summaryrefslogtreecommitdiffstats
path: root/qemu/hw/arm/boot.c
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/hw/arm/boot.c')
-rw-r--r--qemu/hw/arm/boot.c805
1 files changed, 805 insertions, 0 deletions
diff --git a/qemu/hw/arm/boot.c b/qemu/hw/arm/boot.c
new file mode 100644
index 000000000..5b969cda1
--- /dev/null
+++ b/qemu/hw/arm/boot.c
@@ -0,0 +1,805 @@
+/*
+ * ARM kernel loader.
+ *
+ * Copyright (c) 2006-2007 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GPL.
+ */
+
+#include "config.h"
+#include "hw/hw.h"
+#include "hw/arm/arm.h"
+#include "sysemu/sysemu.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "sysemu/device_tree.h"
+#include "qemu/config-file.h"
+#include "exec/address-spaces.h"
+
+/* Kernel boot protocol is specified in the kernel docs
+ * Documentation/arm/Booting and Documentation/arm64/booting.txt
+ * They have different preferred image load offsets from system RAM base.
+ */
+#define KERNEL_ARGS_ADDR 0x100
+#define KERNEL_LOAD_ADDR 0x00010000
+#define KERNEL64_LOAD_ADDR 0x00080000
+
+typedef enum {
+ FIXUP_NONE = 0, /* do nothing */
+ FIXUP_TERMINATOR, /* end of insns */
+ FIXUP_BOARDID, /* overwrite with board ID number */
+ FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
+ FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
+ FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
+ FIXUP_BOOTREG, /* overwrite with boot register address */
+ FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
+ FIXUP_MAX,
+} FixupType;
+
+typedef struct ARMInsnFixup {
+ uint32_t insn;
+ FixupType fixup;
+} ARMInsnFixup;
+
+static const ARMInsnFixup bootloader_aarch64[] = {
+ { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
+ { 0xaa1f03e1 }, /* mov x1, xzr */
+ { 0xaa1f03e2 }, /* mov x2, xzr */
+ { 0xaa1f03e3 }, /* mov x3, xzr */
+ { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
+ { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
+ { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
+ { 0 }, /* .word @DTB Higher 32-bits */
+ { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
+ { 0 }, /* .word @Kernel Entry Higher 32-bits */
+ { 0, FIXUP_TERMINATOR }
+};
+
+/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
+static const ARMInsnFixup bootloader[] = {
+ { 0xe3a00000 }, /* mov r0, #0 */
+ { 0xe59f1004 }, /* ldr r1, [pc, #4] */
+ { 0xe59f2004 }, /* ldr r2, [pc, #4] */
+ { 0xe59ff004 }, /* ldr pc, [pc, #4] */
+ { 0, FIXUP_BOARDID },
+ { 0, FIXUP_ARGPTR },
+ { 0, FIXUP_ENTRYPOINT },
+ { 0, FIXUP_TERMINATOR }
+};
+
+/* Handling for secondary CPU boot in a multicore system.
+ * Unlike the uniprocessor/primary CPU boot, this is platform
+ * dependent. The default code here is based on the secondary
+ * CPU boot protocol used on realview/vexpress boards, with
+ * some parameterisation to increase its flexibility.
+ * QEMU platform models for which this code is not appropriate
+ * should override write_secondary_boot and secondary_cpu_reset_hook
+ * instead.
+ *
+ * This code enables the interrupt controllers for the secondary
+ * CPUs and then puts all the secondary CPUs into a loop waiting
+ * for an interprocessor interrupt and polling a configurable
+ * location for the kernel secondary CPU entry point.
+ */
+#define DSB_INSN 0xf57ff04f
+#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
+
+static const ARMInsnFixup smpboot[] = {
+ { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
+ { 0xe59f0028 }, /* ldr r0, bootreg_addr */
+ { 0xe3a01001 }, /* mov r1, #1 */
+ { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
+ { 0xe3a010ff }, /* mov r1, #0xff */
+ { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
+ { 0, FIXUP_DSB }, /* dsb */
+ { 0xe320f003 }, /* wfi */
+ { 0xe5901000 }, /* ldr r1, [r0] */
+ { 0xe1110001 }, /* tst r1, r1 */
+ { 0x0afffffb }, /* beq <wfi> */
+ { 0xe12fff11 }, /* bx r1 */
+ { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
+ { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
+ { 0, FIXUP_TERMINATOR }
+};
+
+static void write_bootloader(const char *name, hwaddr addr,
+ const ARMInsnFixup *insns, uint32_t *fixupcontext)
+{
+ /* Fix up the specified bootloader fragment and write it into
+ * guest memory using rom_add_blob_fixed(). fixupcontext is
+ * an array giving the values to write in for the fixup types
+ * which write a value into the code array.
