summaryrefslogtreecommitdiffstats
path: root/qemu/fpu/softfloat.c
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/fpu/softfloat.c')
-rw-r--r--qemu/fpu/softfloat.c7733
1 files changed, 0 insertions, 7733 deletions
diff --git a/qemu/fpu/softfloat.c b/qemu/fpu/softfloat.c
deleted file mode 100644
index 166c48e43..000000000
--- a/qemu/fpu/softfloat.c
+++ /dev/null
@@ -1,7733 +0,0 @@
-/*
- * QEMU float support
- *
- * The code in this source file is derived from release 2a of the SoftFloat
- * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
- * some later contributions) are provided under that license, as detailed below.
- * It has subsequently been modified by contributors to the QEMU Project,
- * so some portions are provided under:
- * the SoftFloat-2a license
- * the BSD license
- * GPL-v2-or-later
- *
- * Any future contributions to this file after December 1st 2014 will be
- * taken to be licensed under the Softfloat-2a license unless specifically
- * indicated otherwise.
- */
-
-/*
-===============================================================================
-This C source file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/* BSD licensing:
- * Copyright (c) 2006, Fabrice Bellard
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its contributors
- * may be used to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/* Portions of this work are licensed under the terms of the GNU GPL,
- * version 2 or later. See the COPYING file in the top-level directory.
- */
-
-/* softfloat (and in particular the code in softfloat-specialize.h) is
- * target-dependent and needs the TARGET_* macros.
- */
-#include "qemu/osdep.h"
-
-#include "fpu/softfloat.h"
-
-/* We only need stdlib for abort() */
-
-/*----------------------------------------------------------------------------
-| Primitive arithmetic functions, including multi-word arithmetic, and
-| division and square root approximations. (Can be specialized to target if
-| desired.)
-*----------------------------------------------------------------------------*/
-#include "softfloat-macros.h"
-
-/*----------------------------------------------------------------------------
-| Functions and definitions to determine: (1) whether tininess for underflow
-| is detected before or after rounding by default, (2) what (if anything)
-| happens when exceptions are raised, (3) how signaling NaNs are distinguished
-| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
-| are propagated from function inputs to output. These details are target-
-| specific.
-*----------------------------------------------------------------------------*/
-#include "softfloat-specialize.h"
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the half-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint32_t extractFloat16Frac(float16 a)
-{
- return float16_val(a) & 0x3ff;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the half-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline int extractFloat16Exp(float16 a)
-{
- return (float16_val(a) >> 10) & 0x1f;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline flag extractFloat16Sign(float16 a)
-{
- return float16_val(a)>>15;
-}
-
-/*----------------------------------------------------------------------------
-| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
-| and 7, and returns the properly rounded 32-bit integer corresponding to the
-| input. If `zSign' is 1, the input is negated before being converted to an
-| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
-| is simply rounded to an integer, with the inexact exception raised if the
-| input cannot be represented exactly as an integer. However, if the fixed-
-| point input is too large, the invalid exception is raised and the largest
-| positive or negative integer is returned.
-*----------------------------------------------------------------------------*/
-
-static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven;
- int8_t roundIncrement, roundBits;
- int32_t z;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x40;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x7f;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x7f : 0;
- break;
- default:
- abort();
- }
- roundBits = absZ & 0x7F;
- absZ = ( absZ + roundIncrement )>>7;
- absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- z = absZ;
- if ( zSign ) z = - z;
- if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
- float_raise(float_flag_invalid, status);
- return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
-| `absZ1', with binary point between bits 63 and 64 (between the input words),
-| and returns the properly rounded 64-bit integer corresponding to the input.
-| If `zSign' is 1, the input is negated before being converted to an integer.
-| Ordinarily, the fixed-point input is simply rounded to an integer, with
-| the inexact exception raised if the input cannot be represented exactly as
-| an integer. However, if the fixed-point input is too large, the invalid
-| exception is raised and the largest positive or negative integer is
-| returned.
-*----------------------------------------------------------------------------*/
-
-static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
- float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven, increment;
- int64_t z;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t) absZ1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && absZ1;
- break;
- case float_round_down:
- increment = zSign && absZ1;
- break;
- default:
- abort();
- }
- if ( increment ) {
- ++absZ0;
- if ( absZ0 == 0 ) goto overflow;
- absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
- }
- z = absZ0;
- if ( zSign ) z = - z;
- if ( z && ( ( z < 0 ) ^ zSign ) ) {
- overflow:
- float_raise(float_flag_invalid, status);
- return
- zSign ? (int64_t) LIT64( 0x8000000000000000 )
- : LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- if (absZ1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
-| `absZ1', with binary point between bits 63 and 64 (between the input words),
-| and returns the properly rounded 64-bit unsigned integer corresponding to the
-| input. Ordinarily, the fixed-point input is simply rounded to an integer,
-| with the inexact exception raised if the input cannot be represented exactly
-| as an integer. However, if the fixed-point input is too large, the invalid
-| exception is raised and the largest unsigned integer is returned.
-*----------------------------------------------------------------------------*/
-
-static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
- uint64_t absZ1, float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven, increment;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = (roundingMode == float_round_nearest_even);
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)absZ1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && absZ1;
- break;
- case float_round_down:
- increment = zSign && absZ1;
- break;
- default:
- abort();
- }
- if (increment) {
- ++absZ0;
- if (absZ0 == 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
- }
-
- if (zSign && absZ0) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
-
- if (absZ1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return absZ0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint32_t extractFloat32Frac( float32 a )
-{
-
- return float32_val(a) & 0x007FFFFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline int extractFloat32Exp(float32 a)
-{
-
- return ( float32_val(a)>>23 ) & 0xFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline flag extractFloat32Sign( float32 a )
-{
-
- return float32_val(a)>>31;
-
-}
-
-/*----------------------------------------------------------------------------
-| If `a' is denormal and we are in flush-to-zero mode then set the
-| input-denormal exception and return zero. Otherwise just return the value.
-*----------------------------------------------------------------------------*/
-float32 float32_squash_input_denormal(float32 a, float_status *status)
-{
- if (status->flush_inputs_to_zero) {
- if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
- float_raise(float_flag_input_denormal, status);
- return make_float32(float32_val(a) & 0x80000000);
- }
- }
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal single-precision floating-point value represented
-| by the denormalized significand `aSig'. The normalized exponent and
-| significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
-{
- int8_t shiftCount;
-
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-| single-precision floating-point value, returning the result. After being
-| shifted into the proper positions, the three fields are simply added
-| together to form the result. This means that any integer portion of `zSig'
-| will be added into the exponent. Since a properly normalized significand
-| will have an integer portion equal to 1, the `zExp' input should be 1 less
-| than the desired result exponent whenever `zSig' is a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
-{
-
- return make_float32(
- ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper single-precision floating-
-| point value corresponding to the abstract input. Ordinarily, the abstract
-| value is simply rounded and packed into the single-precision format, with
-| the inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal single-
-| precision floating-point number.
-| The input significand `zSig' has its binary point between bits 30
-| and 29, which is 7 bits to the left of the usual location. This shifted
-| significand must be normalized or smaller. If `zSig' is not normalized,
-| `zExp' must be 0; in that case, the result returned is a subnormal number,
-| and it must not require rounding. In the usual case that `zSig' is
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-| The handling of underflow and overflow follows the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
- float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven;
- int8_t roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x40;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x7f;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x7f : 0;
- break;
- default:
- abort();
- break;
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (uint16_t) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat32(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < 0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper single-precision floating-
-| point value corresponding to the abstract input. This routine is just like
-| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
-| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-| floating-point exponent.
-*----------------------------------------------------------------------------*/
-
-static float32
- normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
- float_status *status)
-{
- int8_t shiftCount;
-
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
- status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint64_t extractFloat64Frac( float64 a )
-{
-
- return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline int extractFloat64Exp(float64 a)
-{
-
- return ( float64_val(a)>>52 ) & 0x7FF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline flag extractFloat64Sign( float64 a )
-{
-
- return float64_val(a)>>63;
-
-}
-
-/*----------------------------------------------------------------------------
-| If `a' is denormal and we are in flush-to-zero mode then set the
-| input-denormal exception and return zero. Otherwise just return the value.
