff;
- return a;
-}
-
-static inline floatx80 floatx80_chs(floatx80 a)
-{
- a.high ^= 0x8000;
- return a;
-}
-
-static inline int floatx80_is_infinity(floatx80 a)
-{
- return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
-}
-
-static inline int floatx80_is_neg(floatx80 a)
-{
- return a.high >> 15;
-}
-
-static inline int floatx80_is_zero(floatx80 a)
-{
- return (a.high & 0x7fff) == 0 && a.low == 0;
-}
-
-static inline int floatx80_is_zero_or_denormal(floatx80 a)
-{
- return (a.high & 0x7fff) == 0;
-}
-
-static inline int floatx80_is_any_nan(floatx80 a)
-{
- return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
-}
-
-#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
-#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
-#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
-#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
-#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
-#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision NaN.
-*----------------------------------------------------------------------------*/
-extern const floatx80 floatx80_default_nan;
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE quadruple-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int32_t float128_to_int32(float128, float_status *status);
-int32_t float128_to_int32_round_to_zero(float128, float_status *status);
-int64_t float128_to_int64(float128, float_status *status);
-int64_t float128_to_int64_round_to_zero(float128, float_status *status);
-float32 float128_to_float32(float128, float_status *status);
-float64 float128_to_float64(float128, float_status *status);
-floatx80 float128_to_floatx80(float128, float_status *status);
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE quadruple-precision operations.
-*----------------------------------------------------------------------------*/
-float128 float128_round_to_int(float128, float_status *status);
-float128 float128_add(float128, float128, float_status *status);
-float128 float128_sub(float128, float128, float_status *status);
-float128 float128_mul(float128, float128, float_status *status);
-float128 float128_div(float128, float128, float_status *status);
-float128 float128_rem(float128, float128, float_status *status);
-float128 float128_sqrt(float128, float_status *status);
-int float128_eq(float128, float128, float_status *status);
-int float128_le(float128, float128, float_status *status);
-int float128_lt(float128, float128, float_status *status);
-int float128_unordered(float128, float128, float_status *status);
-int float128_eq_quiet(float128, float128, float_status *status);
-int float128_le_quiet(float128, float128, float_status *status);
-int float128_lt_quiet(float128, float128, float_status *status);
-int float128_unordered_quiet(float128, float128, float_status *status);
-int float128_compare(float128, float128, float_status *status);
-int float128_compare_quiet(float128, float128, float_status *status);
-int float128_is_quiet_nan( float128 );
-int float128_is_signaling_nan( float128 );
-float128 float128_maybe_silence_nan( float128 );
-float128 float128_scalbn(float128, int, float_status *status);
-
-static inline float128 float128_abs(float128 a)
-{
- a.high &= 0x7fffffffffffffffLL;
- return a;
-}
-
-static inline float128 float128_chs(float128 a)
-{
- a.high ^= 0x8000000000000000LL;
- return a;
-}
-
-static inline int float128_is_infinity(float128 a)
-{
- return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
-}
-
-static inline int float128_is_neg(float128 a)
-{
- return a.high >> 63;
-}
-
-static inline int float128_is_zero(float128 a)
-{
- return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
-}
-
-static inline int float128_is_zero_or_denormal(float128 a)
-{
- return (a.high & 0x7fff000000000000LL) == 0;
-}
-
-static inline int float128_is_any_nan(float128 a)
-{
- return ((a.high >> 48) & 0x7fff) == 0x7fff &&
- ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
-}
-
-#define float128_zero make_float128(0, 0)
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated quadruple-precision NaN.
-*----------------------------------------------------------------------------*/
-extern const float128 float128_default_nan;
-
-#endif /* !SOFTFLOAT_H */