summaryrefslogtreecommitdiffstats
path: root/kernel/fs/f2fs/node.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/fs/f2fs/node.c')
-rw-r--r--kernel/fs/f2fs/node.c2084
1 files changed, 2084 insertions, 0 deletions
diff --git a/kernel/fs/f2fs/node.c b/kernel/fs/f2fs/node.c
new file mode 100644
index 000000000..8ab0cf193
--- /dev/null
+++ b/kernel/fs/f2fs/node.c
@@ -0,0 +1,2084 @@
+/*
+ * fs/f2fs/node.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/mpage.h>
+#include <linux/backing-dev.h>
+#include <linux/blkdev.h>
+#include <linux/pagevec.h>
+#include <linux/swap.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+#include "trace.h"
+#include <trace/events/f2fs.h>
+
+#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
+
+static struct kmem_cache *nat_entry_slab;
+static struct kmem_cache *free_nid_slab;
+static struct kmem_cache *nat_entry_set_slab;
+
+bool available_free_memory(struct f2fs_sb_info *sbi, int type)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct sysinfo val;
+ unsigned long avail_ram;
+ unsigned long mem_size = 0;
+ bool res = false;
+
+ si_meminfo(&val);
+
+ /* only uses low memory */
+ avail_ram = val.totalram - val.totalhigh;
+
+ /*
+ * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
+ */
+ if (type == FREE_NIDS) {
+ mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
+ PAGE_CACHE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
+ } else if (type == NAT_ENTRIES) {
+ mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
+ PAGE_CACHE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
+ } else if (type == DIRTY_DENTS) {
+ if (sbi->sb->s_bdi->dirty_exceeded)
+ return false;
+ mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else if (type == INO_ENTRIES) {
+ int i;
+
+ for (i = 0; i <= UPDATE_INO; i++)
+ mem_size += (sbi->im[i].ino_num *
+ sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else if (type == EXTENT_CACHE) {
+ mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
+ atomic_read(&sbi->total_ext_node) *
+ sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else {
+ if (sbi->sb->s_bdi->dirty_exceeded)
+ return false;
+ }
+ return res;
+}
+
+static void clear_node_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ unsigned int long flags;
+
+ if (PageDirty(page)) {
+ spin_lock_irqsave(&mapping->tree_lock, flags);
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ spin_unlock_irqrestore(&mapping->tree_lock, flags);
+
+ clear_page_dirty_for_io(page);
+ dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
+ }
+ ClearPageUptodate(page);
+}
+
+static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ pgoff_t index = current_nat_addr(sbi, nid);
+ return get_meta_page(sbi, index);
+}
+
+static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct page *src_page;
+ struct page *dst_page;
+ pgoff_t src_off;
+ pgoff_t dst_off;
+ void *src_addr;
+ void *dst_addr;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ src_off = current_nat_addr(sbi, nid);
+ dst_off = next_nat_addr(sbi, src_off);
+
+ /* get current nat block page with lock */
+ src_page = get_meta_page(sbi, src_off);
+ dst_page = grab_meta_page(sbi, dst_off);
+ f2fs_bug_on(sbi, PageDirty(src_page));
+
+ src_addr = page_address(src_page);
+ dst_addr = page_address(dst_page);
+ memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
+ set_page_dirty(dst_page);
+ f2fs_put_page(src_page, 1);
+
+ set_to_next_nat(nm_i, nid);
+
+ return dst_page;
+}
+
+static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
+{
+ return radix_tree_lookup(&nm_i->nat_root, n);
+}
+
+static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
+ nid_t start, unsigned int nr, struct nat_entry **ep)
