summaryrefslogtreecommitdiffstats
path: root/qemu/fpu/softfloat-specialize.h
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/fpu/softfloat-specialize.h')
-rw-r--r--qemu/fpu/softfloat-specialize.h1236
1 files changed, 0 insertions, 1236 deletions
diff --git a/qemu/fpu/softfloat-specialize.h b/qemu/fpu/softfloat-specialize.h
deleted file mode 100644
index a4cbdad45..000000000
--- a/qemu/fpu/softfloat-specialize.h
+++ /dev/null
@@ -1,1236 +0,0 @@
-/*
- * QEMU float support
- *
- * The code in this source file is derived from release 2a of the SoftFloat
- * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
- * some later contributions) are provided under that license, as detailed below.
- * It has subsequently been modified by contributors to the QEMU Project,
- * so some portions are provided under:
- * the SoftFloat-2a license
- * the BSD license
- * GPL-v2-or-later
- *
- * Any future contributions to this file after December 1st 2014 will be
- * taken to be licensed under the Softfloat-2a license unless specifically
- * indicated otherwise.
- */
-
-/*
-===============================================================================
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/* BSD licensing:
- * Copyright (c) 2006, Fabrice Bellard
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its contributors
- * may be used to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/* Portions of this work are licensed under the terms of the GNU GPL,
- * version 2 or later. See the COPYING file in the top-level directory.
- */
-
-/* Does the target distinguish signaling NaNs from non-signaling NaNs
- * by setting the most significant bit of the mantissa for a signaling NaN?
- * (The more common choice is to have it be zero for SNaN and one for QNaN.)
- */
-#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-#define SNAN_BIT_IS_ONE 1
-#else
-#define SNAN_BIT_IS_ONE 0
-#endif
-
-#if defined(TARGET_XTENSA)
-/* Define for architectures which deviate from IEEE in not supporting
- * signaling NaNs (so all NaNs are treated as quiet).
- */
-#define NO_SIGNALING_NANS 1
-#endif
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated half-precision NaN.
-*----------------------------------------------------------------------------*/
-#if defined(TARGET_ARM)
-const float16 float16_default_nan = const_float16(0x7E00);
-#elif SNAN_BIT_IS_ONE
-const float16 float16_default_nan = const_float16(0x7DFF);
-#else
-const float16 float16_default_nan = const_float16(0xFE00);
-#endif
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
-*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-const float32 float32_default_nan = const_float32(0x7FFFFFFF);
-#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
- defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
-const float32 float32_default_nan = const_float32(0x7FC00000);
-#elif SNAN_BIT_IS_ONE
-const float32 float32_default_nan = const_float32(0x7FBFFFFF);
-#else
-const float32 float32_default_nan = const_float32(0xFFC00000);
-#endif
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
-*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
-#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
- defined(TARGET_S390X)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
-#elif SNAN_BIT_IS_ONE
-const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
-#else
-const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
-#endif
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision NaN.
-*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define floatx80_default_nan_high 0x7FFF
-#define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF)
-#else
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
-#endif
-
-const floatx80 floatx80_default_nan
- = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated quadruple-precision NaN. The `high' and
-| `low' values hold the most- and least-significant bits, respectively.
-*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
-#define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF)
-#elif defined(TARGET_S390X)
-#define float128_default_nan_high LIT64( 0x7FFF800000000000 )
-#define float128_default_nan_low LIT64( 0x0000000000000000 )
-#else
-#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
-#define float128_default_nan_low LIT64( 0x0000000000000000 )
-#endif
-
-const float128 float128_default_nan
- = make_float128_init(float128_default_nan_high, float128_default_nan_low);
-
-/*----------------------------------------------------------------------------
-| Raises the exceptions specified by `flags'. Floating-point traps can be
-| defined here if desired. It is currently not possible for such a trap
-| to substitute a result value. If traps are not implemented, this routine
-| should be simply `float_exception_flags |= flags;'.
-*----------------------------------------------------------------------------*/
-
-void float_raise(int8_t flags, float_status *status)
-{
- status->float_exception_flags |= flags;
-}
-
-/*----------------------------------------------------------------------------
-| Internal canonical NaN format.
