diff options
Diffstat (limited to 'kernel/mm/slab_common.c')
-rw-r--r-- | kernel/mm/slab_common.c | 1171 |
1 files changed, 1171 insertions, 0 deletions
diff --git a/kernel/mm/slab_common.c b/kernel/mm/slab_common.c new file mode 100644 index 000000000..999bb3424 --- /dev/null +++ b/kernel/mm/slab_common.c @@ -0,0 +1,1171 @@ +/* + * Slab allocator functions that are independent of the allocator strategy + * + * (C) 2012 Christoph Lameter <cl@linux.com> + */ +#include <linux/slab.h> + +#include <linux/mm.h> +#include <linux/poison.h> +#include <linux/interrupt.h> +#include <linux/memory.h> +#include <linux/compiler.h> +#include <linux/module.h> +#include <linux/cpu.h> +#include <linux/uaccess.h> +#include <linux/seq_file.h> +#include <linux/proc_fs.h> +#include <asm/cacheflush.h> +#include <asm/tlbflush.h> +#include <asm/page.h> +#include <linux/memcontrol.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/kmem.h> + +#include "slab.h" + +enum slab_state slab_state; +LIST_HEAD(slab_caches); +DEFINE_MUTEX(slab_mutex); +struct kmem_cache *kmem_cache; + +/* + * Set of flags that will prevent slab merging + */ +#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ + SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ + SLAB_FAILSLAB) + +#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ + SLAB_CACHE_DMA | SLAB_NOTRACK) + +/* + * Merge control. If this is set then no merging of slab caches will occur. + * (Could be removed. This was introduced to pacify the merge skeptics.) + */ +static int slab_nomerge; + +static int __init setup_slab_nomerge(char *str) +{ + slab_nomerge = 1; + return 1; +} + +#ifdef CONFIG_SLUB +__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); +#endif + +__setup("slab_nomerge", setup_slab_nomerge); + +/* + * Determine the size of a slab object + */ +unsigned int kmem_cache_size(struct kmem_cache *s) +{ + return s->object_size; +} +EXPORT_SYMBOL(kmem_cache_size); + +#ifdef CONFIG_DEBUG_VM +static int kmem_cache_sanity_check(const char *name, size_t size) +{ + struct kmem_cache *s = NULL; + + if (!name || in_interrupt() || size < sizeof(void *) || + size > KMALLOC_MAX_SIZE) { + pr_err("kmem_cache_create(%s) integrity check failed\n", name); + return -EINVAL; + } + + list_for_each_entry(s, &slab_caches, list) { + char tmp; + int res; + + /* + * This happens when the module gets unloaded and doesn't + * destroy its slab cache and no-one else reuses the vmalloc + * area of the module. Print a warning. + */ + res = probe_kernel_address(s->name, tmp); + if (res) { + pr_err("Slab cache with size %d has lost its name\n", + s->object_size); + continue; + } + } + + WARN_ON(strchr(name, ' ')); /* It confuses parsers */ + return 0; +} +#else +static inline int kmem_cache_sanity_check(const char *name, size_t size) +{ + return 0; +} +#endif + +#ifdef CONFIG_MEMCG_KMEM +void slab_init_memcg_params(struct kmem_cache *s) +{ + s->memcg_params.is_root_cache = true; + INIT_LIST_HEAD(&s->memcg_params.list); + RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); +} + +static int init_memcg_params(struct kmem_cache *s, + struct mem_cgroup *memcg, struct kmem_cache *root_cache) +{ + struct memcg_cache_array *arr; + + if (memcg) { + s->memcg_params.is_root_cache = false; + s->memcg_params.memcg = memcg; + s->memcg_params.root_cache = root_cache; + return 0; + } + + slab_init_memcg_params(s); + + if (!memcg_nr_cache_ids) + return 0; + + arr = kzalloc(sizeof(struct memcg_cache_array) + + memcg_nr_cache_ids * sizeof(void *), + GFP_KERNEL); + if (!arr) + return -ENOMEM; + + RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); + return 0; +} + +static void destroy_memcg_params(struct kmem_cache *s) +{ + if (is_root_cache(s)) + kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); +} + +static int update_memcg_params(struct kmem_cache *s, int new_array_size) +{ + struct memcg_cache_array *old, *new; + + if (!is_root_cache(s)) + return 0; + + new = kzalloc(sizeof(struct memcg_cache_array) + + new_array_size * sizeof(void *), GFP_KERNEL); + if (!new) + return -ENOMEM; + + old = rcu_dereference_protected(s->memcg_params.memcg_caches, + lockdep_is_held(&slab_mutex)); + if (old) + memcpy(new->entries, old->entries, + memcg_nr_cache_ids * sizeof(void *)); + + rcu_assign_pointer(s->memcg_params.memcg_caches, new); + if (old) + kfree_rcu(old, rcu); + return 0; +} + +int memcg_update_all_caches(int num_memcgs) +{ + struct kmem_cache *s; + int ret = 0; + + mutex_lock(&slab_mutex); + list_for_each_entry(s, &slab_caches, list) { + ret = update_memcg_params(s, num_memcgs); + /* + * Instead of freeing the memory, we'll just leave the caches + * up to this point in an updated state. + */ + if (ret) + break; + } + mutex_unlock(&slab_mutex); + return ret; +} +#else +static inline int init_memcg_params(struct kmem_cache *s, + struct mem_cgroup *memcg, struct kmem_cache *root_cache) +{ + return 0; +} + +static inline void destroy_memcg_params(struct kmem_cache *s) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +/* + * Find a mergeable slab cache + */ +int slab_unmergeable(struct kmem_cache *s) +{ + if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) + return 1; + + if (!is_root_cache(s)) + return 1; + + if (s->ctor) + return 1; + + /* + * We may have set a slab to be unmergeable during bootstrap. + */ + if (s->refcount < 0) + return 1; + + return 0; +} + +struct kmem_cache *find_mergeable(size_t size, size_t align, + unsigned long flags, const char *name, void (*ctor)(void *)) +{ + struct kmem_cache *s; + + if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) + return NULL; + + if (ctor) + return NULL; + + size = ALIGN(size, sizeof(void *)); + align = calculate_alignment(flags, align, size); + size = ALIGN(size, align); + flags = kmem_cache_flags(size, flags, name, NULL); + + list_for_each_entry_reverse(s, &slab_caches, list) { + if (slab_unmergeable(s)) + continue; + + if (size > s->size) + continue; + + if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) + continue; + /* + * Check if alignment is compatible. + * Courtesy of Adrian Drzewiecki + */ + if ((s->size & ~(align - 1)) != s->size) + continue; + + if (s->size - size >= sizeof(void *)) + continue; + + if (IS_ENABLED(CONFIG_SLAB) && align && + (align > s->align || s->align % align)) + continue; + + return s; + } + return NULL; +} + +/* + * Figure out what the alignment of the objects will be given a set of + * flags, a user specified alignment and the size of the objects. + */ +unsigned long calculate_alignment(unsigned long flags, + unsigned long align, unsigned long size) +{ + /* + * If the user wants hardware cache aligned objects then follow that + * suggestion if the object is sufficiently large. + * + * The hardware cache alignment cannot override the specified + * alignment though. If that is greater then use it. + */ + if (flags & SLAB_HWCACHE_ALIGN) { + unsigned long ralign = cache_line_size(); + while (size <= ralign / 2) + ralign /= 2; + align = max(align, ralign); + } + + if (align < ARCH_SLAB_MINALIGN) + align = ARCH_SLAB_MINALIGN; + + return ALIGN(align, sizeof(void *)); +} + +static struct kmem_cache * +do_kmem_cache_create(const char *name, size_t object_size, size_t size, + size_t align, unsigned long flags, void (*ctor)(void *), + struct mem_cgroup *memcg, struct kmem_cache *root_cache) +{ + struct kmem_cache *s; + int err; + + err = -ENOMEM; + s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); + if (!s) + goto out; + + s->name = name; + s->object_size = object_size; + s->size = size; + s->align = align; + s->ctor = ctor; + + err = init_memcg_params(s, memcg, root_cache); + if (err) + goto out_free_cache; + + err = __kmem_cache_create(s, flags); + if (err) + goto out_free_cache; + + s->refcount = 1; + list_add(&s->list, &slab_caches); +out: + if (err) + return ERR_PTR(err); + return s; + +out_free_cache: + destroy_memcg_params(s); + kmem_cache_free(kmem_cache, s); + goto out; +} + +/* + * kmem_cache_create - Create a cache. + * @name: A string which is used in /proc/slabinfo to identify this cache. + * @size: The size of objects to be created in this