+ */
+ int i, len;
+ uint32_t *code;
+
+ len = 0;
+ while (insns[len].fixup != FIXUP_TERMINATOR) {
+ len++;
+ }
+
+ code = g_new0(uint32_t, len);
+
+ for (i = 0; i < len; i++) {
+ uint32_t insn = insns[i].insn;
+ FixupType fixup = insns[i].fixup;
+
+ switch (fixup) {
+ case FIXUP_NONE:
+ break;
+ case FIXUP_BOARDID:
+ case FIXUP_ARGPTR:
+ case FIXUP_ENTRYPOINT:
+ case FIXUP_GIC_CPU_IF:
+ case FIXUP_BOOTREG:
+ case FIXUP_DSB:
+ insn = fixupcontext[fixup];
+ break;
+ default:
+ abort();
+ }
+ code[i] = tswap32(insn);
+ }
+
+ rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
+
+ g_free(code);
+}
+
+static void default_write_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ uint32_t fixupcontext[FIXUP_MAX];
+
+ fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
+ fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
+ if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+ fixupcontext[FIXUP_DSB] = DSB_INSN;
+ } else {
+ fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
+ }
+
+ write_bootloader("smpboot", info->smp_loader_start,
+ smpboot, fixupcontext);
+}
+
+static void default_reset_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ CPUState *cs = CPU(cpu);
+
+ address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
+ 0, MEMTXATTRS_UNSPECIFIED, NULL);
+ cpu_set_pc(cs, info->smp_loader_start);
+}
+
+static inline bool have_dtb(const struct arm_boot_info *info)
+{
+ return info->dtb_filename || info->get_dtb;
+}
+
+#define WRITE_WORD(p, value) do { \
+ address_space_stl_notdirty(&address_space_memory, p, value, \
+ MEMTXATTRS_UNSPECIFIED, NULL); \
+ p += 4; \
+} while (0)
+
+static void set_kernel_args(const struct arm_boot_info *info)
+{
+ int initrd_size = info->initrd_size;
+ hwaddr base = info->loader_start;
+ hwaddr p;
+
+ p = base + KERNEL_ARGS_ADDR;
+ /* ATAG_CORE */
+ WRITE_WORD(p, 5);
+ WRITE_WORD(p, 0x54410001);
+ WRITE_WORD(p, 1);
+ WRITE_WORD(p, 0x1000);
+ WRITE_WORD(p, 0);
+ /* ATAG_MEM */
+ /* TODO: handle multiple chips on one ATAG list */
+ WRITE_WORD(p, 4);
+ WRITE_WORD(p, 0x54410002);
+ WRITE_WORD(p, info->ram_size);
+ WRITE_WORD(p, info->loader_start);
+ if (initrd_size) {
+ /* ATAG_INITRD2 */
+ WRITE_WORD(p, 4);
+ WRITE_WORD(p, 0x54420005);
+ WRITE_WORD(p, info->initrd_start);
+ WRITE_WORD(p, initrd_size);
+ }
+ if (info->kernel_cmdline && *info->kernel_cmdline) {
+ /* ATAG_CMDLINE */
+ int cmdline_size;
+
+ cmdline_size = strlen(info->kernel_cmdline);
+ cpu_physical_memory_write(p + 8, info->kernel_cmdline,
+ cmdline_size + 1);
+ cmdline_size = (cmdline_size >> 2) + 1;
+ WRITE_WORD(p, cmdline_size + 2);
+ WRITE_WORD(p, 0x54410009);
+ p += cmdline_size * 4;
+ }
+ if (info->atag_board) {
+ /* ATAG_BOARD */
+ int atag_board_len;
+ uint8_t atag_board_buf[0x1000];
+
+ atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
+ WRITE_WORD(p, (atag_board_len + 8) >> 2);
+ WRITE_WORD(p, 0x414f4d50);
+ cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
+ p += atag_board_len;
+ }
+ /* ATAG_END */
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+}
+
+static void set_kernel_args_old(const struct arm_boot_info *info)
+{
+ hwaddr p;
+ const char *s;