-*----------------------------------------------------------------------------*/
-float64 float64_squash_input_denormal(float64 a, float_status *status)
-{
- if (status->flush_inputs_to_zero) {
- if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
- float_raise(float_flag_input_denormal, status);
- return make_float64(float64_val(a) & (1ULL << 63));
- }
- }
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal double-precision floating-point value represented
-| by the denormalized significand `aSig'. The normalized exponent and
-| significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
-{
- int8_t shiftCount;
-
- shiftCount = countLeadingZeros64( aSig ) - 11;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-| double-precision floating-point value, returning the result. After being
-| shifted into the proper positions, the three fields are simply added
-| together to form the result. This means that any integer portion of `zSig'
-| will be added into the exponent. Since a properly normalized significand
-| will have an integer portion equal to 1, the `zExp' input should be 1 less
-| than the desired result exponent whenever `zSig' is a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
-{
-
- return make_float64(
- ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper double-precision floating-
-| point value corresponding to the abstract input. Ordinarily, the abstract
-| value is simply rounded and packed into the double-precision format, with
-| the inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal double-
-| precision floating-point number.
-| The input significand `zSig' has its binary point between bits 62
-| and 61, which is 10 bits to the left of the usual location. This shifted
-| significand must be normalized or smaller. If `zSig' is not normalized,
-| `zExp' must be 0; in that case, the result returned is a subnormal number,
-| and it must not require rounding. In the usual case that `zSig' is
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-| The handling of underflow and overflow follows the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
- float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven;
- int roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x200;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x3ff;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x3ff : 0;
- break;
- default:
- abort();
- }
- roundBits = zSig & 0x3FF;
- if ( 0x7FD <= (uint16_t) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat64(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
- shift64RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x3FF;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig = ( zSig + roundIncrement )>>10;
- zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat64( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper double-precision floating-
-| point value corresponding to the abstract input. This routine is just like
-| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
-| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-| floating-point exponent.
-*----------------------------------------------------------------------------*/
-
-static float64
- normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
- float_status *status)
-{
- int8_t shiftCount;
-
- shiftCount = countLeadingZeros64( zSig ) - 1;
- return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
- status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint64_t extractFloatx80Frac( floatx80 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline int32_t extractFloatx80Exp( floatx80 a )
-{
-
- return a.high & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the extended double-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-static inline flag extractFloatx80Sign( floatx80 a )
-{
-
- return a.high>>15;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal extended double-precision floating-point value
-| represented by the denormalized significand `aSig'. The normalized exponent
-| and significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr )
-{
- int8_t shiftCount;
-
- shiftCount = countLeadingZeros64( aSig );
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
-| extended double-precision floating-point value, returning the result.
-*----------------------------------------------------------------------------*/
-
-static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig )
-{
- floatx80 z;
-
- z.low = zSig;
- z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| rounded and packed into the extended double-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal extended
-| double-precision floating-point number.
-| If `roundingPrecision' is 32 or 64, the result is rounded to the same
-| number of bits as single or double precision, respectively. Otherwise, the
-| result is rounded to the full precision of the extended double-precision
-| format.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. The
-| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
- int32_t zExp, uint64_t zSig0, uint64_t zSig1,
- float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
- int64_t roundIncrement, roundMask, roundBits;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- if ( roundingPrecision == 80 ) goto precision80;
- if ( roundingPrecision == 64 ) {
- roundIncrement = LIT64( 0x0000000000000400 );
- roundMask = LIT64( 0x00000000000007FF );
- }
- else if ( roundingPrecision == 32 ) {
- roundIncrement = LIT64( 0x0000008000000000 );
- roundMask = LIT64( 0x000000FFFFFFFFFF );
- }
- else {
- goto precision80;
- }
- zSig0 |= ( zSig1 != 0 );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : roundMask;
- break;
- case float_round_down:
- roundIncrement = zSign ? roundMask : 0;
- break;
- default:
- abort();
- }
- roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
- ) {
- goto overflow;
- }
- if ( zExp <= 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloatx80(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
- shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
- zExp = 0;
- roundBits = zSig0 & roundMask;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig0 += roundIncrement;
- if ( (int64_t) zSig0 < 0 ) zExp = 1;
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig0 += roundIncrement;
- if ( zSig0 < roundIncrement ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- if ( zSig0 == 0 ) zExp = 0;
- return packFloatx80( zSign, zExp, zSig0 );
- precision80:
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig1;
- break;
- case float_round_down:
- increment = zSign && zSig1;
- break;
- default:
- abort();
- }
- if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE )
- && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
- && increment
- )
- ) {
- roundMask = 0;
- overflow:
- float_raise(float_flag_overflow | float_flag_inexact, status);
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloatx80( zSign, 0x7FFE, ~ roundMask );
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( zExp <= 0 ) {
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
- shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
- zExp = 0;
- if (isTiny && zSig1) {
- float_raise(float_flag_underflow, status);
- }
- if (zSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig1;
- break;
- case float_round_down:
- increment = zSign && zSig1;
- break;
- default:
- abort();
- }
- if ( increment ) {
- ++zSig0;
- zSig0 &=
- ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- if ( (int64_t) zSig0 < 0 ) zExp = 1;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if (zSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( increment ) {
- ++zSig0;
- if ( zSig0 == 0 ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- else {
- zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- }
- }
- else {
- if ( zSig0 == 0 ) zExp = 0;
- }
- return packFloatx80( zSign, zExp, zSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent
-| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. This routine is just like
-| `roundAndPackFloatx80' except that the input significand does not have to be
-| normalized.
-*----------------------------------------------------------------------------*/
-
-static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
- flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- float_status *status)
-{
- int8_t shiftCount;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 );
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- zExp -= shiftCount;
- return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
- zSig0, zSig1, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the least-significant 64 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint64_t extractFloat128Frac1( float128 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the most-significant 48 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline uint64_t extractFloat128Frac0( float128 a )
-{
-
- return a.high & LIT64( 0x0000FFFFFFFFFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the quadruple-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-static inline int32_t extractFloat128Exp( float128 a )
-{
-
- return ( a.high>>48 ) & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the quadruple-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-static inline flag extractFloat128Sign( float128 a )
-{
-
- return a.high>>63;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal quadruple-precision floating-point value
-| represented by the denormalized significand formed by the concatenation of
-| `aSig0' and `aSig1'. The normalized exponent is stored at the location
-| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
-| significand are stored at the location pointed to by `zSig0Ptr', and the
-| least significant 64 bits of the normalized significand are stored at the
-| location pointed to by `zSig1Ptr'.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat128Subnormal(
- uint64_t aSig0,
- uint64_t aSig1,
- int32_t *zExpPtr,
- uint64_t *zSig0Ptr,
- uint64_t *zSig1Ptr
- )
-{
- int8_t shiftCount;
-
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros64( aSig1 ) - 15;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 63 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 63;
- }
- else {
- shiftCount = countLeadingZeros64( aSig0 ) - 15;
- shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', the exponent `zExp', and the significand formed
-| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
-| floating-point value, returning the result. After being shifted into the
-| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
-| added together to form the most significant 32 bits of the result. This
-| means that any integer portion of `zSig0' will be added into the exponent.
-| Since a properly normalized significand will have an integer portion equal
-| to 1, the `zExp' input should be 1 less than the desired result exponent
-| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-static inline float128
- packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
-{
- float128 z;
-
- z.low = zSig1;
- z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0', `zSig1',
-| and `zSig2', and returns the proper quadruple-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| simply rounded and packed into the quadruple-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal quadruple-
-| precision floating-point number.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. In the
-| usual case that the input significand is normalized, `zExp' must be 1 less
-| than the ``true'' floating-point exponent. The handling of underflow and
-| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- uint64_t zSig2, float_status *status)
-{
- int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig2 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig2;
- break;
- case float_round_down:
- increment = zSign && zSig2;
- break;
- default:
- abort();
- }
- if ( 0x7FFD <= (uint32_t) zExp ) {
- if ( ( 0x7FFD < zExp )
- || ( ( zExp == 0x7FFD )
- && eq128(
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF ),
- zSig0,
- zSig1
- )
- && increment
- )
- ) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return
- packFloat128(
- zSign,
- 0x7FFE,
- LIT64( 0x0000FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat128(zSign, 0, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ! increment
- || lt128(
- zSig0,
- zSig1,
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if (isTiny && zSig2) {
- float_raise(float_flag_underflow, status);
- }
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig2 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig2;
- break;
- case float_round_down:
- increment = zSign && zSig2;
- break;
- default:
- abort();
- }
- }
- }
- if (zSig2) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( increment ) {
- add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand formed by the concatenation of `zSig0' and `zSig1', and
-| returns the proper quadruple-precision floating-point value corresponding
-| to the abstract input. This routine is just like `roundAndPackFloat128'
-| except that the input significand has fewer bits and does not have to be
-| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
-| point exponent.