+{
+ return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
+}
+
+static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
+{
+ list_del(&e->list);
+ radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
+ nm_i->nat_cnt--;
+ kmem_cache_free(nat_entry_slab, e);
+}
+
+static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
+ struct nat_entry *ne)
+{
+ nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
+ struct nat_entry_set *head;
+
+ if (get_nat_flag(ne, IS_DIRTY))
+ return;
+
+ head = radix_tree_lookup(&nm_i->nat_set_root, set);
+ if (!head) {
+ head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
+
+ INIT_LIST_HEAD(&head->entry_list);
+ INIT_LIST_HEAD(&head->set_list);
+ head->set = set;
+ head->entry_cnt = 0;
+ f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
+ }
+ list_move_tail(&ne->list, &head->entry_list);
+ nm_i->dirty_nat_cnt++;
+ head->entry_cnt++;
+ set_nat_flag(ne, IS_DIRTY, true);
+}
+
+static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
+ struct nat_entry *ne)
+{
+ nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
+ struct nat_entry_set *head;
+
+ head = radix_tree_lookup(&nm_i->nat_set_root, set);
+ if (head) {
+ list_move_tail(&ne->list, &nm_i->nat_entries);
+ set_nat_flag(ne, IS_DIRTY, false);
+ head->entry_cnt--;
+ nm_i->dirty_nat_cnt--;
+ }
+}
+
+static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
+ nid_t start, unsigned int nr, struct nat_entry_set **ep)
+{
+ return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
+ start, nr);
+}
+
+bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool is_cp = true;
+
+ down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e && !get_nat_flag(e, IS_CHECKPOINTED))
+ is_cp = false;
+ up_read(&nm_i->nat_tree_lock);
+ return is_cp;
+}
+
+bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool fsynced = false;
+
+ down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ino);
+ if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
+ fsynced = true;
+ up_read(&nm_i->nat_tree_lock);
+ return fsynced;
+}
+
+bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool need_update = true;
+
+ down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ino);
+ if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
+ (get_nat_flag(e, IS_CHECKPOINTED) ||
+ get_nat_flag(e, HAS_FSYNCED_INODE)))
+ need_update = false;
+ up_read(&nm_i->nat_tree_lock);
+ return need_update;
+}
+
+static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
+{
+ struct nat_entry *new;
+
+ new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
+ f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
+ memset(new, 0, sizeof(struct nat_entry));
+ nat_set_nid(new, nid);
+ nat_reset_flag(new);
+ list_add_tail(&new->list, &nm_i->nat_entries);
+ nm_i->nat_cnt++;
+ return new;
+}
+
+static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
+ struct f2fs_nat_entry *ne)
+{
+ struct nat_entry *e;
+
+ down_write(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (!e) {
+ e = grab_nat_entry(nm_i, nid);
+ node_info_from_raw_nat(&e->ni, ne);
+ }
+ up_write(&nm_i->nat_tree_lock);
+}
+
+static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
+ block_t new_blkaddr, bool fsync_done)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+
+ down_write(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ni->nid);
+ if (!e) {
+ e = grab_nat_entry(nm_i, ni->nid);
+ copy_node_info(&e->ni, ni);
+ f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
+ } else if (new_blkaddr == NEW_ADDR) {
+ /*
+ * when nid is reallocated,
+ * previous nat entry can be remained in nat cache.
+ * So, reinitialize it with new information.