-*----------------------------------------------------------------------------*/
-typedef struct {
- flag sign;
- uint64_t high, low;
-} commonNaNT;
-
-#ifdef NO_SIGNALING_NANS
-int float16_is_quiet_nan(float16 a_)
-{
- return float16_is_any_nan(a_);
-}
-
-int float16_is_signaling_nan(float16 a_)
-{
- return 0;
-}
-#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the half-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float16_is_quiet_nan(float16 a_)
-{
- uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
-#else
- return ((a & ~0x8000) >= 0x7c80);
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the half-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float16_is_signaling_nan(float16 a_)
-{
- uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
- return ((a & ~0x8000) >= 0x7c80);
-#else
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the half-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-float16 float16_maybe_silence_nan(float16 a_)
-{
- if (float16_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float16_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- uint16_t a = float16_val(a_);
- a |= (1 << 9);
- return make_float16(a);
-#endif
- }
- return a_;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the half-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
-{
- commonNaNT z;
-
- if (float16_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = float16_val(a) >> 15;
- z.low = 0;
- z.high = ((uint64_t) float16_val(a))<<54;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the half-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
-{
- uint16_t mantissa = a.high>>54;
-
- if (status->default_nan_mode) {
- return float16_default_nan;
- }
-
- if (mantissa) {
- return make_float16(((((uint16_t) a.sign) << 15)
- | (0x1F << 10) | mantissa));
- } else {
- return float16_default_nan;
- }
-}
-
-#ifdef NO_SIGNALING_NANS
-int float32_is_quiet_nan(float32 a_)
-{
- return float32_is_any_nan(a_);
-}
-
-int float32_is_signaling_nan(float32 a_)
-{
- return 0;
-}
-#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float32_is_quiet_nan( float32 a_ )
-{
- uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
- return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
-#else
- return ((uint32_t)(a << 1) >= 0xff800000);
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float32_is_signaling_nan( float32 a_ )
-{
- uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
- return ((uint32_t)(a << 1) >= 0xff800000);
-#else
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the single-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-float32 float32_maybe_silence_nan( float32 a_ )
-{
- if (float32_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float32_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- uint32_t a = float32_val(a_);
- a |= (1 << 22);
- return make_float32(a);
-#endif
- }
- return a_;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
-{
- commonNaNT z;
-
- if (float32_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = float32_val(a)>>31;
- z.low = 0;
- z.high = ( (uint64_t) float32_val(a) )<<41;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the single-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
-{
- uint32_t mantissa = a.high>>41;
-
- if (status->default_nan_mode) {
- return float32_default_nan;
- }
-
- if ( mantissa )
- return make_float32(
- ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
- else
- return float32_default_nan;
-}
-
-/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a two-input operation.
-| IEEE754 doesn't specify all the details of this, so the
-| algorithm is target-specific.
-| The routine is passed various bits of information about the
-| two NaNs and should return 0 to select NaN a and 1 for NaN b.
-| Note that signalling NaNs are always squashed to quiet NaNs
-| by the caller, by calling floatXX_maybe_silence_nan() before
-| returning them.
-|
-| aIsLargerSignificand is only valid if both a and b are NaNs
-| of some kind, and is true if a has the larger significand,
-| or if both a and b have the same significand but a is
-| positive but b is negative. It is only needed for the x87
-| tie-break rule.
-*----------------------------------------------------------------------------*/
-
-#if defined(TARGET_ARM)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
- /* ARM mandated NaN propagation rules: take the first of:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always quietened before returning it.
- */
- if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (aIsQNaN) {
- return 0;
- } else {
- return 1;
- }
-}
-#elif defined(TARGET_MIPS)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
- /* According to MIPS specifications, if one of the two operands is
- * a sNaN, a new qNaN has to be generated. This is done in
- * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
- * says: "When possible, this QNaN result is one of the operand QNaN
- * values." In practice it seems that most implementations choose
- * the first operand if both operands are qNaN. In short this gives
- * the following rules:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always silenced before returning it.
- */
- if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (aIsQNaN) {
- return 0;
- } else {
- return 1;
- }
-}
-#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
- /* PowerPC propagation rules:
- * 1. A if it sNaN or qNaN
- * 2. B if it sNaN or qNaN
- * A signaling NaN is always silenced before returning it.