-*----------------------------------------------------------------------------*/
-
-static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- float_status *status)
-{
- int8_t shiftCount;
- uint64_t zSig2;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 ) - 15;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift128ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int32_to_float32(int32_t a, float_status *status)
-{
- flag zSign;
-
- if ( a == 0 ) return float32_zero;
- if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int32_to_float64(int32_t a, float_status *status)
-{
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig;
-
- if ( a == 0 ) return float64_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 21;
- zSig = absA;
- return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int32_to_floatx80(int32_t a, float_status *status)
-{
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 32;
- zSig = absA;
- return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int32_to_float128(int32_t a, float_status *status)
-{
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig0;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 17;
- zSig0 = absA;
- return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int64_to_float32(int64_t a, float_status *status)
-{
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
-
- if ( a == 0 ) return float32_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) {
- return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
- }
- else {
- shiftCount += 7;
- if ( shiftCount < 0 ) {
- shift64RightJamming( absA, - shiftCount, &absA );
- }
- else {
- absA <<= shiftCount;
- }
- return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int64_to_float64(int64_t a, float_status *status)
-{
- flag zSign;
-
- if ( a == 0 ) return float64_zero;
- if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
- return packFloat64( 1, 0x43E, 0 );
- }
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int64_to_floatx80(int64_t a, float_status *status)
-{
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA );
- return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int64_to_float128(int64_t a, float_status *status)
-{
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
- int32_t zExp;
- uint64_t zSig0, zSig1;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) + 49;
- zExp = 0x406E - shiftCount;
- if ( 64 <= shiftCount ) {
- zSig1 = 0;
- zSig0 = absA;
- shiftCount -= 64;
- }
- else {
- zSig1 = absA;
- zSig0 = 0;
- }
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit unsigned integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 uint64_to_float32(uint64_t a, float_status *status)
-{
- int shiftcount;
-
- if (a == 0) {
- return float32_zero;
- }
-
- /* Determine (left) shift needed to put first set bit into bit posn 23
- * (since packFloat32() expects the binary point between bits 23 and 22);
- * this is the fast case for smallish numbers.
- */
- shiftcount = countLeadingZeros64(a) - 40;
- if (shiftcount >= 0) {
- return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
- }
- /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
- * expects the binary point between bits 30 and 29, hence the + 7.
- */
- shiftcount += 7;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
-
- return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit unsigned integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 uint64_to_float64(uint64_t a, float_status *status)
-{
- int exp = 0x43C;
- int shiftcount;
-
- if (a == 0) {
- return float64_zero;
- }
-
- shiftcount = countLeadingZeros64(a) - 1;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
- return roundAndPackFloat64(0, exp - shiftcount, a, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit unsigned integer `a'
-| to the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 uint64_to_float128(uint64_t a, float_status *status)
-{
- if (a == 0) {
- return float128_zero;
- }
- return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float32_to_int32(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- aSig64 = aSig;
- aSig64 <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
- return roundAndPackInt32(aSign, aSig64, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xCF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (int32_t) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x8E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xC7000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFF;
- }
- }
- return (int32_t) 0xffff8000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount -= 0x10;
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) {
- z = - z;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = 0xBE - aExp;
- if ( shiftCount < 0 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- if ( aExp ) aSig |= 0x00800000;
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
- return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| unsigned integer is returned. Otherwise, if the conversion overflows, the
-| largest unsigned integer is returned. If the 'a' is negative, the result
-| is rounded and zero is returned; values that do not round to zero will
-| raise the inexact exception flag.
-*----------------------------------------------------------------------------*/
-
-uint64_t float32_to_uint64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- if ((aSign) && (aExp > 126)) {
- float_raise(float_flag_invalid, status);
- if (float32_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- shiftCount = 0xBE - aExp;
- if (aExp) {
- aSig |= 0x00800000;
- }
- if (shiftCount < 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
-
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
- return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
-| conversion overflows, the largest unsigned integer is returned. If the
-| 'a' is negative, the result is rounded and zero is returned; values that do
-| not round to zero will raise the inexact flag.
-*----------------------------------------------------------------------------*/
-
-uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- int64_t v = float32_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
- int64_t z;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0xBE;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xDF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig64 = aSig | 0x00800000;
- aSig64 <<= 40;
- z = aSig64>>( - shiftCount );
- if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the double-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float32_to_float64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float32_to_floatx80(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the double-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float32_to_float128(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
- }
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Rounds the single-precision floating-point value `a' to an integer, and
-| returns the result as a single-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_round_to_int(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t lastBitMask, roundBitsMask;
- uint32_t z;
- a = float32_squash_input_denormal(a, status);
-
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN(a, a, status);
- }
- return a;
- }
- if ( aExp <= 0x7E ) {
- if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat32Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x7E) {
- return packFloat32(aSign, 0x7F, 0);
- }
- break;
- case float_round_down:
- return make_float32(aSign ? 0xBF800000 : 0);
- case float_round_up:
- return make_float32(aSign ? 0x80000000 : 0x3F800000);
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = float32_val(a);
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z += lastBitMask>>1;
- if ((z & roundBitsMask) == 0) {
- z &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat32Sign(make_float32(z))) {
- z += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat32Sign(make_float32(z))) {
- z += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z &= ~ roundBitsMask;
- if (z != float32_val(a)) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return make_float32(z);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the single-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
- float_status *status)
-{
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- int expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if (aSig | bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (aSig | bSig) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat32(zSign, 0, 0);
- }
- return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- }
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (int32_t) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the single-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
- float_status *status)
-{
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- int expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if (aSig | bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the single-precision floating-point values `a'
-| and `b'. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_add(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs(a, b, aSign, status);
- }
- else {
- return subFloat32Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the single-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_sub(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs(a, b, aSign, status);
- }
- else {
- return addFloat32Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the single-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_mul(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint32_t aSig, bSig;
- uint64_t zSig64;
- uint32_t zSig;
-
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
- zSig = zSig64;
- if ( 0 <= (int32_t) ( zSig<<1 ) ) {
- zSig <<= 1;
- --zExp;
- }
- return roundAndPackFloat32(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the single-precision floating-point value `a'
-| by the corresponding value `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_div(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
- if ( ( zSig & 0x3F ) == 0 ) {
- zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
- }
- return roundAndPackFloat32(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the single-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_rem(float32 a, float32 b, float_status *status)
-{
- flag aSign, zSign;
- int aExp, bExp, expDiff;
- uint32_t aSig, bSig;
- uint32_t q;
- uint64_t aSig64, bSig64, q64;
- uint32_t alternateASig;
- int32_t sigMean;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig |= 0x00800000;
- bSig |= 0x00800000;
- if ( expDiff < 32 ) {
- aSig <<= 8;
- bSig <<= 8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- if ( 0 < expDiff ) {
- q = ( ( (uint64_t) aSig )<<32 ) / bSig;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- }
- else {
- if ( bSig <= aSig ) aSig -= bSig;
- aSig64 = ( (uint64_t) aSig )<<40;
- bSig64 = ( (uint64_t) bSig )<<40;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- aSig64 = - ( ( bSig * q64 )<<38 );
- expDiff -= 62;
- }
- expDiff += 64;
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- q = q64>>( 64 - expDiff );
- bSig <<= 6;
- aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (int32_t) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (int32_t) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the single-precision floating-point values
-| `a' and `b' then adding 'c', with no intermediate rounding step after the
-| multiplication. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic 754-2008.
-| The flags argument allows the caller to select negation of the
-| addend, the intermediate product, or the final result. (The difference
-| between this and having the caller do a separate negation is that negating
-| externally will flip the sign bit on NaNs.)
-*----------------------------------------------------------------------------*/
-
-float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
- float_status *status)
-{
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint32_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig64, cSig64, zSig64;
- uint32_t pSig;
- int shiftcount;
- flag signflip, infzero;
-
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- c = float32_squash_input_denormal(c, status);
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- bSig = extractFloat32Frac(b);
- bExp = extractFloat32Exp(b);
- bSign = extractFloat32Sign(b);
- cSig = extractFloat32Frac(c);
- cExp = extractFloat32Exp(c);
- cSign = extractFloat32Sign(c);
-
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
- (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
-
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0xff) && aSig) ||
- ((bExp == 0xff) && bSig) ||
- ((cExp == 0xff) && cSig)) {
- return propagateFloat32MulAddNaN(a, b, c, infzero, status);
- }
-
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
-
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
-
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
-
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0xff) || (bExp == 0xff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
-
- if (cExp == 0xff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat32(cSign ^ signflip, 0xff, 0);
- }
-
- if (pInf) {
- return packFloat32(pSign ^ signflip, 0xff, 0);
- }
-
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat32(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat32(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat32
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x00800000) << 7;
- return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat32(cSign ^ signflip, cExp, cSig);
- }
-
- if (aExp == 0) {
- normalizeFloat32Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat32Subnormal(bSig, &bExp, &bSig);
- }
-
- /* Calculate the actual result a * b + c */
-
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat32() takes.
- */
- pExp = aExp + bExp - 0x7e;
- aSig = (aSig | 0x00800000) << 7;
- bSig = (bSig | 0x00800000) << 8;
- pSig64 = (uint64_t)aSig * bSig;
- if ((int64_t)(pSig64 << 1) >= 0) {
- pSig64 <<= 1;
- pExp--;
- }
-
- zSign = pSign ^ signflip;
-
- /* Now pSig64 is the significand of the multiply, with the explicit bit in
- * position 62.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift64RightJamming(pSig64, 32, &pSig64);
- pSig = pSig64;
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat32(zSign, pExp - 1,
- pSig, status);
- }
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
-
- cSig64 = (uint64_t)cSig << (62 - 23);
- cSig64 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
-
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 62 */
- zSig64 = pSig64 + cSig64;
- if ((int64_t)zSig64 < 0) {
- shift64RightJamming(zSig64, 1, &zSig64);
- } else {
- zExp--;
- }
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zSig64 = pSig64 - cSig64;
- zExp = pExp;
- } else if (expDiff < 0) {
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zSig64 = cSig64 - pSig64;
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (cSig64 < pSig64) {
- zSig64 = pSig64 - cSig64;
- } else if (pSig64 < cSig64) {
- zSig64 = cSig64 - pSig64;
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat32(zSign, 0, 0);
- }
- }
- --zExp;
- /* Normalize to put the explicit bit back into bit 62. */
- shiftcount = countLeadingZeros64(zSig64) - 1;
- zSig64 <<= shiftcount;
- zExp -= shiftcount;
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
-
- shift64RightJamming(zSig64, 32, &zSig64);
- return roundAndPackFloat32(zSign, zExp, zSig64, status);
-}
-
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the single-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_sqrt(float32 a, float_status *status)
-{
- flag aSign;
- int aExp, zExp;
- uint32_t aSig, zSig;
- uint64_t rem, term;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- if ( ! aSign ) return a;
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return float32_zero;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0x7FFFFFFF;
- goto roundAndPack;
- }
- aSig >>= aExp & 1;
- term = ( (uint64_t) zSig ) * zSig;
- rem = ( ( (uint64_t) aSig )<<32 ) - term;
- while ( (int64_t) rem < 0 ) {
- --zSig;
- rem += ( ( (uint64_t) zSig )<<1 ) | 1;
- }
- zSig |= ( rem != 0 );
- }
- shift32RightJamming( zSig, 1, &zSig );
- roundAndPack:
- return roundAndPackFloat32(0, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the binary exponential of the single-precision floating-point value
-| `a'. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-|
-| Uses the following identities:
-|
-| 1. -------------------------------------------------------------------------
-| x x*ln(2)
-| 2 = e
-|
-| 2. -------------------------------------------------------------------------
-| 2 3 4 5 n
-| x x x x x x x
-| e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
-| 1! 2! 3! 4! 5! n!
-*----------------------------------------------------------------------------*/
-
-static const float64 float32_exp2_coefficients[15] =
-{
- const_float64( 0x3ff0000000000000ll ), /* 1 */
- const_float64( 0x3fe0000000000000ll ), /* 2 */
- const_float64( 0x3fc5555555555555ll ), /* 3 */
- const_float64( 0x3fa5555555555555ll ), /* 4 */
- const_float64( 0x3f81111111111111ll ), /* 5 */
- const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
- const_float64( 0x3f2a01a01a01a01all ), /* 7 */
- const_float64( 0x3efa01a01a01a01all ), /* 8 */
- const_float64( 0x3ec71de3a556c734ll ), /* 9 */
- const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
- const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
- const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
- const_float64( 0x3de6124613a86d09ll ), /* 13 */
- const_float64( 0x3da93974a8c07c9dll ), /* 14 */
- const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
-};
-
-float32 float32_exp2(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
- float64 r, x, xn;
- int i;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
-
- if ( aExp == 0xFF) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- return (aSign) ? float32_zero : a;
- }
- if (aExp == 0) {
- if (aSig == 0) return float32_one;
- }
-
- float_raise(float_flag_inexact, status);
-
- /* ******************************* */
- /* using float64 for approximation */
- /* ******************************* */
- x = float32_to_float64(a, status);
- x = float64_mul(x, float64_ln2, status);
-
- xn = x;
- r = float64_one;
- for (i = 0 ; i < 15 ; i++) {
- float64 f;
-
- f = float64_mul(xn, float32_exp2_coefficients[i], status);
- r = float64_add(r, f, status);
-
- xn = float64_mul(xn, x, status);
- }
-
- return float64_to_float32(r, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the binary log of the single-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-float32 float32_log2(float32 a, float_status *status)
-{
- flag aSign, zSign;
- int aExp;
- uint32_t aSig, zSig, i;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
-
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( aSign ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan;
- }
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- return a;
- }
-
- aExp -= 0x7F;
- aSig |= 0x00800000;
- zSign = aExp < 0;
- zSig = aExp << 23;
-
- for (i = 1 << 22; i > 0; i >>= 1) {
- aSig = ( (uint64_t)aSig * aSig ) >> 23;
- if ( aSig & 0x01000000 ) {
- aSig >>= 1;
- zSig |= i;
- }
- }
-
- if ( zSign )
- zSig = -zSig;
-
- return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_eq(float32 a, float32 b, float_status *status)
-{
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float32_val(a);
- bv = float32_val(b);
- return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_le(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_lt(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_unordered(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_eq_quiet(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return ( float32_val(a) == float32_val(b) ) ||
- ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_le_quiet(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_lt_quiet(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_unordered_quiet(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x40E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) {
- aSign = 0;
- }
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if ( aExp || aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) {
- z = - z;
- }
- if ( ( (int16_t)z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float64_to_int64(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x43E < aExp ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- aSig <<= - shiftCount;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- int64_t z;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = aExp - 0x433;
- if ( 0 <= shiftCount ) {
- if ( 0x43E <= aExp ) {
- if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = aSig<<shiftCount;
- }
- else {
- if ( aExp < 0x3FE ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the single-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float64_to_float32(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t aSig;
- uint32_t zSig;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 22, &aSig );
- zSig = aSig;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x381;
- }
- return roundAndPackFloat32(aSign, aExp, zSig, status);
-
-}
-
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-| half-precision floating-point value, returning the result. After being
-| shifted into the proper positions, the three fields are simply added
-| together to form the result. This means that any integer portion of `zSig'
-| will be added into the exponent. Since a properly normalized significand
-| will have an integer portion equal to 1, the `zExp' input should be 1 less
-| than the desired result exponent whenever `zSig' is a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
-{
- return make_float16(
- (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper half-precision floating-
-| point value corresponding to the abstract input. Ordinarily, the abstract
-| value is simply rounded and packed into the half-precision format, with
-| the inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal half-
-| precision floating-point number.
-| The `ieee' flag indicates whether to use IEEE standard half precision, or
-| ARM-style "alternative representation", which omits the NaN and Inf
-| encodings in order to raise the maximum representable exponent by one.
-| The input significand `zSig' has its binary point between bits 22
-| and 23, which is 13 bits to the left of the usual location. This shifted
-| significand must be normalized or smaller. If `zSig' is not normalized,
-| `zExp' must be 0; in that case, the result returned is a subnormal number,
-| and it must not require rounding. In the usual case that `zSig' is
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-| Note the slightly odd position of the binary point in zSig compared with the
-| other roundAndPackFloat functions. This should probably be fixed if we
-| need to implement more float16 routines than just conversion.
-| The handling of underflow and overflow follows the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float16 roundAndPackFloat16(flag zSign, int zExp,
- uint32_t zSig, flag ieee,
- float_status *status)
-{
- int maxexp = ieee ? 29 : 30;
- uint32_t mask;
- uint32_t increment;
- bool rounding_bumps_exp;
- bool is_tiny = false;
-
- /* Calculate the mask of bits of the mantissa which are not
- * representable in half-precision and will be lost.