cache. + * @align: The required alignment for the objects. + * @flags: SLAB flags + * @ctor: A constructor for the objects. + * + * Returns a ptr to the cache on success, NULL on failure. + * Cannot be called within a interrupt, but can be interrupted. + * The @ctor is run when new pages are allocated by the cache. + * + * The flags are + * + * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) + * to catch references to uninitialised memory. + * + * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check + * for buffer overruns. + * + * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware + * cacheline. This can be beneficial if you're counting cycles as closely + * as davem. + */ +struct kmem_cache * +kmem_cache_create(const char *name, size_t size, size_t align, + unsigned long flags, void (*ctor)(void *)) +{ + struct kmem_cache *s; + const char *cache_name; + int err; + + get_online_cpus(); + get_online_mems(); + memcg_get_cache_ids(); + + mutex_lock(&slab_mutex); + + err = kmem_cache_sanity_check(name, size); + if (err) { + s = NULL; /* suppress uninit var warning */ + goto out_unlock; + } + + /* + * Some allocators will constraint the set of valid flags to a subset + * of all flags. We expect them to define CACHE_CREATE_MASK in this + * case, and we'll just provide them with a sanitized version of the + * passed flags. + */ + flags &= CACHE_CREATE_MASK; + + s = __kmem_cache_alias(name, size, align, flags, ctor); + if (s) + goto out_unlock; + + cache_name = kstrdup_const(name, GFP_KERNEL); + if (!cache_name) { + err = -ENOMEM; + goto out_unlock; + } + + s = do_kmem_cache_create(cache_name, size, size, + calculate_alignment(flags, align, size), + flags, ctor, NULL, NULL); + if (IS_ERR(s)) { + err = PTR_ERR(s); + kfree_const(cache_name); + } + +out_unlock: + mutex_unlock(&slab_mutex); + + memcg_put_cache_ids(); + put_online_mems(); + put_online_cpus(); + + if (err) { + if (flags & SLAB_PANIC) + panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", + name, err); + else { + printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", + name, err); + dump_stack(); + } + return NULL; + } + return s; +} +EXPORT_SYMBOL(kmem_cache_create); + +static int do_kmem_cache_shutdown(struct kmem_cache *s, + struct list_head *release, bool *need_rcu_barrier) +{ + if (__kmem_cache_shutdown(s) != 0) { + printk(KERN_ERR "kmem_cache_destroy %s: " + "Slab cache still has objects\n", s->name); + dump_stack(); + return -EBUSY; + } + + if (s->flags & SLAB_DESTROY_BY_RCU) + *need_rcu_barrier = true; + +#ifdef CONFIG_MEMCG_KMEM + if (!is_root_cache(s)) + list_del(&s->memcg_params.list); +#endif + list_move(&s->list, release); + return 0; +} + +static void do_kmem_cache_release(struct list_head *release, + bool need_rcu_barrier) +{ + struct kmem_cache *s, *s2; + + if (need_rcu_barrier) + rcu_barrier(); + + list_for_each_entry_safe(s, s2, release, list) { +#ifdef SLAB_SUPPORTS_SYSFS + sysfs_slab_remove(s); +#else + slab_kmem_cache_release(s); +#endif + } +} + +#ifdef CONFIG_MEMCG_KMEM +/* + * memcg_create_kmem_cache - Create a cache for a memory cgroup. + * @memcg: The memory cgroup the new cache is for. + * @root_cache: The parent of the new cache. + * + * This function attempts to create a kmem cache that will serve allocation + * requests going from @memcg to @root_cache. The new cache inherits properties + * from its parent. + */ +void memcg_create_kmem_cache(struct mem_cgroup *memcg, + struct kmem_cache *root_cache) +{ + static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ + struct cgroup_subsys_state *css = mem_cgroup_css(memcg); + struct memcg_cache_array *arr; + struct kmem_cache *s = NULL; + char *cache_name; + int idx; + + get_online_cpus(); + get_online_mems(); + + mutex_lock(&slab_mutex); + + /* + * The memory cgroup could have been deactivated while the cache + * creation work was pending. + */ + if (!memcg_kmem_is_active(memcg)) + goto out_unlock; + + idx = memcg_cache_id(memcg); + arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, + lockdep_is_held(&slab_mutex)); + + /* + * Since