+ */
+ copy_node_info(&e->ni, ni);
+ f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
+ }
+
+ /* sanity check */
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
+ new_blkaddr == NULL_ADDR);
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
+ new_blkaddr == NEW_ADDR);
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
+ nat_get_blkaddr(e) != NULL_ADDR &&
+ new_blkaddr == NEW_ADDR);
+
+ /* increment version no as node is removed */
+ if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
+ unsigned char version = nat_get_version(e);
+ nat_set_version(e, inc_node_version(version));
+ }
+
+ /* change address */
+ nat_set_blkaddr(e, new_blkaddr);
+ if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
+ set_nat_flag(e, IS_CHECKPOINTED, false);
+ __set_nat_cache_dirty(nm_i, e);
+
+ /* update fsync_mark if its inode nat entry is still alive */
+ e = __lookup_nat_cache(nm_i, ni->ino);
+ if (e) {
+ if (fsync_done && ni->nid == ni->ino)
+ set_nat_flag(e, HAS_FSYNCED_INODE, true);
+ set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
+ }
+ up_write(&nm_i->nat_tree_lock);
+}
+
+int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ if (available_free_memory(sbi, NAT_ENTRIES))
+ return 0;
+
+ down_write(&nm_i->nat_tree_lock);
+ while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
+ struct nat_entry *ne;
+ ne = list_first_entry(&nm_i->nat_entries,
+ struct nat_entry, list);
+ __del_from_nat_cache(nm_i, ne);
+ nr_shrink--;
+ }
+ up_write(&nm_i->nat_tree_lock);
+ return nr_shrink;
+}
+
+/*
+ * This function always returns success
+ */
+void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ nid_t start_nid = START_NID(nid);
+ struct f2fs_nat_block *nat_blk;
+ struct page *page = NULL;
+ struct f2fs_nat_entry ne;
+ struct nat_entry *e;
+ int i;
+
+ ni->nid = nid;
+
+ /* Check nat cache */
+ down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e) {
+ ni->ino = nat_get_ino(e);
+ ni->blk_addr = nat_get_blkaddr(e);
+ ni->version = nat_get_version(e);
+ }
+ up_read(&nm_i->nat_tree_lock);
+ if (e)
+ return;
+
+ memset(&ne, 0, sizeof(struct f2fs_nat_entry));
+
+ /* Check current segment summary */
+ mutex_lock(&curseg->curseg_mutex);
+ i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
+ if (i >= 0) {
+ ne = nat_in_journal(sum, i);
+ node_info_from_raw_nat(ni, &ne);
+ }
+ mutex_unlock(&curseg->curseg_mutex);
+ if (i >= 0)
+ goto cache;
+
+ /* Fill node_info from nat page */
+ page = get_current_nat_page(sbi, start_nid);
+ nat_blk = (struct f2fs_nat_block *)page_address(page);
+ ne = nat_blk->entries[nid - start_nid];
+ node_info_from_raw_nat(ni, &ne);
+ f2fs_put_page(page, 1);
+cache:
+ /* cache nat entry */
+ cache_nat_entry(NM_I(sbi), nid, &ne);
+}
+
+/*
+ * The maximum depth is four.
+ * Offset[0] will have raw inode offset.
+ */
+static int get_node_path(struct f2fs_inode_info *fi, long block,
+ int offset[4], unsigned int noffset[4])
+{
+ const long direct_index = ADDRS_PER_INODE(fi);
+ const long direct_blks = ADDRS_PER_BLOCK;
+ const long dptrs_per_blk = NIDS_PER_BLOCK;
+ const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
+ const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
+ int n = 0;
+ int level = 0;
+
+ noffset[0] = 0;
+
+ if (block < direct_index) {
+ offset[n] = block;
+ goto got;
+ }
+ block -= direct_index;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR1_BLOCK;
+ noffset[n] = 1;
+ offset[n] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR2_BLOCK;
+ noffset[n] = 2;
+ offset[n] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND1_BLOCK;
+ noffset[n] = 3;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 4 + offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND2_BLOCK;
+ noffset[n] = 4 + dptrs_per_blk;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < dindirect_blks) {
+ offset[n++] = NODE_DIND_BLOCK;
+ noffset[n] = 5 + (dptrs_per_blk * 2);
+ offset[n++] = block / indirect_blks;
+ noffset[n] = 6 + (dptrs_per_blk * 2) +
+ offset[n - 1] * (dptrs_per_blk + 1);
+ offset[n++] = (block / direct_blks) % dptrs_per_blk;
+ noffset[n] = 7 + (dptrs_per_blk * 2) +
+ offset[n - 2] * (dptrs_per_blk + 1) +
+ offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 3;
+ goto got;
+ } else {
+ BUG();
+ }
+got:
+ return level;
+}
+
+/*
+ * Caller should call f2fs_put_dnode(dn).
+ * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
+ * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
+ * In the case of RDONLY_NODE, we don't need to care about mutex.
+ */
+int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct page *npage[4];
+ struct page *parent = NULL;
+ int offset[4];
+ unsigned int noffset[4];
+ nid_t nids[4];
+ int level, i;
+ int err = 0;
+
+ level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
+
+ nids[0] = dn->inode->i_ino;
+ npage[0] = dn->inode_page;
+
+ if (!npage[0]) {
+ npage[0] = get_node_page(sbi, nids[0]);
+ if (IS_ERR(npage[0]))
+ return PTR_ERR(npage[0]);
+ }
+
+ /* if inline_data is set, should not report any block indices */
+ if (f2fs_has_inline_data(dn->inode) && index) {
+ err = -ENOENT;
+ f2fs_put_page(npage[0], 1);
+ goto release_out;
+ }
+
+ parent = npage[0];
+ if (level != 0)
+ nids[1] = get_nid(parent, offset[0], true);
+ dn->inode_page = npage[0];
+ dn->inode_page_locked = true;
+
+ /* get indirect or direct nodes */
+ for (i = 1; i <= level; i++) {
+ bool done = false;
+
+ if (!nids[i] && mode == ALLOC_NODE) {
+ /* alloc new node */
+ if (!alloc_nid(sbi, &(nids[i]))) {
+ err = -ENOSPC;
+ goto release_pages;
+ }
+
+ dn->nid = nids[i];
+ npage[i] = new_node_page(dn, noffset[i], NULL);
+ if (IS_ERR(npage[i])) {
+ alloc_nid_failed(sbi, nids[i]);
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+
+ set_nid(parent, offset[i - 1], nids[i], i == 1);
+ alloc_nid_done(sbi, nids[i]);
+ done = true;
+ } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
+ npage[i] = get_node_page_ra(parent, offset[i - 1]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+ done = true;
+ }
+ if (i == 1) {
+ dn->inode_page_locked = false;
+ unlock_page(parent);
+ } else {
+ f2fs_put_page(parent, 1);
+ }
+
+ if (!done) {
+ npage[i] = get_node_page(sbi, nids[i]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ f2fs_put_page(npage[0], 0);
+ goto release_out;
+ }
+ }
+ if (i < level) {
+ parent = npage[i];
+ nids[i + 1] = get_nid(parent, offset[i], false);
+ }
+ }
+ dn->nid = nids[level];
+ dn->ofs_in_node = offset[level];
+ dn->node_page = npage[level];
+ dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
+ return 0;
+
+release_pages:
+ f2fs_put_page(parent, 1);
+ if (i > 1)
+ f2fs_put_page(npage[0], 0);
+release_out:
+ dn->inode_page = NULL;
+ dn->node_page = NULL;
+ return err;
+}
+
+static void truncate_node(struct dnode_of_data *dn)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct node_info ni;
+
+ get_node_info(sbi, dn->nid, &ni);
+ if (dn->inode->i_blocks == 0) {
+ f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
+ goto invalidate;
+ }
+ f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
+
+ /* Deallocate node address */
+ invalidate_blocks(sbi, ni.blk_addr);
+ dec_valid_node_count(sbi, dn->inode);
+ set_node_addr(sbi, &ni, NULL_ADDR, false);
+
+ if (dn->nid == dn->inode->i_ino) {
+ remove_orphan_inode(sbi, dn->nid);
+ dec_valid_inode_count(sbi);
+ } else {
+ sync_inode_page(dn);
+ }
+invalidate:
+ clear_node_page_dirty(dn->node_page);
+ set_sbi_flag(sbi, SBI_IS_DIRTY);
+
+ f2fs_put_page(dn->node_page, 1);
+
+ invalidate_mapping_pages(NODE_MAPPING(sbi),
+ dn->node_page->index, dn->node_page->index);
+
+ dn->node_page = NULL;
+ trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
+}
+
+static int truncate_dnode(struct dnode_of_data *dn)
+{
+ struct page *page;
+
+ if (dn->nid == 0)
+ return 1;
+
+ /* get direct node */
+ page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
+ if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
+ return 1;
+ else if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ /* Make dnode_of_data for parameter */
+ dn->node_page = page;
+ dn->ofs_in_node = 0;
+ truncate_data_blocks(dn);
+ truncate_node(dn);
+ return 1;
+}
+
+static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
+ int ofs, int depth)
+{
+ struct dnode_of_data rdn = *dn;
+ struct page *page;
+ struct f2fs_node *rn;
+ nid_t child_nid;
+ unsigned int child_nofs;
+ int freed = 0;
+ int i, ret;
+
+ if (dn->nid == 0)
+ return NIDS_PER_BLOCK + 1;
+
+ trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
+
+ page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
+ if (IS_ERR(page)) {
+ trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
+ return PTR_ERR(page);
+ }
+
+ rn = F2FS_NODE(page);
+ if (depth < 3) {
+ for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0)
+ continue;
+ rdn.nid = child_nid;
+ ret = truncate_dnode(&rdn);
+ if (ret < 0)
+ goto out_err;
+ set_nid(page, i, 0, false);
+ }
+ } else {
+ child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
+ for (i = ofs; i < NIDS_PER_BLOCK; i++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0) {
+ child_nofs += NIDS_PER_BLOCK + 1;
+ continue;
+ }
+ rdn.nid = child_nid;
+ ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
+ if (ret == (NIDS_PER_BLOCK + 1)) {
+ set_nid(page, i, 0, false);
+ child_nofs += ret;
+ } else if (ret < 0 && ret != -ENOENT) {
+ goto out_err;
+ }
+ }
+ freed = child_nofs;
+ }
+
+ if (!ofs) {
+ /* remove current indirect node */
+ dn->node_page = page;
+ truncate_node(dn);
+ freed++;
+ } else {
+ f2fs_put_page(page, 1);
+ }
+ trace_f2fs_truncate_nodes_exit(dn->inode, freed);
+ return freed;
+
+out_err:
+ f2fs_put_page(page, 1);
+ trace_f2fs_truncate_nodes_exit(dn->inode, ret);
+ return ret;
+}
+
+static int truncate_partial_nodes(struct dnode_of_data *dn,
+ struct f2fs_inode *ri, int *offset, int depth)
+{
+ struct page *pages[2];
+ nid_t nid[3];
+ nid_t child_nid;
+ int err = 0;
+ int i;
+ int idx = depth - 2;
+
+ nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ if (!nid[0])
+ return 0;
+
+ /* get indirect nodes in the path */
+ for (i = 0; i < idx + 1; i++) {
+ /* reference count'll be increased */
+ pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
+ if (IS_ERR(pages[i])) {
+ err = PTR_ERR(pages[i]);
+ idx = i - 1;
+ goto fail;
+ }
+ nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
+ }
+
+ /* free direct nodes linked to a partial indirect node */
+ for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
+ child_nid = get_nid(pages[idx], i, false);
+ if (!child_nid)
+ continue;
+ dn->nid = child_nid;
+ err = truncate_dnode(dn);
+ if (err < 0)
+ goto fail;
+ set_nid(pages[idx], i, 0, false);
+ }
+
+ if (offset[idx + 1] == 0) {
+ dn->node_page = pages[idx];
+ dn->nid = nid[idx];
+ truncate_node(dn);
+ } else {
+ f2fs_put_page(pages[idx], 1);
+ }
+ offset[idx]++;
+ offset[idx + 1] = 0;
+ idx--;
+fail:
+ for (i = idx; i >= 0; i--)
+ f2fs_put_page(pages[i], 1);
+
+ trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
+
+ return err;
+}
+
+/*
+ * All the block addresses of data and nodes should be nullified.
+ */
+int truncate_inode_blocks(struct inode *inode, pgoff_t from)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ int err = 0, cont = 1;
+ int level, offset[4], noffset[4];
+ unsigned int nofs = 0;
+ struct f2fs_inode *ri;
+ struct dnode_of_data dn;
+ struct page *page;
+
+ trace_f2fs_truncate_inode_blocks_enter(inode, from);
+
+ level = get_node_path(F2FS_I(inode), from, offset, noffset);
+restart:
+ page = get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(page)) {
+ trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
+ return PTR_ERR(page);
+ }
+
+ set_new_dnode(&dn, inode, page, NULL, 0);
+ unlock_page(page);
+
+ ri = F2FS_INODE(page);
+ switch (level) {
+ case 0:
+ case 1:
+ nofs = noffset[1];
+ break;
+ case 2:
+ nofs = noffset[1];
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, ri, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ nofs += 1 + NIDS_PER_BLOCK;
+ break;
+ case 3:
+ nofs = 5 + 2 * NIDS_PER_BLOCK;
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, ri, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ break;
+ default:
+ BUG();
+ }
+
+skip_partial:
+ while (cont) {
+ dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ switch (offset[0]) {
+ case NODE_DIR1_BLOCK:
+ case NODE_DIR2_BLOCK:
+ err = truncate_dnode(&dn);
+ break;
+
+ case NODE_IND1_BLOCK:
+ case NODE_IND2_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 2);
+ break;
+
+ case NODE_DIND_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 3);
+ cont = 0;
+ break;
+
+ default:
+ BUG();
+ }
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ if (offset[1] == 0 &&
+ ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
+ lock_page(page);
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+ f2fs_put_page(page, 1);
+ goto restart;
+ }
+ f2fs_wait_on_page_writeback(page, NODE);
+ ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
+ set_page_dirty(page);
+ unlock_page(page);
+ }
+ offset[1] = 0;
+ offset[0]++;
+ nofs += err;
+ }
+fail:
+ f2fs_put_page(page, 0);
+ trace_f2fs_truncate_inode_blocks_exit(inode, err);
+ return err > 0 ? 0 : err;
+}
+
+int truncate_xattr_node(struct inode *inode, struct page *page)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ nid_t nid = F2FS_I(inode)->i_xattr_nid;
+ struct dnode_of_data dn;
+ struct page *npage;
+
+ if (!nid)
+ return 0;
+
+ npage = get_node_page(sbi, nid);
+ if (IS_ERR(npage))
+ return PTR_ERR(npage);
+
+ F2FS_I(inode)->i_xattr_nid = 0;
+
+ /* need to do checkpoint during fsync */
+ F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
+
+ set_new_dnode(&dn, inode, page, npage, nid);
+
+ if (page)
+ dn.inode_page_locked = true;
+ truncate_node(&dn);
+ return 0;
+}
+
+/*
+ * Caller should grab and release a rwsem by calling f2fs_lock_op() and
+ * f2fs_unlock_op().