+ int initrd_size = info->initrd_size;
+ hwaddr base = info->loader_start;
+
+ /* see linux/include/asm-arm/setup.h */
+ p = base + KERNEL_ARGS_ADDR;
+ /* page_size */
+ WRITE_WORD(p, 4096);
+ /* nr_pages */
+ WRITE_WORD(p, info->ram_size / 4096);
+ /* ramdisk_size */
+ WRITE_WORD(p, 0);
+#define FLAG_READONLY 1
+#define FLAG_RDLOAD 4
+#define FLAG_RDPROMPT 8
+ /* flags */
+ WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
+ /* rootdev */
+ WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
+ /* video_num_cols */
+ WRITE_WORD(p, 0);
+ /* video_num_rows */
+ WRITE_WORD(p, 0);
+ /* video_x */
+ WRITE_WORD(p, 0);
+ /* video_y */
+ WRITE_WORD(p, 0);
+ /* memc_control_reg */
+ WRITE_WORD(p, 0);
+ /* unsigned char sounddefault */
+ /* unsigned char adfsdrives */
+ /* unsigned char bytes_per_char_h */
+ /* unsigned char bytes_per_char_v */
+ WRITE_WORD(p, 0);
+ /* pages_in_bank[4] */
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ WRITE_WORD(p, 0);
+ /* pages_in_vram */
+ WRITE_WORD(p, 0);
+ /* initrd_start */
+ if (initrd_size) {
+ WRITE_WORD(p, info->initrd_start);
+ } else {
+ WRITE_WORD(p, 0);
+ }
+ /* initrd_size */
+ WRITE_WORD(p, initrd_size);
+ /* rd_start */
+ WRITE_WORD(p, 0);
+ /* system_rev */
+ WRITE_WORD(p, 0);
+ /* system_serial_low */
+ WRITE_WORD(p, 0);
+ /* system_serial_high */
+ WRITE_WORD(p, 0);
+ /* mem_fclk_21285 */
+ WRITE_WORD(p, 0);
+ /* zero unused fields */
+ while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
+ WRITE_WORD(p, 0);
+ }
+ s = info->kernel_cmdline;
+ if (s) {
+ cpu_physical_memory_write(p, s, strlen(s) + 1);
+ } else {
+ WRITE_WORD(p, 0);
+ }
+}
+
+/**
+ * load_dtb() - load a device tree binary image into memory
+ * @addr: the address to load the image at
+ * @binfo: struct describing the boot environment
+ * @addr_limit: upper limit of the available memory area at @addr
+ *
+ * Load a device tree supplied by the machine or by the user with the
+ * '-dtb' command line option, and put it at offset @addr in target
+ * memory.
+ *
+ * If @addr_limit contains a meaningful value (i.e., it is strictly greater
+ * than @addr), the device tree is only loaded if its size does not exceed
+ * the limit.
+ *
+ * Returns: the size of the device tree image on success,
+ * 0 if the image size exceeds the limit,
+ * -1 on errors.
+ *
+ * Note: Must not be called unless have_dtb(binfo) is true.
+ */
+static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
+ hwaddr addr_limit)
+{
+ void *fdt = NULL;
+ int size, rc;
+ uint32_t acells, scells;
+
+ if (binfo->dtb_filename) {
+ char *filename;
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
+ if (!filename) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
+ goto fail;
+ }
+
+ fdt = load_device_tree(filename, &size);
+ if (!fdt) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", filename);
+ g_free(filename);
+ goto fail;
+ }
+ g_free(filename);
+ } else {
+ fdt = binfo->get_dtb(binfo, &size);
+ if (!fdt) {
+ fprintf(stderr, "Board was unable to create a dtb blob\n");
+ goto fail;
+ }
+ }
+
+ if (addr_limit > addr && size > (addr_limit - addr)) {
+ /* Installing the device tree blob at addr would exceed addr_limit.