- */
- if (aIsSNaN || aIsQNaN) {
- return 0;
- } else {
- return 1;
- }
-}
-#else
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
- /* This implements x87 NaN propagation rules:
- * SNaN + QNaN => return the QNaN
- * two SNaNs => return the one with the larger significand, silenced
- * two QNaNs => return the one with the larger significand
- * SNaN and a non-NaN => return the SNaN, silenced
- * QNaN and a non-NaN => return the QNaN
- *
- * If we get down to comparing significands and they are the same,
- * return the NaN with the positive sign bit (if any).
- */
- if (aIsSNaN) {
- if (bIsSNaN) {
- return aIsLargerSignificand ? 0 : 1;
- }
- return bIsQNaN ? 1 : 0;
- }
- else if (aIsQNaN) {
- if (bIsSNaN || !bIsQNaN)
- return 0;
- else {
- return aIsLargerSignificand ? 0 : 1;
- }
- } else {
- return 1;
- }
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a three-input operation.
-| For the moment we assume that no CPU needs the 'larger significand'
-| information.
-| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
-*----------------------------------------------------------------------------*/
-#if defined(TARGET_ARM)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero,
- float_status *status)
-{
- /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
- * the default NaN
- */
- if (infzero && cIsQNaN) {
- float_raise(float_flag_invalid, status);
- return 3;
- }
-
- /* This looks different from the ARM ARM pseudocode, because the ARM ARM
- * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
- */
- if (cIsSNaN) {
- return 2;
- } else if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (cIsQNaN) {
- return 2;
- } else if (aIsQNaN) {
- return 0;
- } else {
- return 1;
- }
-}
-#elif defined(TARGET_MIPS)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero,
- float_status *status)
-{
- /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
- * the default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return 3;
- }
-
- /* Prefer sNaN over qNaN, in the a, b, c order. */
- if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (cIsSNaN) {
- return 2;
- } else if (aIsQNaN) {
- return 0;
- } else if (bIsQNaN) {
- return 1;
- } else {
- return 2;
- }
-}
-#elif defined(TARGET_PPC)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero,
- float_status *status)
-{
- /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
- * to return an input NaN if we have one (ie c) rather than generating
- * a default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return 2;
- }
-
- /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
- * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
- */
- if (aIsSNaN || aIsQNaN) {
- return 0;
- } else if (cIsSNaN || cIsQNaN) {
- return 2;
- } else {
- return 1;
- }
-}
-#else
-/* A default implementation: prefer a to b to c.
- * This is unlikely to actually match any real implementation.
- */
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero,
- float_status *status)
-{
- if (aIsSNaN || aIsQNaN) {
- return 0;
- } else if (bIsSNaN || bIsQNaN) {
- return 1;
- } else {
- return 2;
- }
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Takes two single-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
- flag aIsLargerSignificand;
- uint32_t av, bv;
-
- aIsQuietNaN = float32_is_quiet_nan( a );
- aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsQuietNaN = float32_is_quiet_nan( b );
- bIsSignalingNaN = float32_is_signaling_nan( b );
- av = float32_val(a);
- bv = float32_val(b);
-
- if (aIsSignalingNaN | bIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode)
- return float32_default_nan;
-
- if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
- aIsLargerSignificand = 0;
- } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (av < bv) ? 1 : 0;
- }
-
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float32_maybe_silence_nan(b);
- } else {
- return float32_maybe_silence_nan(a);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Takes three single-precision floating-point values `a', `b' and `c', one of
-| which is a NaN, and returns the appropriate NaN result. If any of `a',
-| `b' or `c' is a signaling NaN, the invalid exception is raised.
-| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
-| obviously c is a NaN, and whether to propagate c or some other NaN is
-| implementation defined).
-*----------------------------------------------------------------------------*/
-
-static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
- float32 c, flag infzero,
- float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN;
- int which;
-
- aIsQuietNaN = float32_is_quiet_nan(a);
- aIsSignalingNaN = float32_is_signaling_nan(a);
- bIsQuietNaN = float32_is_quiet_nan(b);
- bIsSignalingNaN = float32_is_signaling_nan(b);
- cIsQuietNaN = float32_is_quiet_nan(c);
- cIsSignalingNaN = float32_is_signaling_nan(c);
-
- if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
- bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN, infzero, status);
-
- if (status->default_nan_mode) {
- /* Note that this check is after pickNaNMulAdd so that function
- * has an opportunity to set the Invalid flag.
- */
- return float32_default_nan;
- }
-
- switch (which) {
- case 0:
- return float32_maybe_silence_nan(a);
- case 1:
- return float32_maybe_silence_nan(b);
- case 2:
- return float32_maybe_silence_nan(c);
- case 3:
- default:
- return float32_default_nan;
- }
-}
-
-#ifdef NO_SIGNALING_NANS
-int float64_is_quiet_nan(float64 a_)
-{
- return float64_is_any_nan(a_);
-}
-
-int float64_is_signaling_nan(float64 a_)
-{
- return 0;
-}
-#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float64_is_quiet_nan( float64 a_ )
-{
- uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
- return (((a >> 51) & 0xfff) == 0xffe)
- && (a & 0x0007ffffffffffffULL);
-#else
- return ((a << 1) >= 0xfff0000000000000ULL);
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float64_is_signaling_nan( float64 a_ )
-{
- uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
- return ((a << 1) >= 0xfff0000000000000ULL);
-#else
- return
- ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
- && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the double-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-float64 float64_maybe_silence_nan( float64 a_ )
-{
- if (float64_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float64_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- uint64_t a = float64_val(a_);
- a |= LIT64( 0x0008000000000000 );
- return make_float64(a);
-#endif
- }
- return a_;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
-{
- commonNaNT z;
-
- if (float64_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = float64_val(a)>>63;
- z.low = 0;
- z.high = float64_val(a)<<12;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the double-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
-{
- uint64_t mantissa = a.high>>12;
-
- if (status->default_nan_mode) {
- return float64_default_nan;
- }
-
- if ( mantissa )
- return make_float64(
- ( ( (uint64_t) a.sign )<<63 )
- | LIT64( 0x7FF0000000000000 )
- | ( a.high>>12 ));
- else
- return float64_default_nan;
-}
-
-/*----------------------------------------------------------------------------
-| Takes two double-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
- flag aIsLargerSignificand;
- uint64_t av, bv;
-
- aIsQuietNaN = float64_is_quiet_nan( a );
- aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsQuietNaN = float64_is_quiet_nan( b );
- bIsSignalingNaN = float64_is_signaling_nan( b );
- av = float64_val(a);
- bv = float64_val(b);
-
- if (aIsSignalingNaN | bIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode)
- return float64_default_nan;
-
- if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
- aIsLargerSignificand = 0;
- } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (av < bv) ? 1 : 0;
- }
-
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float64_maybe_silence_nan(b);
- } else {
- return float64_maybe_silence_nan(a);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Takes three double-precision floating-point values `a', `b' and `c', one of
-| which is a NaN, and returns the appropriate NaN result. If any of `a',
-| `b' or `c' is a signaling NaN, the invalid exception is raised.
-| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
-| obviously c is a NaN, and whether to propagate c or some other NaN is
-| implementation defined).
-*----------------------------------------------------------------------------*/
-
-static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
- float64 c, flag infzero,
- float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN;
- int which;
-
- aIsQuietNaN = float64_is_quiet_nan(a);
- aIsSignalingNaN = float64_is_signaling_nan(a);
- bIsQuietNaN = float64_is_quiet_nan(b);
- bIsSignalingNaN = float64_is_signaling_nan(b);
- cIsQuietNaN = float64_is_quiet_nan(c);
- cIsSignalingNaN = float64_is_signaling_nan(c);
-
- if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
- bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN, infzero, status);
-
- if (status->default_nan_mode) {
- /* Note that this check is after pickNaNMulAdd so that function
- * has an opportunity to set the Invalid flag.
- */
- return float64_default_nan;
- }
-
- switch (which) {
- case 0:
- return float64_maybe_silence_nan(a);
- case 1:
- return float64_maybe_silence_nan(b);
- case 2:
- return float64_maybe_silence_nan(c);
- case 3:
- default:
- return float64_default_nan;
- }
-}
-
-#ifdef NO_SIGNALING_NANS
-int floatx80_is_quiet_nan(floatx80 a_)
-{
- return floatx80_is_any_nan(a_);
-}
-
-int floatx80_is_signaling_nan(floatx80 a_)
-{
- return 0;
-}
-#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| quiet NaN; otherwise returns 0. This slightly differs from the same
-| function for other types as floatx80 has an explicit bit.