- */
- if (zExp < 1) {
- /* Will be denormal in halfprec */
- mask = 0x00ffffff;
- if (zExp >= -11) {
- mask >>= 11 + zExp;
- }
- } else {
- /* Normal number in halfprec */
- mask = 0x00001fff;
- }
-
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- increment = (mask + 1) >> 1;
- if ((zSig & mask) == increment) {
- increment = zSig & (increment << 1);
- }
- break;
- case float_round_ties_away:
- increment = (mask + 1) >> 1;
- break;
- case float_round_up:
- increment = zSign ? 0 : mask;
- break;
- case float_round_down:
- increment = zSign ? mask : 0;
- break;
- default: /* round_to_zero */
- increment = 0;
- break;
- }
-
- rounding_bumps_exp = (zSig + increment >= 0x01000000);
-
- if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
- if (ieee) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat16(zSign, 0x1f, 0);
- } else {
- float_raise(float_flag_invalid, status);
- return packFloat16(zSign, 0x1f, 0x3ff);
- }
- }
-
- if (zExp < 0) {
- /* Note that flush-to-zero does not affect half-precision results */
- is_tiny =
- (status->float_detect_tininess == float_tininess_before_rounding)
- || (zExp < -1)
- || (!rounding_bumps_exp);
- }
- if (zSig & mask) {
- float_raise(float_flag_inexact, status);
- if (is_tiny) {
- float_raise(float_flag_underflow, status);
- }
- }
-
- zSig += increment;
- if (rounding_bumps_exp) {
- zSig >>= 1;
- zExp++;
- }
-
- if (zExp < -10) {
- return packFloat16(zSign, 0, 0);
- }
- if (zExp < 0) {
- zSig >>= -zExp;
- zExp = 0;
- }
- return packFloat16(zSign, zExp, zSig >> 13);
-}
-
-static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
- uint32_t *zSigPtr)
-{
- int8_t shiftCount = countLeadingZeros32(aSig) - 21;
- *zSigPtr = aSig << shiftCount;
- *zExpPtr = 1 - shiftCount;
-}
-
-/* Half precision floats come in two formats: standard IEEE and "ARM" format.
- The latter gains extra exponent range by omitting the NaN/Inf encodings. */
-
-float32 float16_to_float32(float16 a, flag ieee, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
-
- aSign = extractFloat16Sign(a);
- aExp = extractFloat16Exp(a);
- aSig = extractFloat16Frac(a);
-
- if (aExp == 0x1f && ieee) {
- if (aSig) {
- return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
- }
- return packFloat32(aSign, 0xff, 0);
- }
- if (aExp == 0) {
- if (aSig == 0) {
- return packFloat32(aSign, 0, 0);
- }
-
- normalizeFloat16Subnormal(aSig, &aExp, &aSig);
- aExp--;
- }
- return packFloat32( aSign, aExp + 0x70, aSig << 13);
-}
-
-float16 float32_to_float16(float32 a, flag ieee, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
-
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- /* Input is a NaN */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0, 0);
- }
- return commonNaNToFloat16(
- float32ToCommonNaN(a, status), status);
- }
- /* Infinity */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0x1f, 0x3ff);
- }
- return packFloat16(aSign, 0x1f, 0);
- }
- if (aExp == 0 && aSig == 0) {
- return packFloat16(aSign, 0, 0);
- }
- /* Decimal point between bits 22 and 23. Note that we add the 1 bit
- * even if the input is denormal; however this is harmless because
- * the largest possible single-precision denormal is still smaller
- * than the smallest representable half-precision denormal, and so we
- * will end up ignoring aSig and returning via the "always return zero"
- * codepath.
- */
- aSig |= 0x00800000;
- aExp -= 0x71;
-
- return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
-}
-
-float64 float16_to_float64(float16 a, flag ieee, float_status *status)
-{
- flag aSign;
- int aExp;
- uint32_t aSig;
-
- aSign = extractFloat16Sign(a);
- aExp = extractFloat16Exp(a);
- aSig = extractFloat16Frac(a);
-
- if (aExp == 0x1f && ieee) {
- if (aSig) {
- return commonNaNToFloat64(
- float16ToCommonNaN(a, status), status);
- }
- return packFloat64(aSign, 0x7ff, 0);
- }
- if (aExp == 0) {
- if (aSig == 0) {
- return packFloat64(aSign, 0, 0);
- }
-
- normalizeFloat16Subnormal(aSig, &aExp, &aSig);
- aExp--;
- }
- return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
-}
-
-float16 float64_to_float16(float64 a, flag ieee, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t aSig;
- uint32_t zSig;
-
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aExp == 0x7FF) {
- if (aSig) {
- /* Input is a NaN */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0, 0);
- }
- return commonNaNToFloat16(
- float64ToCommonNaN(a, status), status);
- }
- /* Infinity */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0x1f, 0x3ff);
- }
- return packFloat16(aSign, 0x1f, 0);
- }
- shift64RightJamming(aSig, 29, &aSig);
- zSig = aSig;
- if (aExp == 0 && zSig == 0) {
- return packFloat16(aSign, 0, 0);
- }
- /* Decimal point between bits 22 and 23. Note that we add the 1 bit
- * even if the input is denormal; however this is harmless because
- * the largest possible single-precision denormal is still smaller
- * than the smallest representable half-precision denormal, and so we
- * will end up ignoring aSig and returning via the "always return zero"
- * codepath.
- */
- zSig |= 0x00800000;
- aExp -= 0x3F1;
-
- return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float64_to_floatx80(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t aSig;
-
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- return
- packFloatx80(
- aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the quadruple-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float64_to_float128(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t aSig, zSig0, zSig1;
-
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
- }
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Rounds the double-precision floating-point value `a' to an integer, and
-| returns the result as a double-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_round_to_int(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t lastBitMask, roundBitsMask;
- uint64_t z;
- a = float64_squash_input_denormal(a, status);
-
- aExp = extractFloat64Exp( a );
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
- return propagateFloat64NaN(a, a, status);
- }
- return a;
- }
- if ( aExp < 0x3FF ) {
- if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat64Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
- return packFloat64( aSign, 0x3FF, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FE) {
- return packFloat64(aSign, 0x3ff, 0);
- }
- break;
- case float_round_down:
- return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
- case float_round_up:
- return make_float64(
- aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
- }
- return packFloat64( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x433 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = float64_val(a);
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z += lastBitMask >> 1;
- if ((z & roundBitsMask) == 0) {
- z &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat64Sign(make_float64(z))) {
- z += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat64Sign(make_float64(z))) {
- z += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z &= ~ roundBitsMask;
- if (z != float64_val(a)) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return make_float64(z);
-
-}
-
-float64 float64_trunc_to_int(float64 a, float_status *status)
-{
- int oldmode;
- float64 res;
- oldmode = status->float_rounding_mode;
- status->float_rounding_mode = float_round_to_zero;
- res = float64_round_to_int(a, status);
- status->float_rounding_mode = oldmode;
- return res;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the double-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
- float_status *status)
-{
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- int expDiff;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 9;
- bSig <<= 9;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if (aSig | bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (aSig | bSig) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat64(zSign, 0, 0);
- }
- return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
- }
- zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= LIT64( 0x2000000000000000 );
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (int64_t) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat64(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the double-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
- float_status *status)
-{
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- int expDiff;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 10;
- bSig <<= 10;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if (aSig | bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign ^ 1, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- bSig |= LIT64( 0x4000000000000000 );
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- aSig |= LIT64( 0x4000000000000000 );
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the double-precision floating-point values `a'
-| and `b'. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_add(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs(a, b, aSign, status);
- }
- else {
- return subFloat64Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the double-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_sub(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs(a, b, aSign, status);
- }
- else {
- return addFloat64Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the double-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_mul(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FF;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat64(zSign, zExp, zSig0, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the double-precision floating-point value `a'
-| by the corresponding value `b'. The operation is performed according to
-| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_div(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- uint64_t rem0, rem1;
- uint64_t term0, term1;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat64( zSign, 0x7FF, 0 );
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FD;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv128To64( aSig, 0, bSig );
- if ( ( zSig & 0x1FF ) <= 2 ) {
- mul64To128( bSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat64(zSign, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the double-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_rem(float64 a, float64 b, float_status *status)
-{
- flag aSign, zSign;
- int aExp, bExp, expDiff;
- uint64_t aSig, bSig;
- uint64_t q, alternateASig;
- int64_t sigMean;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (int64_t) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (int64_t) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the double-precision floating-point values
-| `a' and `b' then adding 'c', with no intermediate rounding step after the
-| multiplication. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic 754-2008.
-| The flags argument allows the caller to select negation of the
-| addend, the intermediate product, or the final result. (The difference
-| between this and having the caller do a separate negation is that negating
-| externally will flip the sign bit on NaNs.)
-*----------------------------------------------------------------------------*/
-
-float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
- float_status *status)
-{
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint64_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
- int shiftcount;
- flag signflip, infzero;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- c = float64_squash_input_denormal(c, status);
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- bSig = extractFloat64Frac(b);
- bExp = extractFloat64Exp(b);
- bSign = extractFloat64Sign(b);
- cSig = extractFloat64Frac(c);
- cExp = extractFloat64Exp(c);
- cSign = extractFloat64Sign(c);
-
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
- (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
-
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0x7ff) && aSig) ||
- ((bExp == 0x7ff) && bSig) ||
- ((cExp == 0x7ff) && cSig)) {
- return propagateFloat64MulAddNaN(a, b, c, infzero, status);
- }
-
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
-
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
-
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
-
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
-
- if (cExp == 0x7ff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat64(cSign ^ signflip, 0x7ff, 0);
- }
-
- if (pInf) {
- return packFloat64(pSign ^ signflip, 0x7ff, 0);
- }
-
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat64(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat64(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat64
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x0010000000000000ULL) << 10;
- return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat64(cSign ^ signflip, cExp, cSig);
- }
-
- if (aExp == 0) {
- normalizeFloat64Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat64Subnormal(bSig, &bExp, &bSig);
- }
-
- /* Calculate the actual result a * b + c */
-
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat64() takes.
- */
- pExp = aExp + bExp - 0x3fe;
- aSig = (aSig | LIT64(0x0010000000000000))<<10;
- bSig = (bSig | LIT64(0x0010000000000000))<<11;
- mul64To128(aSig, bSig, &pSig0, &pSig1);
- if ((int64_t)(pSig0 << 1) >= 0) {
- shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
- pExp--;
- }
-
- zSign = pSign ^ signflip;
-
- /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
- * bit in position 126.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat64(zSign, pExp - 1,
- pSig1, status);
- }
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
-
- /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
- * significand of the addend, with the explicit bit in position 126.
- */
- cSig0 = cSig << (126 - 64 - 52);
- cSig1 = 0;
- cSig0 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
-
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 126 */
- add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- if ((int64_t)zSig0 < 0) {
- shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
- } else {
- zExp--;
- }
- shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig1, status);
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (lt128(cSig0, cSig1, pSig0, pSig1)) {
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat64(zSign, 0, 0);
- }
- }
- --zExp;
- /* Do the equivalent of normalizeRoundAndPackFloat64() but
- * starting with the significand in a pair of uint64_t.
- */
- if (zSig0) {
- shiftcount = countLeadingZeros64(zSig0) - 1;
- shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
- if (zSig1) {
- zSig0 |= 1;
- }
- zExp -= shiftcount;
- } else {
- shiftcount = countLeadingZeros64(zSig1);
- if (shiftcount == 0) {
- zSig0 = (zSig1 >> 1) | (zSig1 & 1);
- zExp -= 63;
- } else {
- shiftcount--;
- zSig0 = zSig1 << shiftcount;
- zExp -= (shiftcount + 64);
- }
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig0, status);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the double-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_sqrt(float64 a, float_status *status)
-{
- flag aSign;
- int aExp, zExp;
- uint64_t aSig, zSig, doubleZSig;
- uint64_t rem0, rem1, term0, term1;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return float64_zero;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig |= LIT64( 0x0010000000000000 );
- zSig = estimateSqrt32( aExp, aSig>>21 );
- aSig <<= 9 - ( aExp & 1 );
- zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
- if ( ( zSig & 0x1FF ) <= 5 ) {
- doubleZSig = zSig<<1;
- mul64To128( zSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig;
- doubleZSig -= 2;
- add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- return roundAndPackFloat64(0, zExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the binary log of the double-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-float64 float64_log2(float64 a, float_status *status)
-{
- flag aSign, zSign;
- int aExp;
- uint64_t aSig, aSig0, aSig1, zSig, i;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
-
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( aSign ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan;
- }
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, float64_zero, status);
- }
- return a;
- }
-
- aExp -= 0x3FF;
- aSig |= LIT64( 0x0010000000000000 );
- zSign = aExp < 0;
- zSig = (uint64_t)aExp << 52;
- for (i = 1LL << 51; i > 0; i >>= 1) {
- mul64To128( aSig, aSig, &aSig0, &aSig1 );
- aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
- if ( aSig & LIT64( 0x0020000000000000 ) ) {
- aSig >>= 1;
- zSig |= i;
- }
- }
-
- if ( zSign )
- zSig = -zSig;
- return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The invalid exception is raised
-| if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_eq(float64 a, float64 b, float_status *status)
-{
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_le(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_lt(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_unordered(float64 a, float64 b, float_status *status)
-{
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception.The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_eq_quiet(float64 a, float64 b, float_status *status)
-{
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_le_quiet(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_lt_quiet(float64 a, float64 b, float_status *status)
-{
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float64_unordered_quiet(float64 a, float64 b, float_status *status)
-{
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN, the
-| largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t floatx80_to_int32(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
- shiftCount = 0x4037 - aExp;
- if ( shiftCount <= 0 ) shiftCount = 1;
- shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount = 0x403E - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN,
-| the largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t floatx80_to_int64(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig, aSigExtra;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = 0x403E - aExp;
- if ( shiftCount <= 0 ) {
- if ( shiftCount ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig != LIT64( 0x8000000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig;
- int64_t z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = aExp - 0x403E;
- if ( 0 <= shiftCount ) {
- aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
- if ( ( a.high != 0xC03E ) || aSig ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the single-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 floatx80_to_float32(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 33, &aSig );
- if ( aExp || aSig ) aExp -= 0x3F81;
- return roundAndPackFloat32(aSign, aExp, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 floatx80_to_float64(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig, zSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shift64RightJamming( aSig, 1, &zSig );
- if ( aExp || aSig ) aExp -= 0x3C01;
- return roundAndPackFloat64(aSign, aExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the quadruple-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 floatx80_to_float128(floatx80 a, float_status *status)
-{
- flag aSign;
- int aExp;
- uint64_t aSig, zSig0, zSig1;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
- }
- shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Rounds the extended double-precision floating-point value `a' to an integer,
-| and returns the result as an extended quadruple-precision floating-point
-| value. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t lastBitMask, roundBitsMask;
- floatx80 z;
-
- aExp = extractFloatx80Exp( a );
- if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
- return propagateFloatx80NaN(a, a, status);
- }
- return a;
- }
- if ( aExp < 0x3FFF ) {
- if ( ( aExp == 0 )
- && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
- return a;
- }
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloatx80Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
- ) {
- return
- packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FFE) {
- return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
- }
- break;
- case float_round_down:
- return
- aSign ?
- packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
- : packFloatx80( 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloatx80( 1, 0, 0 )
- : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- return packFloatx80( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x403E - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z.low += lastBitMask>>1;
- if ((z.low & roundBitsMask) == 0) {
- z.low &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z.low += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloatx80Sign(z)) {
- z.low += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloatx80Sign(z)) {
- z.low += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z.low &= ~ roundBitsMask;
- if ( z.low == 0 ) {
- ++z.high;
- z.low = LIT64( 0x8000000000000000 );
- }
- if (z.low != a.low) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the extended double-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
-| negated before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
- float_status *status)
-{
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- int32_t expDiff;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- zSig1 = 0;
- zSig0 = aSig + bSig;
- if ( aExp == 0 ) {
- normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
- goto roundAndPack;
- }
- zExp = aExp;
- goto shiftRight1;
- }
- zSig0 = aSig + bSig;
- if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= LIT64( 0x8000000000000000 );
- ++zExp;
- roundAndPack:
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the extended
-| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
- float_status *status)
-{
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- int32_t expDiff;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- zSig1 = 0;
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- bBigger:
- sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- aBigger:
- sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the extended double-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return addFloatx80Sigs(a, b, aSign, status);
- }
- else {
- return subFloatx80Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return subFloatx80Sigs(a, b, aSign, status);
- }
- else {
- return addFloatx80Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) goto invalid;
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FFE;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- if ( 0 < (int64_t) zSig0 ) {
- shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
- --zExp;
- }
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the extended double-precision floating-point
-| value `a' by the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- uint64_t rem0, rem1, rem2, term0, term1, term2;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- goto invalid;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- float_raise(float_flag_divbyzero, status);
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FFE;
- rem1 = 0;
- if ( bSig <= aSig ) {
- shift128Right( aSig, 0, 1, &aSig, &rem1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig, rem1, bSig );
- mul64To128( bSig, zSig0, &term0, &term1 );
- sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, bSig );
- if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
- mul64To128( bSig, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
- }
- zSig1 |= ( ( rem1 | rem2 ) != 0 );
- }
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the extended double-precision floating-point value
-| `a' with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, zSign;
- int32_t aExp, bExp, expDiff;
- uint64_t aSig0, aSig1, bSig;
- uint64_t q, term0, term1, alternateASig0, alternateASig1;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig0<<1 )
- || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- bSig |= LIT64( 0x8000000000000000 );
- zSign = aSign;
- expDiff = aExp - bExp;
- aSig1 = 0;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
- expDiff = 0;
- }
- q = ( bSig <= aSig0 );
- if ( q ) aSig0 -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- mul64To128( bSig, q, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
- while ( le128( term0, term1, aSig0, aSig1 ) ) {
- ++q;
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- }
- }
- else {
- term1 = 0;
- term0 = bSig;
- }
- sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
- if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
- || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
- && ( q & 1 ) )
- ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- zSign = ! zSign;
- }
- return
- normalizeRoundAndPackFloatx80(
- 80, zSign, bExp + expDiff, aSig0, aSig1, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the extended double-precision floating-point
-| value `a'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sqrt(floatx80 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, zExp;
- uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig0 << 1)) {
- return propagateFloatx80NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 ) == 0 ) return a;
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
- zSig0 = estimateSqrt32( aExp, aSig0>>32 );
- shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= doubleZSig0;
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- 0, zExp, zSig0, zSig1, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than or equal to the corresponding value `b', and 0 otherwise. The
-| invalid exception is raised if either operand is a NaN. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_le(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point values `a' and `b'
-| cannot be compared, and 0 otherwise. The invalid exception is raised if
-| either operand is a NaN. The comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
-{
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
-| do not cause an exception. Otherwise, the comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
-| an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point values `a' and `b'
-| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
-| The comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float128_to_int32(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- aSig0 |= ( aSig1 != 0 );
- shiftCount = 0x4028 - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
- return roundAndPackInt32(aSign, aSig0, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1, savedASig;
- int32_t z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- aSig0 |= ( aSig1 != 0 );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp || aSig0) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- savedASig = aSig0;
- aSig0 >>= shiftCount;
- z = aSig0;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig0<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float128_to_int64(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x403E < aExp ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
- )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
- }
- else {
- shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
- }
- return roundAndPackInt64(aSign, aSig0, aSig1, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
- int64_t z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = aExp - 0x402F;
- if ( 0 < shiftCount ) {
- if ( 0x403E <= aExp ) {
- aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
- if ( ( a.high == LIT64( 0xC03E000000000000 ) )
- && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
- if (aSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
- if ( (uint64_t) ( aSig1<<shiftCount ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( aExp | aSig0 | aSig1 ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig0>>( - shiftCount );
- if ( aSig1
- || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the single-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float128_to_float32(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
- uint32_t zSig;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- aSig0 |= ( aSig1 != 0 );
- shift64RightJamming( aSig0, 18, &aSig0 );
- zSig = aSig0;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x3F81;
- }
- return roundAndPackFloat32(aSign, aExp, zSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float128_to_float64(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- aSig0 |= ( aSig1 != 0 );
- if ( aExp || aSig0 ) {
- aSig0 |= LIT64( 0x4000000000000000 );
- aExp -= 0x3C01;
- }
- return roundAndPackFloat64(aSign, aExp, aSig0, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the extended double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float128_to_floatx80(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
- return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Rounds the quadruple-precision floating-point value `a' to an integer, and
-| returns the result as a quadruple-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_round_to_int(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t lastBitMask, roundBitsMask;
- float128 z;
-
- aExp = extractFloat128Exp( a );
- if ( 0x402F <= aExp ) {
- if ( 0x406F <= aExp ) {
- if ( ( aExp == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
- ) {
- return propagateFloat128NaN(a, a, status);
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( lastBitMask ) {
- add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (int64_t) z.low < 0 ) {
- ++z.high;
- if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- break;
- case float_round_ties_away:
- if (lastBitMask) {
- add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
- } else {
- if ((int64_t) z.low < 0) {
- ++z.high;
- }
- }
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat128Sign(z)) {
- add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
- }
- break;
- case float_round_down:
- if (extractFloat128Sign(z)) {
- add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
- }
- break;
- default:
- abort();
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat128Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE )
- && ( extractFloat128Frac0( a )
- | extractFloat128Frac1( a ) )
- ) {
- return packFloat128( aSign, 0x3FFF, 0, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FFE) {
- return packFloat128(aSign, 0x3FFF, 0, 0);
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
- : packFloat128( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat128( 1, 0, 0, 0 )
- : packFloat128( 0, 0x3FFF, 0, 0 );
- }
- return packFloat128( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x402F - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- break;
- case float_round_ties_away:
- z.high += lastBitMask>>1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat128Sign(z)) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat128Sign(z)) {
- z.high |= (a.low != 0);
- z.high += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the quadruple-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
- float_status *status)
-{
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int32_t expDiff;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (zSig0 | zSig1) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat128(zSign, 0, 0, 0);
- }
- return packFloat128( zSign, 0, zSig0, zSig1 );
- }
- zSig2 = 0;
- zSig0 |= LIT64( 0x0002000000000000 );
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the quadruple-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
- float_status *status)
-{
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int32_t expDiff;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat128(status->float_rounding_mode == float_round_down,
- 0, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= LIT64( 0x4000000000000000 );
- bBigger:
- sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= LIT64( 0x4000000000000000 );
- aBigger:
- sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
- status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the quadruple-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_add(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return addFloat128Sigs(a, b, aSign, status);
- }
- else {
- return subFloat128Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sub(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return subFloat128Sigs(a, b, aSign, status);
- }
- else {
- return addFloat128Sigs(a, b, aSign, status);
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_mul(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x4000;
- aSig0 |= LIT64( 0x0001000000000000 );
- shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
- mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the quadruple-precision floating-point value
-| `a' by the corresponding value `b'. The operation is performed according to
-| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_div(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- goto invalid;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FFD;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
- mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FFF ) <= 4 ) {
- mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the quadruple-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_rem(float128 a, float128 b, float_status *status)
-{
- flag aSign, zSign;
- int32_t aExp, bExp, expDiff;
- uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
- int64_t sigMean0;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN(a, b, status);
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ),
- aSig1,
- 15 - ( expDiff < 0 ),
- &aSig0,
- &aSig1
- );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- q = le128( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
- shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
- sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 61;
- }
- if ( -64 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- expDiff += 52;
- if ( expDiff < 0 ) {
- shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (int64_t) aSig0 );
- add128(
- aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (int64_t) aSig0 < 0 );
- if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
- status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the quadruple-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sqrt(float128 a, float_status *status)
-{
- flag aSign;
- int32_t aExp, zExp;
- uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise(float_flag_invalid, status);
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
- aSig0 |= LIT64( 0x0001000000000000 );
- zSig0 = estimateSqrt32( aExp, aSig0>>17 );
- shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FFF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_eq(float128 a, float128 b, float_status *status)
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The invalid
-| exception is raised if either operand is a NaN. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_le(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. The comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_lt(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. The invalid exception is raised if either
-| operand is a NaN. The comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_unordered(float128 a, float128 b, float_status *status)
-{
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. The comparison is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_eq_quiet(float128 a, float128 b, float_status *status)
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_le_quiet(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_lt_quiet(float128 a, float128 b, float_status *status)
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float128_unordered_quiet(float128 a, float128 b, float_status *status)
-{
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/* misc functions */
-float32 uint32_to_float32(uint32_t a, float_status *status)
-{
- return int64_to_float32(a, status);
-}
-
-float64 uint32_to_float64(uint32_t a, float_status *status)
-{
- return int64_to_float64(a, status);
-}
-
-uint32_t float32_to_uint32(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float32_to_int16(float32 a, float_status *status)
-{
- int32_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16(float32 a, float_status *status)
-{
- int32_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float64_to_int16(float64 a, float_status *status)
-{
- int64_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. If the conversion overflows, the
-| largest unsigned integer is returned. If 'a' is negative, the value is
-| rounded and zero is returned; negative values that do not round to zero
-| will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint64_t float64_to_uint64(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aSign && (aExp > 1022)) {
- float_raise(float_flag_invalid, status);
- if (float64_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig |= LIT64(0x0010000000000000);
- }
- shiftCount = 0x433 - aExp;
- if (shiftCount <= 0) {
- if (0x43E < aExp) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- aSigExtra = 0;
- aSig <<= -shiftCount;
- } else {
- shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
- }
- return roundAndPackUint64(aSign, aSig, aSigExtra, status);
-}
-
-uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- int64_t v = float64_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
-
-#define COMPARE(s, nan_exp) \
-static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
- int is_quiet, float_status *status) \
-{ \
- flag aSign, bSign; \
- uint ## s ## _t av, bv; \
- a = float ## s ## _squash_input_denormal(a, status); \
- b = float ## s ## _squash_input_denormal(b, status); \
- \
- if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
- extractFloat ## s ## Frac( a ) ) || \
- ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
- extractFloat ## s ## Frac( b ) )) { \
- if (!is_quiet || \
- float ## s ## _is_signaling_nan( a ) || \
- float ## s ## _is_signaling_nan( b ) ) { \
- float_raise(float_flag_invalid, status); \
- } \
- return float_relation_unordered; \
- } \
- aSign = extractFloat ## s ## Sign( a ); \
- bSign = extractFloat ## s ## Sign( b ); \
- av = float ## s ## _val(a); \
- bv = float ## s ## _val(b); \
- if ( aSign != bSign ) { \
- if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
- /* zero case */ \
- return float_relation_equal; \
- } else { \
- return 1 - (2 * aSign); \
- } \
- } else { \
- if (av == bv) { \
- return float_relation_equal; \
- } else { \
- return 1 - 2 * (aSign ^ ( av < bv )); \
- } \
- } \
-} \
- \
-int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
-{ \
- return float ## s ## _compare_internal(a, b, 0, status); \
-} \
- \
-int float ## s ## _compare_quiet(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _compare_internal(a, b, 1, status); \
-}
-
-COMPARE(32, 0xff)
-COMPARE(64, 0x7ff)
-
-static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
- int is_quiet, float_status *status)
-{
- flag aSign, bSign;
-
- if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
- ( extractFloatx80Frac( a )<<1 ) ) ||
- ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
- ( extractFloatx80Frac( b )<<1 ) )) {
- if (!is_quiet ||
- floatx80_is_signaling_nan( a ) ||
- floatx80_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return float_relation_unordered;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
-
- if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
- ( ( a.low | b.low ) == 0 ) ) {
- /* zero case */
- return float_relation_equal;
- } else {
- return 1 - (2 * aSign);
- }
- } else {
- if (a.low == b.low && a.high == b.high) {
- return float_relation_equal;
- } else {
- return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
- }
- }
-}
-
-int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
-{
- return floatx80_compare_internal(a, b, 0, status);
-}
-
-int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
-{
- return floatx80_compare_internal(a, b, 1, status);
-}
-
-static inline int float128_compare_internal(float128 a, float128 b,
- int is_quiet, float_status *status)
-{
- flag aSign, bSign;
-
- if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
- ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
- ( ( extractFloat128Exp( b ) == 0x7fff ) &&
- ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
- if (!is_quiet ||
- float128_is_signaling_nan( a ) ||
- float128_is_signaling_nan( b ) ) {
- float_raise(float_flag_invalid, status);
- }
- return float_relation_unordered;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
- /* zero case */
- return float_relation_equal;
- } else {
- return 1 - (2 * aSign);
- }
- } else {
- if (a.low == b.low && a.high == b.high) {
- return float_relation_equal;
- } else {
- return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
- }
- }
-}
-
-int float128_compare(float128 a, float128 b, float_status *status)
-{
- return float128_compare_internal(a, b, 0, status);
-}
-
-int float128_compare_quiet(float128 a, float128 b, float_status *status)
-{
- return float128_compare_internal(a, b, 1, status);
-}
-
-/* min() and max() functions. These can't be implemented as
- * 'compare and pick one input' because that would mishandle
- * NaNs and +0 vs -0.
- *
- * minnum() and maxnum() functions. These are similar to the min()
- * and max() functions but if one of the arguments is a QNaN and
- * the other is numerical then the numerical argument is returned.
- * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
- * and maxNum() operations. min() and max() are the typical min/max
- * semantics provided by many CPUs which predate that specification.
- *
- * minnummag() and maxnummag() functions correspond to minNumMag()
- * and minNumMag() from the IEEE-754 2008.
- */
-#define MINMAX(s) \
-static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \
- int ismin, int isieee, \
- int ismag, \
- float_status *status) \
-{ \
- flag aSign, bSign; \
- uint ## s ## _t av, bv, aav, abv; \
- a = float ## s ## _squash_input_denormal(a, status); \
- b = float ## s ## _squash_input_denormal(b, status); \
- if (float ## s ## _is_any_nan(a) || \
- float ## s ## _is_any_nan(b)) { \
- if (isieee) { \
- if (float ## s ## _is_quiet_nan(a) && \
- !float ## s ##_is_any_nan(b)) { \
- return b; \
- } else if (float ## s ## _is_quiet_nan(b) && \
- !float ## s ## _is_any_nan(a)) { \
- return a; \
- } \
- } \
- return propagateFloat ## s ## NaN(a, b, status); \
- } \
- aSign = extractFloat ## s ## Sign(a); \
- bSign = extractFloat ## s ## Sign(b); \
- av = float ## s ## _val(a); \
- bv = float ## s ## _val(b); \
- if (ismag) { \
- aav = float ## s ## _abs(av); \
- abv = float ## s ## _abs(bv); \
- if (aav != abv) { \
- if (ismin) { \
- return (aav < abv) ? a : b; \
- } else { \
- return (aav < abv) ? b : a; \
- } \
- } \
- } \
- if (aSign != bSign) { \
- if (ismin) { \
- return aSign ? a : b; \
- } else { \
- return aSign ? b : a; \
- } \
- } else { \
- if (ismin) { \
- return (aSign ^ (av < bv)) ? a : b; \
- } else { \
- return (aSign ^ (av < bv)) ? b : a; \
- } \
- } \
-} \
- \
-float ## s float ## s ## _min(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 1, 0, 0, status); \
-} \
- \
-float ## s float ## s ## _max(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 0, 0, 0, status); \
-} \
- \
-float ## s float ## s ## _minnum(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 1, 1, 0, status); \
-} \
- \
-float ## s float ## s ## _maxnum(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 0, 1, 0, status); \
-} \
- \
-float ## s float ## s ## _minnummag(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 1, 1, 1, status); \
-} \
- \
-float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \
- float_status *status) \
-{ \
- return float ## s ## _minmax(a, b, 0, 1, 1, status); \
-}
-
-MINMAX(32)
-MINMAX(64)
-
-
-/* Multiply A by 2 raised to the power N. */
-float32 float32_scalbn(float32 a, int n, float_status *status)
-{
- flag aSign;
- int16_t aExp;
- uint32_t aSig;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
-
- if ( aExp == 0xFF ) {
- if ( aSig ) {
- return propagateFloat32NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig |= 0x00800000;
- } else if (aSig == 0) {
- return a;
- } else {
- aExp++;
- }
-
- if (n > 0x200) {
- n = 0x200;
- } else if (n < -0x200) {
- n = -0x200;
- }
-
- aExp += n - 1;
- aSig <<= 7;
- return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
-}
-
-float64 float64_scalbn(float64 a, int n, float_status *status)
-{
- flag aSign;
- int16_t aExp;
- uint64_t aSig;
-
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
-
- if ( aExp == 0x7FF ) {
- if ( aSig ) {
- return propagateFloat64NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig |= LIT64( 0x0010000000000000 );
- } else if (aSig == 0) {
- return a;
- } else {
- aExp++;
- }
-
- if (n > 0x1000) {
- n = 0x1000;
- } else if (n < -0x1000) {
- n = -0x1000;
- }
-
- aExp += n - 1;
- aSig <<= 10;
- return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
-}
-
-floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
-
- if ( aExp == 0x7FFF ) {
- if ( aSig<<1 ) {
- return propagateFloatx80NaN(a, a, status);
- }
- return a;
- }
-
- if (aExp == 0) {
- if (aSig == 0) {
- return a;
- }
- aExp++;
- }
-
- if (n > 0x10000) {
- n = 0x10000;
- } else if (n < -0x10000) {
- n = -0x10000;
- }
-
- aExp += n;
- return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
- aSign, aExp, aSig, 0, status);
-}
-
-float128 float128_scalbn(float128 a, int n, float_status *status)
-{
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return propagateFloat128NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig0 |= LIT64( 0x0001000000000000 );
- } else if (aSig0 == 0 && aSig1 == 0) {
- return a;
- } else {
- aExp++;
- }
-
- if (n > 0x10000) {
- n = 0x10000;
- } else if (n < -0x10000) {
- n = -0x10000;
- }
-
- aExp += n - 1;
- return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
- , status);
-
-}