+ * Whether this constitutes failure is up to the caller to decide,
+ * so just return 0 as size, i.e., no error.
+ */
+ g_free(fdt);
+ return 0;
+ }
+
+ acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
+ scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
+ if (acells == 0 || scells == 0) {
+ fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
+ goto fail;
+ }
+
+ if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
+ /* This is user error so deserves a friendlier error message
+ * than the failure of setprop_sized_cells would provide
+ */
+ fprintf(stderr, "qemu: dtb file not compatible with "
+ "RAM size > 4GB\n");
+ goto fail;
+ }
+
+ rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
+ acells, binfo->loader_start,
+ scells, binfo->ram_size);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /memory/reg\n");
+ goto fail;
+ }
+
+ if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
+ rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
+ binfo->kernel_cmdline);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/bootargs\n");
+ goto fail;
+ }
+ }
+
+ if (binfo->initrd_size) {
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
+ binfo->initrd_start);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
+ goto fail;
+ }
+
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
+ binfo->initrd_start + binfo->initrd_size);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
+ goto fail;
+ }
+ }
+
+ if (binfo->modify_dtb) {
+ binfo->modify_dtb(binfo, fdt);
+ }
+
+ qemu_fdt_dumpdtb(fdt, size);
+
+ /* Put the DTB into the memory map as a ROM image: this will ensure
+ * the DTB is copied again upon reset, even if addr points into RAM.
+ */
+ rom_add_blob_fixed("dtb", fdt, size, addr);
+
+ g_free(fdt);
+
+ return size;
+
+fail:
+ g_free(fdt);
+ return -1;
+}
+
+static void do_cpu_reset(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+ const struct arm_boot_info *info = env->boot_info;
+
+ cpu_reset(cs);
+ if (info) {
+ if (!info->is_linux) {
+ /* Jump to the entry point. */
+ uint64_t entry = info->entry;
+
+ if (!env->aarch64) {
+ env->thumb = info->entry & 1;
+ entry &= 0xfffffffe;
+ }
+ cpu_set_pc(cs, entry);
+ } else {
+ /* If we are booting Linux then we need to check whether we are
+ * booting into secure or non-secure state and adjust the state
+ * accordingly. Out of reset, ARM is defined to be in secure state
+ * (SCR.NS = 0), we change that here if non-secure boot has been
+ * requested.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /* AArch64 is defined to come out of reset into EL3 if enabled.
+ * If we are booting Linux then we need to adjust our EL as
+ * Linux expects us to be in EL2 or EL1. AArch32 resets into
+ * SVC, which Linux expects, so no privilege/exception level to
+ * adjust.
+ */
+ if (env->aarch64) {
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ env->pstate = PSTATE_MODE_EL2h;
+ } else {
+ env->pstate = PSTATE_MODE_EL1h;
+ }
+ }
+
+ /* Set to non-secure if not a secure boot */
+ if (!info->secure_boot) {
+ /* Linux expects non-secure state */
+ env->cp15.scr_el3 |= SCR_NS;
+ }
+ }
+
+ if (cs == first_cpu) {
+ cpu_set_pc(cs, info->loader_start);
+
+ if (!have_dtb(info)) {
+ if (old_param) {
+ set_kernel_args_old(info);
+ } else {
+ set_kernel_args(info);
+ }
+ }
+ } else {
+ info->secondary_cpu_reset_hook(cpu, info);
+ }
+ }
+ }
+}
+
+/**
+ * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
+ * by key.
+ * @fw_cfg: The firmware config instance to store the data in.
+ * @size_key: The firmware config key to store the size of the loaded
+ * data under, with fw_cfg_add_i32().
+ * @data_key: The firmware config key to store the loaded data under,
+ * with fw_cfg_add_bytes().
+ * @image_name: The name of the image file to load. If it is NULL, the
+ * function returns without doing anything.
+ * @try_decompress: Whether the image should be decompressed (gunzipped) before
+ * adding it to fw_cfg. If decompression fails, the image is
+ * loaded as-is.
+ *
+ * In case of failure, the function prints an error message to stderr and the
+ * process exits with status 1.
+ */
+static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
+ uint16_t data_key, const char *image_name,
+ bool try_decompress)
+{
+ size_t size = -1;
+ uint8_t *data;
+
+ if (image_name == NULL) {
+ return;
+ }
+
+ if (try_decompress) {
+ size = load_image_gzipped_buffer(image_name,
+ LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
+ }
+
+ if (size == (size_t)-1) {
+ gchar *contents;
+ gsize length;
+
+ if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
+ fprintf(stderr, "failed to load \"%s\"\n", image_name);
+ exit(1);
+ }
+ size = length;
+ data = (uint8_t *)contents;
+ }
+
+ fw_cfg_add_i32(fw_cfg, size_key, size);
+ fw_cfg_add_bytes(fw_cfg, data_key, data, size);
+}
+
+static void arm_load_kernel_notify(Notifier *notifier, void *data)
+{
+ CPUState *cs;
+ int kernel_size;
+ int initrd_size;
+ int is_linux = 0;
+ uint64_t elf_entry, elf_low_addr, elf_high_addr;
+ int elf_machine;
+ hwaddr entry, kernel_load_offset;
+ int big_endian;
+ static const ARMInsnFixup *primary_loader;
+ ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
+ notifier, notifier);
+ ARMCPU *cpu = n->cpu;
+ struct arm_boot_info *info =
+ container_of(n, struct arm_boot_info, load_kernel_notifier);
+
+ /* Load the kernel. */
+ if (!info->kernel_filename || info->firmware_loaded) {
+
+ if (have_dtb(info)) {
+ /* If we have a device tree blob, but no kernel to supply it to (or
+ * the kernel is supposed to be loaded by the bootloader), copy the
+ * DTB to the base of RAM for the bootloader to pick up.
+ */
+ if (load_dtb(info->loader_start, info, 0) < 0) {
+ exit(1);
+ }
+ }
+
+ if (info->kernel_filename) {
+ FWCfgState *fw_cfg;
+ bool try_decompressing_kernel;
+
+ fw_cfg = fw_cfg_find();
+ try_decompressing_kernel = arm_feature(&cpu->env,
+ ARM_FEATURE_AARCH64);
+
+ /* Expose the kernel, the command line, and the initrd in fw_cfg.
+ * We don't process them here at all, it's all left to the
+ * firmware.
+ */
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
+ info->kernel_filename,
+ try_decompressing_kernel);
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
+ info->initrd_filename, false);
+
+ if (info->kernel_cmdline) {
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(info->kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
+ info->kernel_cmdline);
+ }
+ }
+
+ /* We will start from address 0 (typically a boot ROM image) in the
+ * same way as hardware.
+ */
+ return;
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ primary_loader = bootloader_aarch64;
+ kernel_load_offset = KERNEL64_LOAD_ADDR;
+ elf_machine = EM_AARCH64;
+ } else {
+ primary_loader = bootloader;
+ kernel_load_offset = KERNEL_LOAD_ADDR;
+ elf_machine = EM_ARM;
+ }
+
+ info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
+
+ if (!info->secondary_cpu_reset_hook) {
+ info->secondary_cpu_reset_hook = default_reset_secondary;
+ }
+ if (!info->write_secondary_boot) {
+ info->write_secondary_boot = default_write_secondary;
+ }
+
+ if (info->nb_cpus == 0)
+ info->nb_cpus = 1;
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ big_endian = 1;
+#else
+ big_endian = 0;
+#endif
+
+ /* We want to put the initrd far enough into RAM that when the
+ * kernel is uncompressed it will not clobber the initrd. However
+ * on boards without much RAM we must ensure that we still leave
+ * enough room for a decent sized initrd, and on boards with large
+ * amounts of RAM we must avoid the initrd being so far up in RAM
+ * that it is outside lowmem and inaccessible to the kernel.
+ * So for boards with less than 256MB of RAM we put the initrd
+ * halfway into RAM, and for boards with 256MB of RAM or more we put
+ * the initrd at 128MB.
+ */
+ info->initrd_start = info->loader_start +
+ MIN(info->ram_size / 2, 128 * 1024 * 1024);
+
+ /* Assume that raw images are linux kernels, and ELF images are not. */
+ kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
+ &elf_low_addr, &elf_high_addr, big_endian,
+ elf_machine, 1);
+ if (kernel_size > 0 && have_dtb(info)) {
+ /* If there is still some room left at the base of RAM, try and put
+ * the DTB there like we do for images loaded with -bios or -pflash.