per-memcg caches are created asynchronously on first + * allocation (see memcg_kmem_get_cache()), several threads can try to + * create the same cache, but only one of them may succeed. + */ + if (arr->entries[idx]) + goto out_unlock; + + cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); + cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, + css->id, memcg_name_buf); + if (!cache_name) + goto out_unlock; + + s = do_kmem_cache_create(cache_name, root_cache->object_size, + root_cache->size, root_cache->align, + root_cache->flags, root_cache->ctor, + memcg, root_cache); + /* + * If we could not create a memcg cache, do not complain, because + * that's not critical at all as we can always proceed with the root + * cache. + */ + if (IS_ERR(s)) { + kfree(cache_name); + goto out_unlock; + } + + list_add(&s->memcg_params.list, &root_cache->memcg_params.list); + + /* + * Since readers won't lock (see cache_from_memcg_idx()), we need a + * barrier here to ensure nobody will see the kmem_cache partially + * initialized. + */ + smp_wmb(); + arr->entries[idx] = s; + +out_unlock: + mutex_unlock(&slab_mutex); + + put_online_mems(); + put_online_cpus(); +} + +void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) +{ + int idx; + struct memcg_cache_array *arr; + struct kmem_cache *s, *c; + + idx = memcg_cache_id(memcg); + + get_online_cpus(); + get_online_mems(); + + mutex_lock(&slab_mutex); + list_for_each_entry(s, &slab_caches, list) { + if (!is_root_cache(s)) + continue; + + arr = rcu_dereference_protected(s->memcg_params.memcg_caches, + lockdep_is_held(&slab_mutex)); + c = arr->entries[idx]; + if (!c) + continue; + + __kmem_cache_shrink(c, true); + arr->entries[idx] = NULL; + } + mutex_unlock(&slab_mutex); + + put_online_mems(); + put_online_cpus(); +} + +void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) +{ + LIST_HEAD(release); + bool need_rcu_barrier = false; + struct kmem_cache *s, *s2; + + get_online_cpus(); + get_online_mems(); + + mutex_lock(&slab_mutex); + list_for_each_entry_safe(s, s2, &slab_caches, list) { + if (is_root_cache(s) || s->memcg_params.memcg != memcg) + continue; + /* + * The cgroup is about to be freed and therefore has no charges + * left. Hence, all its caches must be empty by now. + */ + BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier)); + } + mutex_unlock(&slab_mutex); + + put_online_mems(); + put_online_cpus(); + + do_kmem_cache_release(&release, need_rcu_barrier); +} +#endif /* CONFIG_MEMCG_KMEM */ + +void slab_kmem_cache_release(struct kmem_cache *s) +{ + destroy_memcg_params(s); + kfree_const(s->name); + kmem_cache_free(kmem_cache, s); +} + +void kmem_cache_destroy(struct kmem_cache *s) +{ + struct kmem_cache *c, *c2; + LIST_HEAD(release); + bool need_rcu_barrier = false; + bool busy = false; + + BUG_ON(!is_root_cache(s)); + + get_online_cpus(); + get_online_mems(); + + mutex_lock(&slab_mutex); + + s->refcount--; + if (s->refcount) + goto out_unlock; + + for_each_memcg_cache_safe(c, c2, s) { + if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier)) + busy = true; + } + + if (!busy) + do_kmem_cache_shutdown(s, &release, &need_rcu_barrier); + +out_unlock: + mutex_unlock(&slab_mutex); + + put_online_mems(); + put_online_cpus(); + + do_kmem_cache_release(&release, need_rcu_barrier); +} +EXPORT_SYMBOL(kmem_cache_destroy); + +/** + * kmem_cache_shrink - Shrink a cache. + * @cachep: The cache to shrink. + * + * Releases as many slabs as possible for a cache. + * To help debugging, a zero exit status indicates all slabs were released. + */ +int kmem_cache_shrink(struct kmem_cache *cachep) +{ + int ret; + + get_online_cpus(); + get_online_mems(); + ret = __kmem_cache_shrink(cachep, false); + put_online_mems(); + put_online_cpus(); + return ret; +} +EXPORT_SYMBOL(kmem_cache_shrink); + +int slab_is_available(void) +{ + return slab_state >= UP; +} + +#ifndef CONFIG_SLOB +/* Create a cache during boot when no slab services are available yet */ +void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, + unsigned long