-*----------------------------------------------------------------------------*/
-
-int floatx80_is_quiet_nan( floatx80 a )
-{
-#if SNAN_BIT_IS_ONE
- uint64_t aLow;
-
- aLow = a.low & ~0x4000000000000000ULL;
- return ((a.high & 0x7fff) == 0x7fff)
- && (aLow << 1)
- && (a.low == aLow);
-#else
- return ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0. This slightly differs from the same
-| function for other types as floatx80 has an explicit bit.
-*----------------------------------------------------------------------------*/
-
-int floatx80_is_signaling_nan( floatx80 a )
-{
-#if SNAN_BIT_IS_ONE
- return ((a.high & 0x7fff) == 0x7fff)
- && ((a.low << 1) >= 0x8000000000000000ULL);
-#else
- uint64_t aLow;
-
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (uint64_t) ( aLow<<1 )
- && ( a.low == aLow );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the extended double-precision floating point value
-| `a' is a signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_maybe_silence_nan( floatx80 a )
-{
- if (floatx80_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- a.low = floatx80_default_nan_low;
- a.high = floatx80_default_nan_high;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- a.low |= LIT64( 0xC000000000000000 );
- return a;
-#endif
- }
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
-| invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
-{
- commonNaNT z;
-
- if (floatx80_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, status);
- }
- if ( a.low >> 63 ) {
- z.sign = a.high >> 15;
- z.low = 0;
- z.high = a.low << 1;
- } else {
- z.sign = floatx80_default_nan_high >> 15;
- z.low = 0;
- z.high = floatx80_default_nan_low << 1;
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the extended
-| double-precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
-{
- floatx80 z;
-
- if (status->default_nan_mode) {
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
-
- if (a.high >> 1) {
- z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
- z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
- } else {
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- }
-
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Takes two extended double-precision floating-point values `a' and `b', one
-| of which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
- float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
- flag aIsLargerSignificand;
-
- aIsQuietNaN = floatx80_is_quiet_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsQuietNaN = floatx80_is_quiet_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
-
- if (aIsSignalingNaN | bIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- a.low = floatx80_default_nan_low;
- a.high = floatx80_default_nan_high;
- return a;
- }
-
- if (a.low < b.low) {
- aIsLargerSignificand = 0;
- } else if (b.low < a.low) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
- }
-
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return floatx80_maybe_silence_nan(b);
- } else {
- return floatx80_maybe_silence_nan(a);
- }
-}
-
-#ifdef NO_SIGNALING_NANS
-int float128_is_quiet_nan(float128 a_)
-{
- return float128_is_any_nan(a_);
-}
-
-int float128_is_signaling_nan(float128 a_)
-{
- return 0;
-}
-#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float128_is_quiet_nan( float128 a )
-{
-#if SNAN_BIT_IS_ONE
- return (((a.high >> 47) & 0xffff) == 0xfffe)
- && (a.low || (a.high & 0x00007fffffffffffULL));
-#else
- return
- ((a.high << 1) >= 0xffff000000000000ULL)
- && (a.low || (a.high & 0x0000ffffffffffffULL));
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float128_is_signaling_nan( float128 a )
-{
-#if SNAN_BIT_IS_ONE
- return
- ((a.high << 1) >= 0xffff000000000000ULL)
- && (a.low || (a.high & 0x0000ffffffffffffULL));
-#else
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the quadruple-precision floating point value `a' is
-| a signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-float128 float128_maybe_silence_nan( float128 a )
-{
- if (float128_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- a.low = float128_default_nan_low;
- a.high = float128_default_nan_high;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- a.high |= LIT64( 0x0000800000000000 );
- return a;
-#endif
- }
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
-{
- commonNaNT z;
-
- if (float128_is_signaling_nan(a)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = a.high>>63;
- shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the quadruple-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
-{
- float128 z;
-
- if (status->default_nan_mode) {
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
-
- shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Takes two quadruple-precision floating-point values `a' and `b', one of
-| which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float128 propagateFloat128NaN(float128 a, float128 b,
- float_status *status)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
- flag aIsLargerSignificand;
-
- aIsQuietNaN = float128_is_quiet_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsQuietNaN = float128_is_quiet_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
-
- if (aIsSignalingNaN | bIsSignalingNaN) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- a.low = float128_default_nan_low;
- a.high = float128_default_nan_high;
- return a;
- }
-
- if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
- aIsLargerSignificand = 0;
- } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
- }
-
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float128_maybe_silence_nan(b);
- } else {
- return float128_maybe_silence_nan(a);
- }
-}
-