+ */
+ if (elf_low_addr > info->loader_start
+ || elf_high_addr < info->loader_start) {
+ /* Pass elf_low_addr as address limit to load_dtb if it may be
+ * pointing into RAM, otherwise pass '0' (no limit)
+ */
+ if (elf_low_addr < info->loader_start) {
+ elf_low_addr = 0;
+ }
+ if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
+ exit(1);
+ }
+ }
+ }
+ entry = elf_entry;
+ if (kernel_size < 0) {
+ kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
+ &is_linux, NULL, NULL);
+ }
+ /* On aarch64, it's the bootloader's job to uncompress the kernel. */
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
+ entry = info->loader_start + kernel_load_offset;
+ kernel_size = load_image_gzipped(info->kernel_filename, entry,
+ info->ram_size - kernel_load_offset);
+ is_linux = 1;
+ }
+ if (kernel_size < 0) {
+ entry = info->loader_start + kernel_load_offset;
+ kernel_size = load_image_targphys(info->kernel_filename, entry,
+ info->ram_size - kernel_load_offset);
+ is_linux = 1;
+ }
+ if (kernel_size < 0) {
+ fprintf(stderr, "qemu: could not load kernel '%s'\n",
+ info->kernel_filename);
+ exit(1);
+ }
+ info->entry = entry;
+ if (is_linux) {
+ uint32_t fixupcontext[FIXUP_MAX];
+
+ if (info->initrd_filename) {
+ initrd_size = load_ramdisk(info->initrd_filename,
+ info->initrd_start,
+ info->ram_size -
+ info->initrd_start);
+ if (initrd_size < 0) {
+ initrd_size = load_image_targphys(info->initrd_filename,
+ info->initrd_start,
+ info->ram_size -
+ info->initrd_start);
+ }
+ if (initrd_size < 0) {
+ fprintf(stderr, "qemu: could not load initrd '%s'\n",
+ info->initrd_filename);
+ exit(1);
+ }
+ } else {
+ initrd_size = 0;
+ }
+ info->initrd_size = initrd_size;
+
+ fixupcontext[FIXUP_BOARDID] = info->board_id;
+
+ /* for device tree boot, we pass the DTB directly in r2. Otherwise
+ * we point to the kernel args.
+ */
+ if (have_dtb(info)) {
+ hwaddr align;
+ hwaddr dtb_start;
+
+ if (elf_machine == EM_AARCH64) {
+ /*
+ * Some AArch64 kernels on early bootup map the fdt region as
+ *
+ * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
+ *
+ * Let's play safe and prealign it to 2MB to give us some space.
+ */
+ align = 2 * 1024 * 1024;
+ } else {
+ /*
+ * Some 32bit kernels will trash anything in the 4K page the
+ * initrd ends in, so make sure the DTB isn't caught up in that.
+ */
+ align = 4096;
+ }
+
+ /* Place the DTB after the initrd in memory with alignment. */
+ dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
+ if (load_dtb(dtb_start, info, 0) < 0) {
+ exit(1);
+ }
+ fixupcontext[FIXUP_ARGPTR] = dtb_start;
+ } else {
+ fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
+ if (info->ram_size >= (1ULL << 32)) {
+ fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
+ " Linux kernel using ATAGS (try passing a device tree"
+ " using -dtb)\n");
+ exit(1);
+ }
+ }
+ fixupcontext[FIXUP_ENTRYPOINT] = entry;
+
+ write_bootloader("bootloader", info->loader_start,
+ primary_loader, fixupcontext);
+
+ if (info->nb_cpus > 1) {
+ info->write_secondary_boot(cpu, info);
+ }
+ }
+ info->is_linux = is_linux;
+
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ ARM_CPU(cs)->env.boot_info = info;
+ }
+}
+
+void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
+{
+ CPUState *cs;
+
+ info->load_kernel_notifier.cpu = cpu;
+ info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
+ qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
+
+ /* CPU objects (unlike devices) are not automatically reset on system
+ * reset, so we must always register a handler to do so. If we're
+ * actually loading a kernel, the handler is also responsible for
+ * arranging that we start it correctly.
+ */
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
+ }
+}