flags) +{ + int err; + + s->name = name; + s->size = s->object_size = size; + s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); + + slab_init_memcg_params(s); + + err = __kmem_cache_create(s, flags); + + if (err) + panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", + name, size, err); + + s->refcount = -1; /* Exempt from merging for now */ +} + +struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, + unsigned long flags) +{ + struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); + + if (!s) + panic("Out of memory when creating slab %s\n", name); + + create_boot_cache(s, name, size, flags); + list_add(&s->list, &slab_caches); + s->refcount = 1; + return s; +} + +struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; +EXPORT_SYMBOL(kmalloc_caches); + +#ifdef CONFIG_ZONE_DMA +struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; +EXPORT_SYMBOL(kmalloc_dma_caches); +#endif + +/* + * Conversion table for small slabs sizes / 8 to the index in the + * kmalloc array. This is necessary for slabs < 192 since we have non power + * of two cache sizes there. The size of larger slabs can be determined using + * fls. + */ +static s8 size_index[24] = { + 3, /* 8 */ + 4, /* 16 */ + 5, /* 24 */ + 5, /* 32 */ + 6, /* 40 */ + 6, /* 48 */ + 6, /* 56 */ + 6, /* 64 */ + 1, /* 72 */ + 1, /* 80 */ + 1, /* 88 */ + 1, /* 96 */ + 7, /* 104 */ + 7, /* 112 */ + 7, /* 120 */ + 7, /* 128 */ + 2, /* 136 */ + 2, /* 144 */ + 2, /* 152 */ + 2, /* 160 */ + 2, /* 168 */ + 2, /* 176 */ + 2, /* 184 */ + 2 /* 192 */ +}; + +static inline int size_index_elem(size_t bytes) +{ + return (bytes - 1) / 8; +} + +/* + * Find the kmem_cache structure that serves a given size of + * allocation + */ +struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) +{ + int index; + + if (unlikely(size > KMALLOC_MAX_SIZE)) { + WARN_ON_ONCE(!(flags & __GFP_NOWARN)); + return NULL; + } + + if (size <= 192) { + if (!size) + return ZERO_SIZE_PTR; + + index = size_index[size_index_elem(size)]; + } else + index = fls(size - 1); + +#ifdef CONFIG_ZONE_DMA + if (unlikely((flags & GFP_DMA))) + return kmalloc_dma_caches[index]; + +#endif + return kmalloc_caches[index]; +} + +/* + * Create the kmalloc array. Some of the regular kmalloc arrays + * may already have been created because they were needed to + * enable allocations for slab creation. + */ +void __init create_kmalloc_caches(unsigned long flags) +{ + int i; + + /* + * Patch up the size_index table if we have strange large alignment + * requirements for the kmalloc array. This is only the case for + * MIPS it seems. The standard arches will not generate any code here. + * + * Largest permitted alignment is 256 bytes due to the way we + * handle the index determination for the smaller caches. + * + * Make sure that nothing crazy happens if someone starts tinkering + * around with ARCH_KMALLOC_MINALIGN + */ + BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || + (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); + + for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { + int elem = size_index_elem(i); + + if (elem >= ARRAY_SIZE(size_index)) + break; + size_index[elem] = KMALLOC_SHIFT_LOW; + } + + if (KMALLOC_MIN_SIZE >= 64) { + /* + * The 96 byte size cache is not used if the alignment + * is 64 byte. + */ + for (i = 64 + 8; i <= 96; i += 8) + size_index[size_index_elem(i)] = 7; + + } + + if (KMALLOC_MIN_SIZE >= 128) { + /* + * The 192 byte sized cache is not used if the alignment + * is 128 byte. Redirect kmalloc to use the 256 byte cache + * instead. + */ + for (i = 128 + 8; i <= 192; i += 8) + size_index[size_index_elem(i)] = 8; + } + for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { + if (!kmalloc_caches[i]) { + kmalloc_caches[i] = create_kmalloc_cache(NULL, + 1 << i, flags); + } + + /* + * Caches that are not of the two-to-the-power-of size. + * These have to be created immediately after the + * earlier power of two caches + */ + if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) + kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); + + if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) + kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); + } + + /* Kmalloc array is now usable */ + slab_state = UP; + + for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { + struct kmem_cache *s = kmalloc_caches[i]; + char *n; + + if (s) { + n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); + + BUG_ON(!n); + s->name = n; + } + } + +#ifdef CONFIG_ZONE_DMA + for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { + struct kmem_cache *s = kmalloc_caches[i]; + + if (s) { + int size = kmalloc_size(i); + char *n = kasprintf(GFP_NOWAIT, + "dma-kmalloc-%d", size); + + BUG_ON(!n); + kmalloc_dma_caches[i] = create_kmalloc_cache(n, + size, SLAB_CACHE_DMA | flags); + } + } +#endif +} +#endif /* !CONFIG_SLOB */ + +/* + * To avoid unnecessary overhead, we pass through large allocation requests + * directly to the page allocator. We use __GFP_COMP, because we will need to + * know the allocation order to free the pages properly in kfree. + */ +void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) +{ + void *ret; + struct page *page; + + flags |= __GFP_COMP; + page = alloc_kmem_pages(flags, order); + ret = page ? page_address(page) : NULL; + kmemleak_alloc(ret, size, 1, flags); + kasan_kmalloc_large(ret, size); + return ret; +} +EXPORT_SYMBOL(kmalloc_order); + +#ifdef CONFIG_TRACING +void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) +{ + void *ret = kmalloc_order(size, flags, order); + trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); + return ret; +} +EXPORT_SYMBOL(kmalloc_order_trace); +#endif + +#ifdef CONFIG_SLABINFO + +#ifdef CONFIG_SLAB +#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) +#else +#define SLABINFO_RIGHTS S_IRUSR +#endif + +static void print_slabinfo_header(struct seq_file *m) +{ + /* + * Output format version, so at least we can change it + * without _too_ many complaints. + */ +#ifdef CONFIG_DEBUG_SLAB + seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); +#else + seq_puts(m, "slabinfo - version: 2.1\n"); +#endif + seq_puts(m, "# name <active_objs> <num_objs> <objsize> " + "<objperslab> <pagesperslab>"); + seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); + seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); +#ifdef CONFIG_DEBUG_SLAB + seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " + "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); + seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); +#endif + seq_putc(m, '\n'); +} + +void *slab_start(struct seq_file *m, loff_t *pos) +{ + mutex_lock(&slab_mutex); + return seq_list_start(&slab_caches, *pos); +} + +void *slab_next(struct seq_file *m, void *p, loff_t *pos) +{ + return seq_list_next(p, &slab_caches, pos); +} + +void slab_stop(struct seq_file *m, void *p) +{ + mutex_unlock(&slab_mutex); +} + +static void +memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) +{ + struct kmem_cache *c; + struct slabinfo sinfo; + + if (!is_root_cache(s)) + return; + + for_each_memcg_cache(c, s) { + memset(&sinfo, 0, sizeof(sinfo)); + get_slabinfo(c, &sinfo); + + info->active_slabs += sinfo.active_slabs; + info->num_slabs += sinfo.num_slabs; + info->shared_avail += sinfo.shared_avail; + info->active_objs += sinfo.active_objs; + info->num_objs += sinfo.num_objs; + } +} + +static void cache_show(struct kmem_cache *s, struct seq_file *m) +{ + struct slabinfo sinfo; + + memset(&sinfo, 0, sizeof(sinfo)); + get_slabinfo(s, &sinfo); + + memcg_accumulate_slabinfo(s, &sinfo); + + seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", + cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, + sinfo.objects_per_slab, (1 << sinfo.cache_order)); + + seq_printf(m, " : tunables %4u %4u %4u", + sinfo.limit, sinfo.batchcount, sinfo.shared); + seq_printf(m, " : slabdata %6lu %6lu %6lu", + sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); + slabinfo_show_stats(m, s); + seq_putc(m, '\n'); +} + +static int slab_show(struct seq_file *m, void *p) +{ + struct kmem_cache *s = list_entry(p, struct