summaryrefslogtreecommitdiffstats
path: root/qemu/hw/arm/boot.c
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/hw/arm/boot.c')
-rw-r--r--qemu/hw/arm/boot.c994
1 files changed, 0 insertions, 994 deletions
diff --git a/qemu/hw/arm/boot.c b/qemu/hw/arm/boot.c
deleted file mode 100644
index 587694557..000000000
--- a/qemu/hw/arm/boot.c
+++ /dev/null
@@ -1,994 +0,0 @@
-/*
- * ARM kernel loader.
- *
- * Copyright (c) 2006-2007 CodeSourcery.
- * Written by Paul Brook
- *
- * This code is licensed under the GPL.
- */
-
-#include "qemu/osdep.h"
-#include "qapi/error.h"
-#include "hw/hw.h"
-#include "hw/arm/arm.h"
-#include "hw/arm/linux-boot-if.h"
-#include "sysemu/kvm.h"
-#include "sysemu/sysemu.h"
-#include "hw/boards.h"
-#include "hw/loader.h"
-#include "elf.h"
-#include "sysemu/device_tree.h"
-#include "qemu/config-file.h"
-#include "exec/address-spaces.h"
-
-/* Kernel boot protocol is specified in the kernel docs
- * Documentation/arm/Booting and Documentation/arm64/booting.txt
- * They have different preferred image load offsets from system RAM base.
- */
-#define KERNEL_ARGS_ADDR 0x100
-#define KERNEL_LOAD_ADDR 0x00010000
-#define KERNEL64_LOAD_ADDR 0x00080000
-
-typedef enum {
- FIXUP_NONE = 0, /* do nothing */
- FIXUP_TERMINATOR, /* end of insns */
- FIXUP_BOARDID, /* overwrite with board ID number */
- FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
- FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
- FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
- FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
- FIXUP_BOOTREG, /* overwrite with boot register address */
- FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
- FIXUP_MAX,
-} FixupType;
-
-typedef struct ARMInsnFixup {
- uint32_t insn;
- FixupType fixup;
-} ARMInsnFixup;
-
-static const ARMInsnFixup bootloader_aarch64[] = {
- { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
- { 0xaa1f03e1 }, /* mov x1, xzr */
- { 0xaa1f03e2 }, /* mov x2, xzr */
- { 0xaa1f03e3 }, /* mov x3, xzr */
- { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
- { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
- { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
- { 0 }, /* .word @DTB Higher 32-bits */
- { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
- { 0 }, /* .word @Kernel Entry Higher 32-bits */
- { 0, FIXUP_TERMINATOR }
-};
-
-/* A very small bootloader: call the board-setup code (if needed),
- * set r0-r2, then jump to the kernel.
- * If we're not calling boot setup code then we don't copy across
- * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
- */
-
-static const ARMInsnFixup bootloader[] = {
- { 0xe28fe004 }, /* add lr, pc, #4 */
- { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
- { 0, FIXUP_BOARD_SETUP },
-#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
- { 0xe3a00000 }, /* mov r0, #0 */
- { 0xe59f1004 }, /* ldr r1, [pc, #4] */
- { 0xe59f2004 }, /* ldr r2, [pc, #4] */
- { 0xe59ff004 }, /* ldr pc, [pc, #4] */
- { 0, FIXUP_BOARDID },
- { 0, FIXUP_ARGPTR },
- { 0, FIXUP_ENTRYPOINT },
- { 0, FIXUP_TERMINATOR }
-};
-
-/* Handling for secondary CPU boot in a multicore system.
- * Unlike the uniprocessor/primary CPU boot, this is platform
- * dependent. The default code here is based on the secondary
- * CPU boot protocol used on realview/vexpress boards, with
- * some parameterisation to increase its flexibility.
- * QEMU platform models for which this code is not appropriate
- * should override write_secondary_boot and secondary_cpu_reset_hook
- * instead.
- *
- * This code enables the interrupt controllers for the secondary
- * CPUs and then puts all the secondary CPUs into a loop waiting
- * for an interprocessor interrupt and polling a configurable
- * location for the kernel secondary CPU entry point.
