summaryrefslogtreecommitdiffstats
path: root/qemu/docs/migration.txt
diff options
context:
space:
mode:
Diffstat (limited to 'qemu/docs/migration.txt')
-rw-r--r--qemu/docs/migration.txt293
1 files changed, 293 insertions, 0 deletions
diff --git a/qemu/docs/migration.txt b/qemu/docs/migration.txt
new file mode 100644
index 000000000..f6df4beb2
--- /dev/null
+++ b/qemu/docs/migration.txt
@@ -0,0 +1,293 @@
+= Migration =
+
+QEMU has code to load/save the state of the guest that it is running.
+These are two complementary operations. Saving the state just does
+that, saves the state for each device that the guest is running.
+Restoring a guest is just the opposite operation: we need to load the
+state of each device.
+
+For this to work, QEMU has to be launched with the same arguments the
+two times. I.e. it can only restore the state in one guest that has
+the same devices that the one it was saved (this last requirement can
+be relaxed a bit, but for now we can consider that configuration has
+to be exactly the same).
+
+Once that we are able to save/restore a guest, a new functionality is
+requested: migration. This means that QEMU is able to start in one
+machine and being "migrated" to another machine. I.e. being moved to
+another machine.
+
+Next was the "live migration" functionality. This is important
+because some guests run with a lot of state (specially RAM), and it
+can take a while to move all state from one machine to another. Live
+migration allows the guest to continue running while the state is
+transferred. Only while the last part of the state is transferred has
+the guest to be stopped. Typically the time that the guest is
+unresponsive during live migration is the low hundred of milliseconds
+(notice that this depends on a lot of things).
+
+=== Types of migration ===
+
+Now that we have talked about live migration, there are several ways
+to do migration:
+
+- tcp migration: do the migration using tcp sockets
+- unix migration: do the migration using unix sockets
+- exec migration: do the migration using the stdin/stdout through a process.
+- fd migration: do the migration using an file descriptor that is
+ passed to QEMU. QEMU doesn't care how this file descriptor is opened.
+
+All these four migration protocols use the same infrastructure to
+save/restore state devices. This infrastructure is shared with the
+savevm/loadvm functionality.
+
+=== State Live Migration ===
+
+This is used for RAM and block devices. It is not yet ported to vmstate.
+<Fill more information here>
+
+=== What is the common infrastructure ===
+
+QEMU uses a QEMUFile abstraction to be able to do migration. Any type
+of migration that wants to use QEMU infrastructure has to create a
+QEMUFile with:
+
+QEMUFile *qemu_fopen_ops(void *opaque,
+ QEMUFilePutBufferFunc *put_buffer,
+ QEMUFileGetBufferFunc *get_buffer,
+ QEMUFileCloseFunc *close);
+
+The functions have the following functionality:
+
+This function writes a chunk of data to a file at the given position.
+The pos argument can be ignored if the file is only used for
+streaming. The handler should try to write all of the data it can.
+
+typedef int (QEMUFilePutBufferFunc)(void *opaque, const uint8_t *buf,
+ int64_t pos, int size);
+
+Read a chunk of data from a file at the given position. The pos argument
+can be ignored if the file is only be used for streaming. The number of
+bytes actually read should be returned.
+
+typedef int (QEMUFileGetBufferFunc)(void *opaque, uint8_t *buf,
+ int64_t pos, int size);
+
+Close a file and return an error code.
+
+typedef int (QEMUFileCloseFunc)(void *opaque);
+
+You can use any internal state that you need using the opaque void *
+pointer that is passed to all functions.
+
+The important functions for us are put_buffer()/get_buffer() that
+allow to write/read a buffer into the QEMUFile.
+
+=== How to save the state of one device ===
+
+The state of a device is saved using intermediate buffers. There are
+some helper functions to assist this saving.
+
+There is a new concept that we have to explain here: device state
+version. When we migrate a device, we save/load the state as a series
+of fields. Some times, due to bugs or new functionality, we need to
+change the state to store more/different information. We use the
+version to identify each time that we do a change. Each version is
+associated with a series of fields saved. The save_state always saves
+the state as the newer version. But load_state sometimes is able to
+load state from an older version.
+
+=== Legacy way ===
+
+This way is going to disappear as soon as all current users are ported to VMSTATE.
+
+Each device has to register two functions, one to save the state and
+another to load the state back.
+
+int register_savevm(DeviceState *dev,
+ const char *idstr,
+ int instance_id,
+ int version_id,
+ SaveStateHandler *save_state,
+ LoadStateHandler *load_state,
+ void *opaque);
+
+typedef void SaveStateHandler(QEMUFile *f, void *opaque);
+typedef int LoadStateHandler(QEMUFile *f, void *opaque, int version_id);
+
+The important functions for the device state format are the save_state
+and load_state. Notice that load_state receives a version_id
+parameter to know what state format is receiving. save_state doesn't
+have a version_id parameter because it always uses the latest version.
+
+=== VMState ===
+
+The legacy way of saving/loading state of the device had the problem
+that we have to maintain two functions in sync. If we did one change
+in one of them and not in the other, we would get a failed migration.
+
+VMState changed the way that state is saved/loaded. Instead of using
+a function to save the state and another to load it, it was changed to
+a declarative way of what the state consisted of. Now VMState is able
+to interpret that definition to be able to load/save the state. As
+the state is declared only once, it can't go out of sync in the
+save/load functions.
