diff options
Diffstat (limited to 'kernel/lib/string_helpers.c')
-rw-r--r-- | kernel/lib/string_helpers.c | 79 |
1 files changed, 54 insertions, 25 deletions
diff --git a/kernel/lib/string_helpers.c b/kernel/lib/string_helpers.c index c98ae818e..5c88204b6 100644 --- a/kernel/lib/string_helpers.c +++ b/kernel/lib/string_helpers.c @@ -43,46 +43,73 @@ void string_get_size(u64 size, u64 blk_size, const enum string_size_units units, [STRING_UNITS_10] = 1000, [STRING_UNITS_2] = 1024, }; - int i, j; - u32 remainder = 0, sf_cap, exp; + static const unsigned int rounding[] = { 500, 50, 5 }; + int i = 0, j; + u32 remainder = 0, sf_cap; char tmp[8]; const char *unit; tmp[0] = '\0'; - i = 0; - if (!size) + + if (blk_size == 0) + size = 0; + if (size == 0) goto out; - while (blk_size >= divisor[units]) { - remainder = do_div(blk_size, divisor[units]); + /* This is Napier's algorithm. Reduce the original block size to + * + * coefficient * divisor[units]^i + * + * we do the reduction so both coefficients are just under 32 bits so + * that multiplying them together won't overflow 64 bits and we keep + * as much precision as possible in the numbers. + * + * Note: it's safe to throw away the remainders here because all the + * precision is in the coefficients. + */ + while (blk_size >> 32) { + do_div(blk_size, divisor[units]); i++; } - exp = divisor[units] / (u32)blk_size; - if (size >= exp) { - remainder = do_div(size, divisor[units]); - remainder *= blk_size; + while (size >> 32) { + do_div(size, divisor[units]); i++; - } else { - remainder *= size; } + /* now perform the actual multiplication keeping i as the sum of the + * two logarithms */ size *= blk_size; - size += remainder / divisor[units]; - remainder %= divisor[units]; + /* and logarithmically reduce it until it's just under the divisor */ while (size >= divisor[units]) { remainder = do_div(size, divisor[units]); i++; } + /* work out in j how many digits of precision we need from the + * remainder */ sf_cap = size; for (j = 0; sf_cap*10 < 1000; j++) sf_cap *= 10; - if (j) { + if (units == STRING_UNITS_2) { + /* express the remainder as a decimal. It's currently the + * numerator of a fraction whose denominator is + * divisor[units], which is 1 << 10 for STRING_UNITS_2 */ remainder *= 1000; - remainder /= divisor[units]; + remainder >>= 10; + } + + /* add a 5 to the digit below what will be printed to ensure + * an arithmetical round up and carry it through to size */ + remainder += rounding[j]; + if (remainder >= 1000) { + remainder -= 1000; + size += 1; + } + + if (j) { snprintf(tmp, sizeof(tmp), ".%03u", remainder); tmp[j+1] = '\0'; } @@ -410,7 +437,7 @@ static bool escape_hex(unsigned char c, char **dst, char *end) * @dst: destination buffer (escaped) * @osz: destination buffer size * @flags: combination of the flags (bitwise OR): - * %ESCAPE_SPACE: + * %ESCAPE_SPACE: (special white space, not space itself) * '\f' - form feed * '\n' - new line * '\r' - carriage return @@ -432,16 +459,18 @@ static bool escape_hex(unsigned char c, char **dst, char *end) * all previous together * %ESCAPE_HEX: * '\xHH' - byte with hexadecimal value HH (2 digits) - * @esc: NULL-terminated string of characters any of which, if found in - * the source, has to be escaped + * @only: NULL-terminated string containing characters used to limit + * the selected escape class. If characters are included in @only + * that would not normally be escaped by the classes selected + * in @flags, they will be copied to @dst unescaped. * * Description: * The process of escaping byte buffer includes several parts. They are applied * in the following sequence. * 1. The character is matched to the printable class, if asked, and in * case of match it passes through to the output. - * 2. The character is not matched to the one from @esc string and thus - * must go as is to the output. + * 2. The character is not matched to the one from @only string and thus + * must go as-is to the output. * 3. The character is checked if it falls into the class given by @flags. * %ESCAPE_OCTAL and %ESCAPE_HEX are going last since they cover any * character. Note that they actually can't go together, otherwise @@ -458,11 +487,11 @@ static bool escape_hex(unsigned char c, char **dst, char *end) * dst for a '\0' terminator if and only if ret < osz. */ int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, - unsigned int flags, const char *esc) + unsigned int flags, const char *only) { char *p = dst; char *end = p + osz; - bool is_dict = esc && *esc; + bool is_dict = only && *only; while (isz--) { unsigned char c = *src++; @@ -471,7 +500,7 @@ int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, * Apply rules in the following sequence: * - the character is printable, when @flags has * %ESCAPE_NP bit set - * - the @esc string is supplied and does not contain a + * - the @only string is supplied and does not contain a * character under question * - the character doesn't fall into a class of symbols * defined by given @flags @@ -479,7 +508,7 @@ int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, * output buffer. */ if ((flags & ESCAPE_NP && isprint(c)) || - (is_dict && !strchr(esc, c))) { + (is_dict && !strchr(only, c))) { /* do nothing */ } else { if (flags & ESCAPE_SPACE && escape_space(c, &p, end)) |