- */
-#define DSB_INSN 0xf57ff04f
-#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
-
-static const ARMInsnFixup smpboot[] = {
- { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
- { 0xe59f0028 }, /* ldr r0, bootreg_addr */
- { 0xe3a01001 }, /* mov r1, #1 */
- { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
- { 0xe3a010ff }, /* mov r1, #0xff */
- { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
- { 0, FIXUP_DSB }, /* dsb */
- { 0xe320f003 }, /* wfi */
- { 0xe5901000 }, /* ldr r1, [r0] */
- { 0xe1110001 }, /* tst r1, r1 */
- { 0x0afffffb }, /* beq <wfi> */
- { 0xe12fff11 }, /* bx r1 */
- { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
- { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
- { 0, FIXUP_TERMINATOR }
-};
-
-static void write_bootloader(const char *name, hwaddr addr,
- const ARMInsnFixup *insns, uint32_t *fixupcontext)
-{
- /* Fix up the specified bootloader fragment and write it into
- * guest memory using rom_add_blob_fixed(). fixupcontext is
- * an array giving the values to write in for the fixup types
- * which write a value into the code array.
- */
- int i, len;
- uint32_t *code;
-
- len = 0;
- while (insns[len].fixup != FIXUP_TERMINATOR) {
- len++;
- }
-
- code = g_new0(uint32_t, len);
-
- for (i = 0; i < len; i++) {
- uint32_t insn = insns[i].insn;
- FixupType fixup = insns[i].fixup;
-
- switch (fixup) {
- case FIXUP_NONE:
- break;
- case FIXUP_BOARDID:
- case FIXUP_BOARD_SETUP:
- case FIXUP_ARGPTR:
- case FIXUP_ENTRYPOINT:
- case FIXUP_GIC_CPU_IF:
- case FIXUP_BOOTREG:
- case FIXUP_DSB:
- insn = fixupcontext[fixup];
- break;
- default:
- abort();
- }
- code[i] = tswap32(insn);
- }
-
- rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
-
- g_free(code);
-}
-
-static void default_write_secondary(ARMCPU *cpu,
- const struct arm_boot_info *info)
-{
- uint32_t fixupcontext[FIXUP_MAX];
-
- fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
- fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
- if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
- fixupcontext[FIXUP_DSB] = DSB_INSN;
- } else {
- fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
- }
-
- write_bootloader("smpboot", info->smp_loader_start,
- smpboot, fixupcontext);
-}
-
-void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
- const struct arm_boot_info *info,
- hwaddr mvbar_addr)
-{
- int n;
- uint32_t mvbar_blob[] = {
- /* mvbar_addr: secure monitor vectors
- * Default unimplemented and unused vectors to spin. Makes it
- * easier to debug (as opposed to the CPU running away).
- */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- };
- uint32_t board_setup_blob[] = {
- /* board setup addr */
- 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
- 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
- 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
- 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
- 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
- 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
- 0xe1600070, /* smc #0 ;call monitor to flush SCR */
- 0xe1a0f001, /* mov pc, r1 ;return */
- };
-
- /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
- assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
-
- /* check that these blobs don't overlap */
- assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
- || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
-
- for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
- mvbar_blob[n] = tswap32(mvbar_blob[n]);
- }
- rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
- mvbar_addr);
-
- for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
- board_setup_blob[n] = tswap32(board_setup_blob[n]);
- }
- rom_add_blob_fixed("board-setup", board_setup_blob,
- sizeof(board_setup_blob), info->board_setup_addr);
-}
-
-static void default_reset_secondary(ARMCPU *cpu,
- const struct arm_boot_info *info)
-{
- CPUState *cs = CPU(cpu);
-
- address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
- 0, MEMTXATTRS_UNSPECIFIED, NULL);
- cpu_set_pc(cs, info->smp_loader_start);
-}
-
-static inline bool have_dtb(const struct arm_boot_info *info)
-{
- return info->dtb_filename || info->get_dtb;
-}
-
-#define WRITE_WORD(p, value) do { \
- address_space_stl_notdirty(&address_space_memory, p, value, \
- MEMTXATTRS_UNSPECIFIED, NULL); \
- p += 4; \
-} while (0)
-
-static void set_kernel_args(const struct arm_boot_info *info)
-{
- int initrd_size = info->initrd_size;
- hwaddr base = info->loader_start;
- hwaddr p;
-
- p = base + KERNEL_ARGS_ADDR;
- /* ATAG_CORE */
- WRITE_WORD(p, 5);
- WRITE_WORD(p, 0x54410001);
- WRITE_WORD(p, 1);
- WRITE_WORD(p, 0x1000);
- WRITE_WORD(p, 0);
- /* ATAG_MEM */
- /* TODO: handle multiple chips on one ATAG list */
- WRITE_WORD(p, 4);
- WRITE_WORD(p, 0x54410002);
- WRITE_WORD(p, info->ram_size);
- WRITE_WORD(p, info->loader_start);
- if (initrd_size) {
- /* ATAG_INITRD2 */
- WRITE_WORD(p, 4);
- WRITE_WORD(p, 0x54420005);
- WRITE_WORD(p, info->initrd_start);
- WRITE_WORD(p, initrd_size);
- }
- if (info->kernel_cmdline && *info->kernel_cmdline) {
- /* ATAG_CMDLINE */
- int cmdline_size;
-
- cmdline_size = strlen(info->kernel_cmdline);
- cpu_physical_memory_write(p + 8, info->kernel_cmdline,
- cmdline_size + 1);
- cmdline_size = (cmdline_size >> 2) + 1;
- WRITE_WORD(p, cmdline_size + 2);
- WRITE_WORD(p, 0x54410009);
- p += cmdline_size * 4;
- }
- if (info->atag_board) {
- /* ATAG_BOARD */
- int atag_board_len;
- uint8_t atag_board_buf[0x1000];
-
- atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
- WRITE_WORD(p, (atag_board_len + 8) >> 2);
- WRITE_WORD(p, 0x414f4d50);
- cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
- p += atag_board_len;
- }
- /* ATAG_END */
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
-}
-
-static void set_kernel_args_old(const struct arm_boot_info *info)
-{
- hwaddr p;
- const char *s;
- int initrd_size = info->initrd_size;
- hwaddr base = info->loader_start;
-
- /* see linux/include/asm-arm/setup.h */
- p = base + KERNEL_ARGS_ADDR;
- /* page_size */
- WRITE_WORD(p, 4096);
- /* nr_pages */
- WRITE_WORD(p, info->ram_size / 4096);
- /* ramdisk_size */
- WRITE_WORD(p, 0);
-#define FLAG_READONLY 1
-#define FLAG_RDLOAD 4
-#define FLAG_RDPROMPT 8
- /* flags */
- WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
- /* rootdev */
- WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
- /* video_num_cols */
- WRITE_WORD(p, 0);
- /* video_num_rows */
- WRITE_WORD(p, 0);
- /* video_x */
- WRITE_WORD(p, 0);
- /* video_y */
- WRITE_WORD(p, 0);
- /* memc_control_reg */
- WRITE_WORD(p, 0);
- /* unsigned char sounddefault */
- /* unsigned char adfsdrives */
- /* unsigned char bytes_per_char_h */
- /* unsigned char bytes_per_char_v */
- WRITE_WORD(p, 0);
- /* pages_in_bank[4] */
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- /* pages_in_vram */
- WRITE_WORD(p, 0);
- /* initrd_start */
- if (initrd_size) {
- WRITE_WORD(p, info->initrd_start);
- } else {
- WRITE_WORD(p, 0);
- }
- /* initrd_size */
- WRITE_WORD(p, initrd_size);
- /* rd_start */
- WRITE_WORD(p, 0);
- /* system_rev */
- WRITE_WORD(p, 0);
- /* system_serial_low */
- WRITE_WORD(p, 0);
- /* system_serial_high */
- WRITE_WORD(p, 0);
- /* mem_fclk_21285 */
- WRITE_WORD(p, 0);
- /* zero unused fields */
- while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
- WRITE_WORD(p, 0);
- }
- s = info->kernel_cmdline;
- if (s) {
- cpu_physical_memory_write(p, s, strlen(s) + 1);
- } else {
- WRITE_WORD(p, 0);
- }
-}
-
-/**
- * load_dtb() - load a device tree binary image into memory
- * @addr: the address to load the image at
- * @binfo: struct describing the boot environment
- * @addr_limit: upper limit of the available memory area at @addr
- *
- * Load a device tree supplied by the machine or by the user with the
- * '-dtb' command line option, and put it at offset @addr in target
- * memory.
- *
- * If @addr_limit contains a meaningful value (i.e., it is strictly greater
- * than @addr), the device tree is only loaded if its size does not exceed
- * the limit.
- *
- * Returns: the size of the device tree image on success,
- * 0 if the image size exceeds the limit,
- * -1 on errors.
- *
- * Note: Must not be called unless have_dtb(binfo) is true.
- */
-static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
- hwaddr addr_limit)
-{
- void *fdt = NULL;
- int size, rc;
- uint32_t acells, scells;
-
- if (binfo->dtb_filename) {
- char *filename;
- filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
- if (!filename) {
- fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
- goto fail;
- }
-
- fdt = load_device_tree(filename, &size);
- if (!fdt) {
- fprintf(stderr, "Couldn't open dtb file %s\n", filename);
- g_free(filename);
- goto fail;
- }
- g_free(filename);
- } else {
- fdt = binfo->get_dtb(binfo, &size);
- if (!fdt) {
- fprintf(stderr, "Board was unable to create a dtb blob\n");
- goto fail;
- }
- }
-
- if (addr_limit > addr && size > (addr_limit - addr)) {
- /* Installing the device tree blob at addr would exceed addr_limit.
- * Whether this constitutes failure is up to the caller to decide,
- * so just return 0 as size, i.e., no error.
- */
- g_free(fdt);
- return 0;
- }
-
- acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
- NULL, &error_fatal);
- scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
- NULL, &error_fatal);
- if (acells == 0 || scells == 0) {
- fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
- goto fail;
- }
-
- if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
- /* This is user error so deserves a friendlier error message
- * than the failure of setprop_sized_cells would provide
- */
- fprintf(stderr, "qemu: dtb file not compatible with "
- "RAM size > 4GB\n");
- goto fail;
- }
-
- rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
- acells, binfo->loader_start,
- scells, binfo->ram_size);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /memory/reg\n");
- goto fail;
- }
-
- if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
- rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
- binfo->kernel_cmdline);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/bootargs\n");
- goto fail;
- }
- }
-
- if (binfo->initrd_size) {
- rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
- binfo->initrd_start);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
- goto fail;
- }
-
- rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
- binfo->initrd_start + binfo->initrd_size);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
- goto fail;
- }
- }
-
- if (binfo->modify_dtb) {
- binfo->modify_dtb(binfo, fdt);
- }
-
- qemu_fdt_dumpdtb(fdt, size);
-
- /* Put the DTB into the memory map as a ROM image: this will ensure
- * the DTB is copied again upon reset, even if addr points into RAM.
- */
- rom_add_blob_fixed("dtb", fdt, size, addr);
-
- g_free(fdt);
-
- return size;
-
-fail:
- g_free(fdt);
- return -1;
-}
-
-static void do_cpu_reset(void *opaque)
-{
- ARMCPU *cpu = opaque;
- CPUState *cs = CPU(cpu);
- CPUARMState *env = &cpu->env;
- const struct arm_boot_info *info = env->boot_info;
-
- cpu_reset(cs);
- if (info) {
- if (!info->is_linux) {
- int i;
- /* Jump to the entry point. */
- uint64_t entry = info->entry;
-
- switch (info->endianness) {
- case ARM_ENDIANNESS_LE:
- env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
- for (i = 1; i < 4; ++i) {
- env->cp15.sctlr_el[i] &= ~SCTLR_EE;
- }
- env->uncached_cpsr &= ~CPSR_E;
- break;
- case ARM_ENDIANNESS_BE8:
- env->cp15.sctlr_el[1] |= SCTLR_E0E;
- for (i = 1; i < 4; ++i) {
- env->cp15.sctlr_el[i] |= SCTLR_EE;
- }
- env->uncached_cpsr |= CPSR_E;
- break;
- case ARM_ENDIANNESS_BE32:
- env->cp15.sctlr_el[1] |= SCTLR_B;
- break;
- case ARM_ENDIANNESS_UNKNOWN:
- break; /* Board's decision */
- default:
- g_assert_not_reached();
- }
-
- if (!env->aarch64) {
- env->thumb = info->entry & 1;
- entry &= 0xfffffffe;
- }
- cpu_set_pc(cs, entry);
- } else {
- /* If we are booting Linux then we need to check whether we are
- * booting into secure or non-secure state and adjust the state
- * accordingly. Out of reset, ARM is defined to be in secure state
- * (SCR.NS = 0), we change that here if non-secure boot has been
- * requested.