+
+An example (from hw/input/pckbd.c)
+
+static const VMStateDescription vmstate_kbd = {
+ .name = "pckbd",
+ .version_id = 3,
+ .minimum_version_id = 3,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT8(write_cmd, KBDState),
+ VMSTATE_UINT8(status, KBDState),
+ VMSTATE_UINT8(mode, KBDState),
+ VMSTATE_UINT8(pending, KBDState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+We are declaring the state with name "pckbd".
+The version_id is 3, and the fields are 4 uint8_t in a KBDState structure.
+We registered this with:
+
+ vmstate_register(NULL, 0, &vmstate_kbd, s);
+
+Note: talk about how vmstate <-> qdev interact, and what the instance ids mean.
+
+You can search for VMSTATE_* macros for lots of types used in QEMU in
+include/hw/hw.h.
+
+=== More about versions ===
+
+You can see that there are several version fields:
+
+- version_id: the maximum version_id supported by VMState for that device.
+- minimum_version_id: the minimum version_id that VMState is able to understand
+ for that device.
+- minimum_version_id_old: For devices that were not able to port to vmstate, we can
+ assign a function that knows how to read this old state. This field is
+ ignored if there is no load_state_old handler.
+
+So, VMState is able to read versions from minimum_version_id to
+version_id. And the function load_state_old() (if present) is able to
+load state from minimum_version_id_old to minimum_version_id. This
+function is deprecated and will be removed when no more users are left.
+
+=== Massaging functions ===
+
+Sometimes, it is not enough to be able to save the state directly
+from one structure, we need to fill the correct values there. One
+example is when we are using kvm. Before saving the cpu state, we
+need to ask kvm to copy to QEMU the state that it is using. And the
+opposite when we are loading the state, we need a way to tell kvm to
+load the state for the cpu that we have just loaded from the QEMUFile.
+
+The functions to do that are inside a vmstate definition, and are called:
+
+- int (*pre_load)(void *opaque);
+
+ This function is called before we load the state of one device.
+
+- int (*post_load)(void *opaque, int version_id);
+
+ This function is called after we load the state of one device.
+
+- void (*pre_save)(void *opaque);
+
+ This function is called before we save the state of one device.
+
+Example: You can look at hpet.c, that uses the three function to
+ massage the state that is transferred.
+
+If you use memory API functions that update memory layout outside
+initialization (i.e., in response to a guest action), this is a strong
+indication that you need to call these functions in a post_load callback.
+Examples of such memory API functions are:
+
+ - memory_region_add_subregion()
+ - memory_region_del_subregion()
+ - memory_region_set_readonly()
+ - memory_region_set_enabled()
+ - memory_region_set_address()
+ - memory_region_set_alias_offset()
+
+=== Subsections ===
+
+The use of version_id allows to be able to migrate from older versions
+to newer versions of a device. But not the other way around. This
+makes very complicated to fix bugs in stable branches. If we need to
+add anything to the state to fix a bug, we have to disable migration
+to older versions that don't have that bug-fix (i.e. a new field).
+
+But sometimes, that bug-fix is only needed sometimes, not always. For
+instance, if the device is in the middle of a DMA operation, it is
+using a specific functionality, ....
+
+It is impossible to create a way to make migration from any version to
+any other version to work. But we can do better than only allowing
+migration from older versions to newer ones. For that fields that are
+only needed sometimes, we add the idea of subsections. A subsection
+is "like" a device vmstate, but with a particularity, it has a Boolean
+function that tells if that values are needed to be sent or not. If
+this functions returns false, the subsection is not sent.
+
+On the receiving side, if we found a subsection for a device that we
+don't understand, we just fail the migration. If we understand all
+the subsections, then we load the state with success.
+
+One important note is that the post_load() function is called "after"
+loading all subsections, because a newer subsection could change same
+value that it uses.
+
+Example:
+
+static bool ide_drive_pio_state_needed(void *opaque)
+{
+ IDEState *s = opaque;
+
+ return ((s->status & DRQ_STAT) != 0)
+ || (s->bus->error_status & BM_STATUS_PIO_RETRY);
+}
+
+const VMStateDescription vmstate_ide_drive_pio_state = {
+ .name = "ide_drive/pio_state",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .pre_save = ide_drive_pio_pre_save,
+ .post_load = ide_drive_pio_post_load,
+ .needed = ide_drive_pio_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT32(req_nb_sectors, IDEState),
+ VMSTATE_VARRAY_INT32(io_buffer, IDEState, io_buffer_total_len, 1,
+ vmstate_info_uint8, uint8_t),
+ VMSTATE_INT32(cur_io_buffer_offset, IDEState),
+ VMSTATE_INT32(cur_io_buffer_len, IDEState),
+ VMSTATE_UINT8(end_transfer_fn_idx, IDEState),
+ VMSTATE_INT32(elementary_transfer_size, IDEState),
+ VMSTATE_INT32(packet_transfer_size, IDEState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+const VMStateDescription vmstate_ide_drive = {
+ .name = "ide_drive",
+ .version_id = 3,
+ .minimum_version_id = 0,
+ .post_load = ide_drive_post_load,
+ .fields = (VMStateField[]) {
+ .... several fields ....
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &vmstate_ide_drive_pio_state,
+ NULL
+ }
+};
+
+Here we have a subsection for the pio state. We only need to
+save/send this state when we are in the middle of a pio operation
+(that is what ide_drive_pio_state_needed() checks). If DRQ_STAT is
+not enabled, the values on that fields are garbage and don't need to
+be sent.