kmem_cache, list); + + if (p == slab_caches.next) + print_slabinfo_header(m); + if (is_root_cache(s)) + cache_show(s, m); + return 0; +} + +#ifdef CONFIG_MEMCG_KMEM +int memcg_slab_show(struct seq_file *m, void *p) +{ + struct kmem_cache *s = list_entry(p, struct kmem_cache, list); + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); + + if (p == slab_caches.next) + print_slabinfo_header(m); + if (!is_root_cache(s) && s->memcg_params.memcg == memcg) + cache_show(s, m); + return 0; +} +#endif + +/* + * slabinfo_op - iterator that generates /proc/slabinfo + * + * Output layout: + * cache-name + * num-active-objs + * total-objs + * object size + * num-active-slabs + * total-slabs + * num-pages-per-slab + * + further values on SMP and with statistics enabled + */ +static const struct seq_operations slabinfo_op = { + .start = slab_start, + .next = slab_next, + .stop = slab_stop, + .show = slab_show, +}; + +static int slabinfo_open(struct inode *inode, struct file *file) +{ + return seq_open(file, &slabinfo_op); +} + +static const struct file_operations proc_slabinfo_operations = { + .open = slabinfo_open, + .read = seq_read, + .write = slabinfo_write, + .llseek = seq_lseek, + .release = seq_release, +}; + +static int __init slab_proc_init(void) +{ + proc_create("slabinfo", SLABINFO_RIGHTS, NULL, + &proc_slabinfo_operations); + return 0; +} +module_init(slab_proc_init); +#endif /* CONFIG_SLABINFO */ + +static __always_inline void *__do_krealloc(const void *p, size_t new_size, + gfp_t flags) +{ + void *ret; + size_t ks = 0; + + if (p) + ks = ksize(p); + + if (ks >= new_size) { + kasan_krealloc((void *)p, new_size); + return (void *)p; + } + + ret = kmalloc_track_caller(new_size, flags); + if (ret && p) + memcpy(ret, p, ks); + + return ret; +} + +/** + * __krealloc - like krealloc() but don't free @p. + * @p: object to reallocate memory for. + * @new_size: how many bytes of memory are required. + * @flags: the type of memory to allocate. + * + * This function is like krealloc() except it never frees the originally + * allocated buffer. Use this if you don't want to free the buffer immediately + * like, for example, with RCU. + */ +void *__krealloc(const void *p, size_t new_size, gfp_t flags) +{ + if (unlikely(!new_size)) + return ZERO_SIZE_PTR; + + return __do_krealloc(p, new_size, flags); + +} +EXPORT_SYMBOL(__krealloc); + +/** + * krealloc - reallocate memory. The contents will remain unchanged. + * @p: object to reallocate memory for. + * @new_size: how many bytes of memory are required. + * @flags: the type of memory to allocate. + * + * The contents of the object pointed to are preserved up to the + * lesser of the new and old sizes. If @p is %NULL, krealloc() + * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a + * %NULL pointer, the object pointed to is freed. + */ +void *krealloc(const void *p, size_t new_size, gfp_t flags) +{ + void *ret; + + if (unlikely(!new_size)) { + kfree(p); + return ZERO_SIZE_PTR; + } + + ret = __do_krealloc(p, new_size, flags); + if (ret && p != ret) + kfree(p); + + return ret; +} +EXPORT_SYMBOL(krealloc); + +/** + * kzfree - like kfree but zero memory + * @p: object to free memory of + * + * The memory of the object @p points to is zeroed before freed. + * If @p is %NULL, kzfree() does nothing. + * + * Note: this function zeroes the whole allocated buffer which can be a good + * deal bigger than the requested buffer size passed to kmalloc(). So be + * careful when using this function in performance sensitive code. + */ +void kzfree(const void *p) +{ + size_t ks; + void *mem = (void *)p; + + if (unlikely(ZERO_OR_NULL_PTR(mem))) + return; + ks = ksize(mem); + memset(mem, 0, ks); + kfree(mem); +} +EXPORT_SYMBOL(kzfree); + +/* Tracepoints definitions. */ +EXPORT_TRACEPOINT_SYMBOL(kmalloc); +EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); +EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); +EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); +EXPORT_TRACEPOINT_SYMBOL(kfree); +EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |