diff options
Diffstat (limited to 'qemu/fpu/softfloat-specialize.h')
-rw-r--r-- | qemu/fpu/softfloat-specialize.h | 1236 |
1 files changed, 1236 insertions, 0 deletions
diff --git a/qemu/fpu/softfloat-specialize.h b/qemu/fpu/softfloat-specialize.h new file mode 100644 index 000000000..6dd41d897 --- /dev/null +++ b/qemu/fpu/softfloat-specialize.h @@ -0,0 +1,1236 @@ +/* + * QEMU float support + * + * The code in this source file is derived from release 2a of the SoftFloat + * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and + * some later contributions) are provided under that license, as detailed below. + * It has subsequently been modified by contributors to the QEMU Project, + * so some portions are provided under: + * the SoftFloat-2a license + * the BSD license + * GPL-v2-or-later + * + * Any future contributions to this file after December 1st 2014 will be + * taken to be licensed under the Softfloat-2a license unless specifically + * indicated otherwise. + */ + +/* +=============================================================================== +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* BSD licensing: + * Copyright (c) 2006, Fabrice Bellard + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its contributors + * may be used to endorse or promote products derived from this software without + * specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* Portions of this work are licensed under the terms of the GNU GPL, + * version 2 or later. See the COPYING file in the top-level directory. + */ + +/* Does the target distinguish signaling NaNs from non-signaling NaNs + * by setting the most significant bit of the mantissa for a signaling NaN? + * (The more common choice is to have it be zero for SNaN and one for QNaN.) + */ +#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) +#define SNAN_BIT_IS_ONE 1 +#else +#define SNAN_BIT_IS_ONE 0 +#endif + +#if defined(TARGET_XTENSA) +/* Define for architectures which deviate from IEEE in not supporting + * signaling NaNs (so all NaNs are treated as quiet). + */ +#define NO_SIGNALING_NANS 1 +#endif + +/*---------------------------------------------------------------------------- +| The pattern for a default generated half-precision NaN. +*----------------------------------------------------------------------------*/ +#if defined(TARGET_ARM) +const float16 float16_default_nan = const_float16(0x7E00); +#elif SNAN_BIT_IS_ONE +const float16 float16_default_nan = const_float16(0x7DFF); +#else +const float16 float16_default_nan = const_float16(0xFE00); +#endif + +/*---------------------------------------------------------------------------- +| The pattern for a default generated single-precision NaN. +*----------------------------------------------------------------------------*/ +#if defined(TARGET_SPARC) +const float32 float32_default_nan = const_float32(0x7FFFFFFF); +#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \ + defined(TARGET_XTENSA) || defined(TARGET_S390X) +const float32 float32_default_nan = const_float32(0x7FC00000); +#elif SNAN_BIT_IS_ONE +const float32 float32_default_nan = const_float32(0x7FBFFFFF); +#else +const float32 float32_default_nan = const_float32(0xFFC00000); +#endif + +/*---------------------------------------------------------------------------- +| The pattern for a default generated double-precision NaN. +*----------------------------------------------------------------------------*/ +#if defined(TARGET_SPARC) +const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF )); +#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \ + defined(TARGET_S390X) +const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 )); +#elif SNAN_BIT_IS_ONE +const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF)); +#else +const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 )); +#endif + +/*---------------------------------------------------------------------------- +| The pattern for a default generated extended double-precision NaN. +*----------------------------------------------------------------------------*/ +#if SNAN_BIT_IS_ONE +#define floatx80_default_nan_high 0x7FFF +#define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF) +#else +#define floatx80_default_nan_high 0xFFFF +#define floatx80_default_nan_low LIT64( 0xC000000000000000 ) +#endif + +const floatx80 floatx80_default_nan + = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low); + +/*---------------------------------------------------------------------------- +| The pattern for a default generated quadruple-precision NaN. The `high' and +| `low' values hold the most- and least-significant bits, respectively. +*----------------------------------------------------------------------------*/ +#if SNAN_BIT_IS_ONE +#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF) +#define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF) +#elif defined(TARGET_S390X) +#define float128_default_nan_high LIT64( 0x7FFF800000000000 ) +#define float128_default_nan_low LIT64( 0x0000000000000000 ) +#else +#define float128_default_nan_high LIT64( 0xFFFF800000000000 ) +#define float128_default_nan_low LIT64( 0x0000000000000000 ) +#endif + +const float128 float128_default_nan + = make_float128_init(float128_default_nan_high, float128_default_nan_low); + +/*---------------------------------------------------------------------------- +| Raises the exceptions specified by `flags'. Floating-point traps can be +| defined here if desired. It is currently not possible for such a trap +| to substitute a result value. If traps are not implemented, this routine +| should be simply `float_exception_flags |= flags;'. +*----------------------------------------------------------------------------*/ + +void float_raise(int8 flags, float_status *status) +{ + status->float_exception_flags |= flags; +} + +/*---------------------------------------------------------------------------- +| Internal canonical NaN format. +*----------------------------------------------------------------------------*/ +typedef struct { + flag sign; + uint64_t high, low; +} commonNaNT; + +#ifdef NO_SIGNALING_NANS +int float16_is_quiet_nan(float16 a_) +{ + return float16_is_any_nan(a_); +} + +int float16_is_signaling_nan(float16 a_) +{ + return 0; +} +#else +/*---------------------------------------------------------------------------- +| Returns 1 if the half-precision floating-point value `a' is a quiet +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float16_is_quiet_nan(float16 a_) +{ + uint16_t a = float16_val(a_); +#if SNAN_BIT_IS_ONE + return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); +#else + return ((a & ~0x8000) >= 0x7c80); +#endif +} + +/*---------------------------------------------------------------------------- +| Returns 1 if the half-precision floating-point value `a' is a signaling +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float16_is_signaling_nan(float16 a_) +{ + uint16_t a = float16_val(a_); +#if SNAN_BIT_IS_ONE + return ((a & ~0x8000) >= 0x7c80); +#else + return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); +#endif +} +#endif + +/*---------------------------------------------------------------------------- +| Returns a quiet NaN if the half-precision floating point value `a' is a +| signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ +float16 float16_maybe_silence_nan(float16 a_) +{ + if (float16_is_signaling_nan(a_)) { +#if SNAN_BIT_IS_ONE +# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) + return float16_default_nan; +# else +# error Rules for silencing a signaling NaN are target-specific +# endif +#else + uint16_t a = float16_val(a_); + a |= (1 << 9); + return make_float16(a); +#endif + } + return a_; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the half-precision floating-point NaN +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +| exception is raised. +*----------------------------------------------------------------------------*/ + +static commonNaNT float16ToCommonNaN(float16 a, float_status *status) +{ + commonNaNT z; + + if (float16_is_signaling_nan(a)) { + float_raise(float_flag_invalid, status); + } + z.sign = float16_val(a) >> 15; + z.low = 0; + z.high = ((uint64_t) float16_val(a))<<54; + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the canonical NaN `a' to the half- +| precision floating-point format. +*----------------------------------------------------------------------------*/ + +static float16 commonNaNToFloat16(commonNaNT a, float_status *status) +{ + uint16_t mantissa = a.high>>54; + + if (status->default_nan_mode) { + return float16_default_nan; + } + + if (mantissa) { + return make_float16(((((uint16_t) a.sign) << 15) + | (0x1F << 10) | mantissa)); + } else { + return float16_default_nan; + } +} + +#ifdef NO_SIGNALING_NANS +int float32_is_quiet_nan(float32 a_) +{ + return float32_is_any_nan(a_); +} + +int float32_is_signaling_nan(float32 a_) +{ + return 0; +} +#else +/*---------------------------------------------------------------------------- +| Returns 1 if the single-precision floating-point value `a' is a quiet +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float32_is_quiet_nan( float32 a_ ) +{ + uint32_t a = float32_val(a_); +#if SNAN_BIT_IS_ONE + return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff); +#else + return ((uint32_t)(a << 1) >= 0xff800000); +#endif +} + +/*---------------------------------------------------------------------------- +| Returns 1 if the single-precision floating-point value `a' is a signaling +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float32_is_signaling_nan( float32 a_ ) +{ + uint32_t a = float32_val(a_); +#if SNAN_BIT_IS_ONE + return ((uint32_t)(a << 1) >= 0xff800000); +#else + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); +#endif +} +#endif + +/*---------------------------------------------------------------------------- +| Returns a quiet NaN if the single-precision floating point value `a' is a +| signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +float32 float32_maybe_silence_nan( float32 a_ ) +{ + if (float32_is_signaling_nan(a_)) { +#if SNAN_BIT_IS_ONE +# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) + return float32_default_nan; +# else +# error Rules for silencing a signaling NaN are target-specific +# endif +#else + uint32_t a = float32_val(a_); + a |= (1 << 22); + return make_float32(a); +#endif + } + return a_; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the single-precision floating-point NaN +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +| exception is raised. +*----------------------------------------------------------------------------*/ + +static commonNaNT float32ToCommonNaN(float32 a, float_status *status) +{ + commonNaNT z; + + if (float32_is_signaling_nan(a)) { + float_raise(float_flag_invalid, status); + } + z.sign = float32_val(a)>>31; + z.low = 0; + z.high = ( (uint64_t) float32_val(a) )<<41; + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the canonical NaN `a' to the single- +| precision floating-point format. +*----------------------------------------------------------------------------*/ + +static float32 commonNaNToFloat32(commonNaNT a, float_status *status) +{ + uint32_t mantissa = a.high>>41; + + if (status->default_nan_mode) { + return float32_default_nan; + } + + if ( mantissa ) + return make_float32( + ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); + else + return float32_default_nan; +} + +/*---------------------------------------------------------------------------- +| Select which NaN to propagate for a two-input operation. +| IEEE754 doesn't specify all the details of this, so the +| algorithm is target-specific. +| The routine is passed various bits of information about the +| two NaNs and should return 0 to select NaN a and 1 for NaN b. +| Note that signalling NaNs are always squashed to quiet NaNs +| by the caller, by calling floatXX_maybe_silence_nan() before +| returning them. +| +| aIsLargerSignificand is only valid if both a and b are NaNs +| of some kind, and is true if a has the larger significand, +| or if both a and b have the same significand but a is +| positive but b is negative. It is only needed for the x87 +| tie-break rule. +*----------------------------------------------------------------------------*/ + +#if defined(TARGET_ARM) +static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag aIsLargerSignificand) +{ + /* ARM mandated NaN propagation rules: take the first of: + * 1. A if it is signaling + * 2. B if it is signaling + * 3. A (quiet) + * 4. B (quiet) + * A signaling NaN is always quietened before returning it. + */ + if (aIsSNaN) { + return 0; + } else if (bIsSNaN) { + return 1; + } else if (aIsQNaN) { + return 0; + } else { + return 1; + } +} +#elif defined(TARGET_MIPS) +static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag aIsLargerSignificand) +{ + /* According to MIPS specifications, if one of the two operands is + * a sNaN, a new qNaN has to be generated. This is done in + * floatXX_maybe_silence_nan(). For qNaN inputs the specifications + * says: "When possible, this QNaN result is one of the operand QNaN + * values." In practice it seems that most implementations choose + * the first operand if both operands are qNaN. In short this gives + * the following rules: + * 1. A if it is signaling + * 2. B if it is signaling + * 3. A (quiet) + * 4. B (quiet) + * A signaling NaN is always silenced before returning it. + */ + if (aIsSNaN) { + return 0; + } else if (bIsSNaN) { + return 1; + } else if (aIsQNaN) { + return 0; + } else { + return 1; + } +} +#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) +static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag aIsLargerSignificand) +{ + /* PowerPC propagation rules: + * 1. A if it sNaN or qNaN + * 2. B if it sNaN or qNaN + * A signaling NaN is always silenced before returning it. + */ + if (aIsSNaN || aIsQNaN) { + return 0; + } else { + return 1; + } +} +#else +static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag aIsLargerSignificand) +{ + /* This implements x87 NaN propagation rules: + * SNaN + QNaN => return the QNaN + * two SNaNs => return the one with the larger significand, silenced + * two QNaNs => return the one with the larger significand + * SNaN and a non-NaN => return the SNaN, silenced + * QNaN and a non-NaN => return the QNaN + * + * If we get down to comparing significands and they are the same, + * return the NaN with the positive sign bit (if any). + */ + if (aIsSNaN) { + if (bIsSNaN) { + return aIsLargerSignificand ? 0 : 1; + } + return bIsQNaN ? 1 : 0; + } + else if (aIsQNaN) { + if (bIsSNaN || !bIsQNaN) + return 0; + else { + return aIsLargerSignificand ? 0 : 1; + } + } else { + return 1; + } +} +#endif + +/*---------------------------------------------------------------------------- +| Select which NaN to propagate for a three-input operation. +| For the moment we assume that no CPU needs the 'larger significand' +| information. +| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN +*----------------------------------------------------------------------------*/ +#if defined(TARGET_ARM) +static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag cIsQNaN, flag cIsSNaN, flag infzero, + float_status *status) +{ + /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns + * the default NaN + */ + if (infzero && cIsQNaN) { + float_raise(float_flag_invalid, status); + return 3; + } + + /* This looks different from the ARM ARM pseudocode, because the ARM ARM + * puts the operands to a fused mac operation (a*b)+c in the order c,a,b. + */ + if (cIsSNaN) { + return 2; + } else if (aIsSNaN) { + return 0; + } else if (bIsSNaN) { + return 1; + } else if (cIsQNaN) { + return 2; + } else if (aIsQNaN) { + return 0; + } else { + return 1; + } +} +#elif defined(TARGET_MIPS) +static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag cIsQNaN, flag cIsSNaN, flag infzero, + float_status *status) +{ + /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns + * the default NaN + */ + if (infzero) { + float_raise(float_flag_invalid, status); + return 3; + } + + /* Prefer sNaN over qNaN, in the a, b, c order. */ + if (aIsSNaN) { + return 0; + } else if (bIsSNaN) { + return 1; + } else if (cIsSNaN) { + return 2; + } else if (aIsQNaN) { + return 0; + } else if (bIsQNaN) { + return 1; + } else { + return 2; + } +} +#elif defined(TARGET_PPC) +static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag cIsQNaN, flag cIsSNaN, flag infzero, + float_status *status) +{ + /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer + * to return an input NaN if we have one (ie c) rather than generating + * a default NaN + */ + if (infzero) { + float_raise(float_flag_invalid, status); + return 2; + } + + /* If fRA is a NaN return it; otherwise if fRB is a NaN return it; + * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB + */ + if (aIsSNaN || aIsQNaN) { + return 0; + } else if (cIsSNaN || cIsQNaN) { + return 2; + } else { + return 1; + } +} +#else +/* A default implementation: prefer a to b to c. + * This is unlikely to actually match any real implementation. + */ +static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, + flag cIsQNaN, flag cIsSNaN, flag infzero, + float_status *status) +{ + if (aIsSNaN || aIsQNaN) { + return 0; + } else if (bIsSNaN || bIsQNaN) { + return 1; + } else { + return 2; + } +} +#endif + +/*---------------------------------------------------------------------------- +| Takes two single-precision floating-point values `a' and `b', one of which +| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +| signaling NaN, the invalid exception is raised. +*----------------------------------------------------------------------------*/ + +static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; + flag aIsLargerSignificand; + uint32_t av, bv; + + aIsQuietNaN = float32_is_quiet_nan( a ); + aIsSignalingNaN = float32_is_signaling_nan( a ); + bIsQuietNaN = float32_is_quiet_nan( b ); + bIsSignalingNaN = float32_is_signaling_nan( b ); + av = float32_val(a); + bv = float32_val(b); + + if (aIsSignalingNaN | bIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + if (status->default_nan_mode) + return float32_default_nan; + + if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) { + aIsLargerSignificand = 0; + } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) { + aIsLargerSignificand = 1; + } else { + aIsLargerSignificand = (av < bv) ? 1 : 0; + } + + if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + aIsLargerSignificand)) { + return float32_maybe_silence_nan(b); + } else { + return float32_maybe_silence_nan(a); + } +} + +/*---------------------------------------------------------------------------- +| Takes three single-precision floating-point values `a', `b' and `c', one of +| which is a NaN, and returns the appropriate NaN result. If any of `a', +| `b' or `c' is a signaling NaN, the invalid exception is raised. +| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case +| obviously c is a NaN, and whether to propagate c or some other NaN is +| implementation defined). +*----------------------------------------------------------------------------*/ + +static float32 propagateFloat32MulAddNaN(float32 a, float32 b, + float32 c, flag infzero, + float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + cIsQuietNaN, cIsSignalingNaN; + int which; + + aIsQuietNaN = float32_is_quiet_nan(a); + aIsSignalingNaN = float32_is_signaling_nan(a); + bIsQuietNaN = float32_is_quiet_nan(b); + bIsSignalingNaN = float32_is_signaling_nan(b); + cIsQuietNaN = float32_is_quiet_nan(c); + cIsSignalingNaN = float32_is_signaling_nan(c); + + if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, + bIsQuietNaN, bIsSignalingNaN, + cIsQuietNaN, cIsSignalingNaN, infzero, status); + + if (status->default_nan_mode) { + /* Note that this check is after pickNaNMulAdd so that function + * has an opportunity to set the Invalid flag. + */ + return float32_default_nan; + } + + switch (which) { + case 0: + return float32_maybe_silence_nan(a); + case 1: + return float32_maybe_silence_nan(b); + case 2: + return float32_maybe_silence_nan(c); + case 3: + default: + return float32_default_nan; + } +} + +#ifdef NO_SIGNALING_NANS +int float64_is_quiet_nan(float64 a_) +{ + return float64_is_any_nan(a_); +} + +int float64_is_signaling_nan(float64 a_) +{ + return 0; +} +#else +/*---------------------------------------------------------------------------- +| Returns 1 if the double-precision floating-point value `a' is a quiet +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float64_is_quiet_nan( float64 a_ ) +{ + uint64_t a = float64_val(a_); +#if SNAN_BIT_IS_ONE + return (((a >> 51) & 0xfff) == 0xffe) + && (a & 0x0007ffffffffffffULL); +#else + return ((a << 1) >= 0xfff0000000000000ULL); +#endif +} + +/*---------------------------------------------------------------------------- +| Returns 1 if the double-precision floating-point value `a' is a signaling +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float64_is_signaling_nan( float64 a_ ) +{ + uint64_t a = float64_val(a_); +#if SNAN_BIT_IS_ONE + return ((a << 1) >= 0xfff0000000000000ULL); +#else + return + ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) + && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); +#endif +} +#endif + +/*---------------------------------------------------------------------------- +| Returns a quiet NaN if the double-precision floating point value `a' is a +| signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +float64 float64_maybe_silence_nan( float64 a_ ) +{ + if (float64_is_signaling_nan(a_)) { +#if SNAN_BIT_IS_ONE +# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) + return float64_default_nan; +# else +# error Rules for silencing a signaling NaN are target-specific +# endif +#else + uint64_t a = float64_val(a_); + a |= LIT64( 0x0008000000000000 ); + return make_float64(a); +#endif + } + return a_; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the double-precision floating-point NaN +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +| exception is raised. +*----------------------------------------------------------------------------*/ + +static commonNaNT float64ToCommonNaN(float64 a, float_status *status) +{ + commonNaNT z; + + if (float64_is_signaling_nan(a)) { + float_raise(float_flag_invalid, status); + } + z.sign = float64_val(a)>>63; + z.low = 0; + z.high = float64_val(a)<<12; + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the canonical NaN `a' to the double- +| precision floating-point format. +*----------------------------------------------------------------------------*/ + +static float64 commonNaNToFloat64(commonNaNT a, float_status *status) +{ + uint64_t mantissa = a.high>>12; + + if (status->default_nan_mode) { + return float64_default_nan; + } + + if ( mantissa ) + return make_float64( + ( ( (uint64_t) a.sign )<<63 ) + | LIT64( 0x7FF0000000000000 ) + | ( a.high>>12 )); + else + return float64_default_nan; +} + +/*---------------------------------------------------------------------------- +| Takes two double-precision floating-point values `a' and `b', one of which +| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +| signaling NaN, the invalid exception is raised. +*----------------------------------------------------------------------------*/ + +static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; + flag aIsLargerSignificand; + uint64_t av, bv; + + aIsQuietNaN = float64_is_quiet_nan( a ); + aIsSignalingNaN = float64_is_signaling_nan( a ); + bIsQuietNaN = float64_is_quiet_nan( b ); + bIsSignalingNaN = float64_is_signaling_nan( b ); + av = float64_val(a); + bv = float64_val(b); + + if (aIsSignalingNaN | bIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + if (status->default_nan_mode) + return float64_default_nan; + + if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) { + aIsLargerSignificand = 0; + } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) { + aIsLargerSignificand = 1; + } else { + aIsLargerSignificand = (av < bv) ? 1 : 0; + } + + if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + aIsLargerSignificand)) { + return float64_maybe_silence_nan(b); + } else { + return float64_maybe_silence_nan(a); + } +} + +/*---------------------------------------------------------------------------- +| Takes three double-precision floating-point values `a', `b' and `c', one of +| which is a NaN, and returns the appropriate NaN result. If any of `a', +| `b' or `c' is a signaling NaN, the invalid exception is raised. +| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case +| obviously c is a NaN, and whether to propagate c or some other NaN is +| implementation defined). +*----------------------------------------------------------------------------*/ + +static float64 propagateFloat64MulAddNaN(float64 a, float64 b, + float64 c, flag infzero, + float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + cIsQuietNaN, cIsSignalingNaN; + int which; + + aIsQuietNaN = float64_is_quiet_nan(a); + aIsSignalingNaN = float64_is_signaling_nan(a); + bIsQuietNaN = float64_is_quiet_nan(b); + bIsSignalingNaN = float64_is_signaling_nan(b); + cIsQuietNaN = float64_is_quiet_nan(c); + cIsSignalingNaN = float64_is_signaling_nan(c); + + if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, + bIsQuietNaN, bIsSignalingNaN, + cIsQuietNaN, cIsSignalingNaN, infzero, status); + + if (status->default_nan_mode) { + /* Note that this check is after pickNaNMulAdd so that function + * has an opportunity to set the Invalid flag. + */ + return float64_default_nan; + } + + switch (which) { + case 0: + return float64_maybe_silence_nan(a); + case 1: + return float64_maybe_silence_nan(b); + case 2: + return float64_maybe_silence_nan(c); + case 3: + default: + return float64_default_nan; + } +} + +#ifdef NO_SIGNALING_NANS +int floatx80_is_quiet_nan(floatx80 a_) +{ + return floatx80_is_any_nan(a_); +} + +int floatx80_is_signaling_nan(floatx80 a_) +{ + return 0; +} +#else +/*---------------------------------------------------------------------------- +| Returns 1 if the extended double-precision floating-point value `a' is a +| quiet NaN; otherwise returns 0. This slightly differs from the same +| function for other types as floatx80 has an explicit bit. +*----------------------------------------------------------------------------*/ + +int floatx80_is_quiet_nan( floatx80 a ) +{ +#if SNAN_BIT_IS_ONE + uint64_t aLow; + + aLow = a.low & ~0x4000000000000000ULL; + return ((a.high & 0x7fff) == 0x7fff) + && (aLow << 1) + && (a.low == aLow); +#else + return ( ( a.high & 0x7FFF ) == 0x7FFF ) + && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); +#endif +} + +/*---------------------------------------------------------------------------- +| Returns 1 if the extended double-precision floating-point value `a' is a +| signaling NaN; otherwise returns 0. This slightly differs from the same +| function for other types as floatx80 has an explicit bit. +*----------------------------------------------------------------------------*/ + +int floatx80_is_signaling_nan( floatx80 a ) +{ +#if SNAN_BIT_IS_ONE + return ((a.high & 0x7fff) == 0x7fff) + && ((a.low << 1) >= 0x8000000000000000ULL); +#else + uint64_t aLow; + + aLow = a.low & ~ LIT64( 0x4000000000000000 ); + return + ( ( a.high & 0x7FFF ) == 0x7FFF ) + && (uint64_t) ( aLow<<1 ) + && ( a.low == aLow ); +#endif +} +#endif + +/*---------------------------------------------------------------------------- +| Returns a quiet NaN if the extended double-precision floating point value +| `a' is a signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +floatx80 floatx80_maybe_silence_nan( floatx80 a ) +{ + if (floatx80_is_signaling_nan(a)) { +#if SNAN_BIT_IS_ONE +# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) + a.low = floatx80_default_nan_low; + a.high = floatx80_default_nan_high; +# else +# error Rules for silencing a signaling NaN are target-specific +# endif +#else + a.low |= LIT64( 0xC000000000000000 ); + return a; +#endif + } + return a; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the extended double-precision floating- +| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the +| invalid exception is raised. +*----------------------------------------------------------------------------*/ + +static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status) +{ + commonNaNT z; + + if (floatx80_is_signaling_nan(a)) { + float_raise(float_flag_invalid, status); + } + if ( a.low >> 63 ) { + z.sign = a.high >> 15; + z.low = 0; + z.high = a.low << 1; + } else { + z.sign = floatx80_default_nan_high >> 15; + z.low = 0; + z.high = floatx80_default_nan_low << 1; + } + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the canonical NaN `a' to the extended +| double-precision floating-point format. +*----------------------------------------------------------------------------*/ + +static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status) +{ + floatx80 z; + + if (status->default_nan_mode) { + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + + if (a.high >> 1) { + z.low = LIT64( 0x8000000000000000 ) | a.high >> 1; + z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF; + } else { + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + } + + return z; +} + +/*---------------------------------------------------------------------------- +| Takes two extended double-precision floating-point values `a' and `b', one +| of which is a NaN, and returns the appropriate NaN result. If either `a' or +| `b' is a signaling NaN, the invalid exception is raised. +*----------------------------------------------------------------------------*/ + +static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, + float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; + flag aIsLargerSignificand; + + aIsQuietNaN = floatx80_is_quiet_nan( a ); + aIsSignalingNaN = floatx80_is_signaling_nan( a ); + bIsQuietNaN = floatx80_is_quiet_nan( b ); + bIsSignalingNaN = floatx80_is_signaling_nan( b ); + + if (aIsSignalingNaN | bIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + if (status->default_nan_mode) { + a.low = floatx80_default_nan_low; + a.high = floatx80_default_nan_high; + return a; + } + + if (a.low < b.low) { + aIsLargerSignificand = 0; + } else if (b.low < a.low) { + aIsLargerSignificand = 1; + } else { + aIsLargerSignificand = (a.high < b.high) ? 1 : 0; + } + + if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + aIsLargerSignificand)) { + return floatx80_maybe_silence_nan(b); + } else { + return floatx80_maybe_silence_nan(a); + } +} + +#ifdef NO_SIGNALING_NANS +int float128_is_quiet_nan(float128 a_) +{ + return float128_is_any_nan(a_); +} + +int float128_is_signaling_nan(float128 a_) +{ + return 0; +} +#else +/*---------------------------------------------------------------------------- +| Returns 1 if the quadruple-precision floating-point value `a' is a quiet +| NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float128_is_quiet_nan( float128 a ) +{ +#if SNAN_BIT_IS_ONE + return (((a.high >> 47) & 0xffff) == 0xfffe) + && (a.low || (a.high & 0x00007fffffffffffULL)); +#else + return + ((a.high << 1) >= 0xffff000000000000ULL) + && (a.low || (a.high & 0x0000ffffffffffffULL)); +#endif +} + +/*---------------------------------------------------------------------------- +| Returns 1 if the quadruple-precision floating-point value `a' is a +| signaling NaN; otherwise returns 0. +*----------------------------------------------------------------------------*/ + +int float128_is_signaling_nan( float128 a ) +{ +#if SNAN_BIT_IS_ONE + return + ((a.high << 1) >= 0xffff000000000000ULL) + && (a.low || (a.high & 0x0000ffffffffffffULL)); +#else + return + ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) + && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); +#endif +} +#endif + +/*---------------------------------------------------------------------------- +| Returns a quiet NaN if the quadruple-precision floating point value `a' is +| a signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +float128 float128_maybe_silence_nan( float128 a ) +{ + if (float128_is_signaling_nan(a)) { +#if SNAN_BIT_IS_ONE +# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) + a.low = float128_default_nan_low; + a.high = float128_default_nan_high; +# else +# error Rules for silencing a signaling NaN are target-specific +# endif +#else + a.high |= LIT64( 0x0000800000000000 ); + return a; +#endif + } + return a; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the quadruple-precision floating-point NaN +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +| exception is raised. +*----------------------------------------------------------------------------*/ + +static commonNaNT float128ToCommonNaN(float128 a, float_status *status) +{ + commonNaNT z; + + if (float128_is_signaling_nan(a)) { + float_raise(float_flag_invalid, status); + } + z.sign = a.high>>63; + shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the canonical NaN `a' to the quadruple- +| precision floating-point format. +*----------------------------------------------------------------------------*/ + +static float128 commonNaNToFloat128(commonNaNT a, float_status *status) +{ + float128 z; + + if (status->default_nan_mode) { + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + + shift128Right( a.high, a.low, 16, &z.high, &z.low ); + z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 ); + return z; +} + +/*---------------------------------------------------------------------------- +| Takes two quadruple-precision floating-point values `a' and `b', one of +| which is a NaN, and returns the appropriate NaN result. If either `a' or +| `b' is a signaling NaN, the invalid exception is raised. +*----------------------------------------------------------------------------*/ + +static float128 propagateFloat128NaN(float128 a, float128 b, + float_status *status) +{ + flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; + flag aIsLargerSignificand; + + aIsQuietNaN = float128_is_quiet_nan( a ); + aIsSignalingNaN = float128_is_signaling_nan( a ); + bIsQuietNaN = float128_is_quiet_nan( b ); + bIsSignalingNaN = float128_is_signaling_nan( b ); + + if (aIsSignalingNaN | bIsSignalingNaN) { + float_raise(float_flag_invalid, status); + } + + if (status->default_nan_mode) { + a.low = float128_default_nan_low; + a.high = float128_default_nan_high; + return a; + } + + if (lt128(a.high<<1, a.low, b.high<<1, b.low)) { + aIsLargerSignificand = 0; + } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) { + aIsLargerSignificand = 1; + } else { + aIsLargerSignificand = (a.high < b.high) ? 1 : 0; + } + + if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, + aIsLargerSignificand)) { + return float128_maybe_silence_nan(b); + } else { + return float128_maybe_silence_nan(a); + } +} + |