- */
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- /* AArch64 is defined to come out of reset into EL3 if enabled.
- * If we are booting Linux then we need to adjust our EL as
- * Linux expects us to be in EL2 or EL1. AArch32 resets into
- * SVC, which Linux expects, so no privilege/exception level to
- * adjust.
- */
- if (env->aarch64) {
- env->cp15.scr_el3 |= SCR_RW;
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- env->cp15.hcr_el2 |= HCR_RW;
- env->pstate = PSTATE_MODE_EL2h;
- } else {
- env->pstate = PSTATE_MODE_EL1h;
- }
- }
-
- /* Set to non-secure if not a secure boot */
- if (!info->secure_boot &&
- (cs != first_cpu || !info->secure_board_setup)) {
- /* Linux expects non-secure state */
- env->cp15.scr_el3 |= SCR_NS;
- }
- }
-
- if (cs == first_cpu) {
- cpu_set_pc(cs, info->loader_start);
-
- if (!have_dtb(info)) {
- if (old_param) {
- set_kernel_args_old(info);
- } else {
- set_kernel_args(info);
- }
- }
- } else {
- info->secondary_cpu_reset_hook(cpu, info);
- }
- }
- }
-}
-
-/**
- * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
- * by key.
- * @fw_cfg: The firmware config instance to store the data in.
- * @size_key: The firmware config key to store the size of the loaded
- * data under, with fw_cfg_add_i32().
- * @data_key: The firmware config key to store the loaded data under,
- * with fw_cfg_add_bytes().
- * @image_name: The name of the image file to load. If it is NULL, the
- * function returns without doing anything.
- * @try_decompress: Whether the image should be decompressed (gunzipped) before
- * adding it to fw_cfg. If decompression fails, the image is
- * loaded as-is.
- *
- * In case of failure, the function prints an error message to stderr and the
- * process exits with status 1.
- */
-static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
- uint16_t data_key, const char *image_name,
- bool try_decompress)
-{
- size_t size = -1;
- uint8_t *data;
-
- if (image_name == NULL) {
- return;
- }
-
- if (try_decompress) {
- size = load_image_gzipped_buffer(image_name,
- LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
- }
-
- if (size == (size_t)-1) {
- gchar *contents;
- gsize length;
-
- if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
- fprintf(stderr, "failed to load \"%s\"\n", image_name);
- exit(1);
- }
- size = length;
- data = (uint8_t *)contents;
- }
-
- fw_cfg_add_i32(fw_cfg, size_key, size);
- fw_cfg_add_bytes(fw_cfg, data_key, data, size);
-}
-
-static int do_arm_linux_init(Object *obj, void *opaque)
-{
- if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
- ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
- ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
- struct arm_boot_info *info = opaque;
-
- if (albifc->arm_linux_init) {
- albifc->arm_linux_init(albif, info->secure_boot);
- }
- }
- return 0;
-}
-
-static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
- uint64_t *lowaddr, uint64_t *highaddr,
- int elf_machine)
-{
- bool elf_is64;
- union {
- Elf32_Ehdr h32;
- Elf64_Ehdr h64;
- } elf_header;
- int data_swab = 0;
- bool big_endian;
- uint64_t ret = -1;
- Error *err = NULL;
-
-
- load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
- if (err) {
- return ret;
- }
-
- if (elf_is64) {
- big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
- info->endianness = big_endian ? ARM_ENDIANNESS_BE8
- : ARM_ENDIANNESS_LE;
- } else {
- big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
- if (big_endian) {
- if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
- info->endianness = ARM_ENDIANNESS_BE8;
- } else {
- info->endianness = ARM_ENDIANNESS_BE32;
- /* In BE32, the CPU has a different view of the per-byte
- * address map than the rest of the system. BE32 ELF files
- * are organised such that they can be programmed through
- * the CPU's per-word byte-reversed view of the world. QEMU
- * however loads ELF files independently of the CPU. So
- * tell the ELF loader to byte reverse the data for us.
- */
- data_swab = 2;
- }
- } else {
- info->endianness = ARM_ENDIANNESS_LE;
- }
- }
-
- ret = load_elf(info->kernel_filename, NULL, NULL,
- pentry, lowaddr, highaddr, big_endian, elf_machine,
- 1, data_swab);
- if (ret <= 0) {
- /* The header loaded but the image didn't */
- exit(1);
- }
-
- return ret;
-}
-
-static void arm_load_kernel_notify(Notifier *notifier, void *data)
-{
- CPUState *cs;
- int kernel_size;
- int initrd_size;
- int is_linux = 0;
- uint64_t elf_entry, elf_low_addr, elf_high_addr;
- int elf_machine;
- hwaddr entry, kernel_load_offset;
- static const ARMInsnFixup *primary_loader;
- ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
- notifier, notifier);
- ARMCPU *cpu = n->cpu;
- struct arm_boot_info *info =
- container_of(n, struct arm_boot_info, load_kernel_notifier);
-
- /* The board code is not supposed to set secure_board_setup unless
- * running its code in secure mode is actually possible, and KVM
- * doesn't support secure.
- */
- assert(!(info->secure_board_setup && kvm_enabled()));
-
- /* Load the kernel. */
- if (!info->kernel_filename || info->firmware_loaded) {
-
- if (have_dtb(info)) {
- /* If we have a device tree blob, but no kernel to supply it to (or
- * the kernel is supposed to be loaded by the bootloader), copy the
- * DTB to the base of RAM for the bootloader to pick up.
- */
- if (load_dtb(info->loader_start, info, 0) < 0) {
- exit(1);
- }
- }
-
- if (info->kernel_filename) {
- FWCfgState *fw_cfg;
- bool try_decompressing_kernel;
-
- fw_cfg = fw_cfg_find();
- try_decompressing_kernel = arm_feature(&cpu->env,
- ARM_FEATURE_AARCH64);
-
- /* Expose the kernel, the command line, and the initrd in fw_cfg.
- * We don't process them here at all, it's all left to the
- * firmware.
- */
- load_image_to_fw_cfg(fw_cfg,
- FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
- info->kernel_filename,
- try_decompressing_kernel);
- load_image_to_fw_cfg(fw_cfg,
- FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
- info->initrd_filename, false);
-
- if (info->kernel_cmdline) {
- fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
- strlen(info->kernel_cmdline) + 1);
- fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
- info->kernel_cmdline);
- }
- }
-
- /* We will start from address 0 (typically a boot ROM image) in the
- * same way as hardware.
- */
- return;
- }
-
- if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- primary_loader = bootloader_aarch64;
- kernel_load_offset = KERNEL64_LOAD_ADDR;
- elf_machine = EM_AARCH64;
- } else {
- primary_loader = bootloader;
- if (!info->write_board_setup) {
- primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
- }
- kernel_load_offset = KERNEL_LOAD_ADDR;
- elf_machine = EM_ARM;
- }
-
- info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
-
- if (!info->secondary_cpu_reset_hook) {
- info->secondary_cpu_reset_hook = default_reset_secondary;
- }
- if (!info->write_secondary_boot) {
- info->write_secondary_boot = default_write_secondary;
- }
-
- if (info->nb_cpus == 0)
- info->nb_cpus = 1;
-
- /* We want to put the initrd far enough into RAM that when the
- * kernel is uncompressed it will not clobber the initrd. However
- * on boards without much RAM we must ensure that we still leave
- * enough room for a decent sized initrd, and on boards with large
- * amounts of RAM we must avoid the initrd being so far up in RAM
- * that it is outside lowmem and inaccessible to the kernel.
- * So for boards with less than 256MB of RAM we put the initrd
- * halfway into RAM, and for boards with 256MB of RAM or more we put
- * the initrd at 128MB.
- */
- info->initrd_start = info->loader_start +
- MIN(info->ram_size / 2, 128 * 1024 * 1024);
-
- /* Assume that raw images are linux kernels, and ELF images are not. */
- kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
- &elf_high_addr, elf_machine);
- if (kernel_size > 0 && have_dtb(info)) {
- /* If there is still some room left at the base of RAM, try and put
- * the DTB there like we do for images loaded with -bios or -pflash.
- */
- if (elf_low_addr > info->loader_start
- || elf_high_addr < info->loader_start) {
- /* Pass elf_low_addr as address limit to load_dtb if it may be
- * pointing into RAM, otherwise pass '0' (no limit)
- */
- if (elf_low_addr < info->loader_start) {
- elf_low_addr = 0;
- }
- if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
- exit(1);
- }
- }
- }
- entry = elf_entry;
- if (kernel_size < 0) {
- kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
- &is_linux, NULL, NULL);
- }
- /* On aarch64, it's the bootloader's job to uncompress the kernel. */
- if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
- entry = info->loader_start + kernel_load_offset;
- kernel_size = load_image_gzipped(info->kernel_filename, entry,
- info->ram_size - kernel_load_offset);
- is_linux = 1;
- }
- if (kernel_size < 0) {
- entry = info->loader_start + kernel_load_offset;
- kernel_size = load_image_targphys(info->kernel_filename, entry,
- info->ram_size - kernel_load_offset);
- is_linux = 1;
- }
- if (kernel_size < 0) {
- fprintf(stderr, "qemu: could not load kernel '%s'\n",
- info->kernel_filename);
- exit(1);
- }
- info->entry = entry;
- if (is_linux) {
- uint32_t fixupcontext[FIXUP_MAX];
-
- if (info->initrd_filename) {
- initrd_size = load_ramdisk(info->initrd_filename,
- info->initrd_start,
- info->ram_size -
- info->initrd_start);
- if (initrd_size < 0) {
- initrd_size = load_image_targphys(info->initrd_filename,
- info->initrd_start,
- info->ram_size -
- info->initrd_start);
- }
- if (initrd_size < 0) {
- fprintf(stderr, "qemu: could not load initrd '%s'\n",
- info->initrd_filename);
- exit(1);
- }
- } else {
- initrd_size = 0;
- }
- info->initrd_size = initrd_size;
-
- fixupcontext[FIXUP_BOARDID] = info->board_id;
- fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
-
- /* for device tree boot, we pass the DTB directly in r2. Otherwise
- * we point to the kernel args.
- */
- if (have_dtb(info)) {
- hwaddr align;
- hwaddr dtb_start;
-
- if (elf_machine == EM_AARCH64) {
- /*
- * Some AArch64 kernels on early bootup map the fdt region as
- *
- * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
- *
- * Let's play safe and prealign it to 2MB to give us some space.
- */
- align = 2 * 1024 * 1024;
- } else {
- /*
- * Some 32bit kernels will trash anything in the 4K page the
- * initrd ends in, so make sure the DTB isn't caught up in that.
- */
- align = 4096;
- }
-
- /* Place the DTB after the initrd in memory with alignment. */
- dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
- if (load_dtb(dtb_start, info, 0) < 0) {
- exit(1);
- }
- fixupcontext[FIXUP_ARGPTR] = dtb_start;
- } else {
- fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
- if (info->ram_size >= (1ULL << 32)) {
- fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
- " Linux kernel using ATAGS (try passing a device tree"
- " using -dtb)\n");
- exit(1);
- }
- }
- fixupcontext[FIXUP_ENTRYPOINT] = entry;
-
- write_bootloader("bootloader", info->loader_start,
- primary_loader, fixupcontext);
-
- if (info->nb_cpus > 1) {
- info->write_secondary_boot(cpu, info);
- }
- if (info->write_board_setup) {
- info->write_board_setup(cpu, info);
- }
-
- /* Notify devices which need to fake up firmware initialization
- * that we're doing a direct kernel boot.
- */
- object_child_foreach_recursive(object_get_root(),
- do_arm_linux_init, info);
- }
- info->is_linux = is_linux;
-
- for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
- ARM_CPU(cs)->env.boot_info = info;
- }
-}
-
-void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
-{
- CPUState *cs;
-
- info->load_kernel_notifier.cpu = cpu;
- info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
- qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
-
- /* CPU objects (unlike devices) are not automatically reset on system
- * reset, so we must always register a handler to do so. If we're
- * actually loading a kernel, the handler is also responsible for
- * arranging that we start it correctly.
- */
- for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
- qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
- }
-}
-
-static const TypeInfo arm_linux_boot_if_info = {
- .name = TYPE_ARM_LINUX_BOOT_IF,
- .parent = TYPE_INTERFACE,
- .class_size = sizeof(ARMLinuxBootIfClass),
-};
-
-static void arm_linux_boot_register_types(void)
-{
- type_register_static(&arm_linux_boot_if_info);
-}
-
-type_init(arm_linux_boot_register_types)