+ */
+void remove_inode_page(struct inode *inode)
+{
+ struct dnode_of_data dn;
+
+ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
+ if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
+ return;
+
+ if (truncate_xattr_node(inode, dn.inode_page)) {
+ f2fs_put_dnode(&dn);
+ return;
+ }
+
+ /* remove potential inline_data blocks */
+ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+ S_ISLNK(inode->i_mode))
+ truncate_data_blocks_range(&dn, 1);
+
+ /* 0 is possible, after f2fs_new_inode() has failed */
+ f2fs_bug_on(F2FS_I_SB(inode),
+ inode->i_blocks != 0 && inode->i_blocks != 1);
+
+ /* will put inode & node pages */
+ truncate_node(&dn);
+}
+
+struct page *new_inode_page(struct inode *inode)
+{
+ struct dnode_of_data dn;
+
+ /* allocate inode page for new inode */
+ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
+
+ /* caller should f2fs_put_page(page, 1); */
+ return new_node_page(&dn, 0, NULL);
+}
+
+struct page *new_node_page(struct dnode_of_data *dn,
+ unsigned int ofs, struct page *ipage)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct node_info old_ni, new_ni;
+ struct page *page;
+ int err;
+
+ if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
+ return ERR_PTR(-EPERM);
+
+ page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
+ err = -ENOSPC;
+ goto fail;
+ }
+
+ get_node_info(sbi, dn->nid, &old_ni);
+
+ /* Reinitialize old_ni with new node page */
+ f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
+ new_ni = old_ni;
+ new_ni.ino = dn->inode->i_ino;
+ set_node_addr(sbi, &new_ni, NEW_ADDR, false);
+
+ f2fs_wait_on_page_writeback(page, NODE);
+ fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
+ set_cold_node(dn->inode, page);
+ SetPageUptodate(page);
+ set_page_dirty(page);
+
+ if (f2fs_has_xattr_block(ofs))
+ F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
+
+ dn->node_page = page;
+ if (ipage)
+ update_inode(dn->inode, ipage);
+ else
+ sync_inode_page(dn);
+ if (ofs == 0)
+ inc_valid_inode_count(sbi);
+
+ return page;
+
+fail:
+ clear_node_page_dirty(page);
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+}
+
+/*
+ * Caller should do after getting the following values.
+ * 0: f2fs_put_page(page, 0)
+ * LOCKED_PAGE: f2fs_put_page(page, 1)
+ * error: nothing
+ */
+static int read_node_page(struct page *page, int rw)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(page);
+ struct node_info ni;
+ struct f2fs_io_info fio = {
+ .type = NODE,
+ .rw = rw,
+ };
+
+ get_node_info(sbi, page->index, &ni);
+
+ if (unlikely(ni.blk_addr == NULL_ADDR)) {
+ ClearPageUptodate(page);
+ f2fs_put_page(page, 1);
+ return -ENOENT;
+ }
+
+ if (PageUptodate(page))
+ return LOCKED_PAGE;
+
+ fio.blk_addr = ni.blk_addr;
+ return f2fs_submit_page_bio(sbi, page, &fio);
+}
+
+/*
+ * Readahead a node page
+ */
+void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct page *apage;
+ int err;
+
+ apage = find_get_page(NODE_MAPPING(sbi), nid);
+ if (apage && PageUptodate(apage)) {
+ f2fs_put_page(apage, 0);
+ return;
+ }
+ f2fs_put_page(apage, 0);
+
+ apage = grab_cache_page(NODE_MAPPING(sbi), nid);
+ if (!apage)
+ return;
+
+ err = read_node_page(apage, READA);
+ if (err == 0)
+ f2fs_put_page(apage, 0);
+ else if (err == LOCKED_PAGE)
+ f2fs_put_page(apage, 1);
+}
+
+struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
+{
+ struct page *page;
+ int err;
+repeat:
+ page = grab_cache_page(NODE_MAPPING(sbi), nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = read_node_page(page, READ_SYNC);
+ if (err < 0)
+ return ERR_PTR(err);
+ else if (err != LOCKED_PAGE)
+ lock_page(page);
+
+ if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
+ ClearPageUptodate(page);
+ f2fs_put_page(page, 1);
+ return ERR_PTR(-EIO);
+ }
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+ return page;
+}
+
+/*
+ * Return a locked page for the desired node page.
+ * And, readahead MAX_RA_NODE number of node pages.
+ */
+struct page *get_node_page_ra(struct page *parent, int start)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
+ struct blk_plug plug;
+ struct page *page;
+ int err, i, end;
+ nid_t nid;
+
+ /* First, try getting the desired direct node. */
+ nid = get_nid(parent, start, false);
+ if (!nid)
+ return ERR_PTR(-ENOENT);
+repeat:
+ page = grab_cache_page(NODE_MAPPING(sbi), nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = read_node_page(page, READ_SYNC);
+ if (err < 0)
+ return ERR_PTR(err);
+ else if (err == LOCKED_PAGE)
+ goto page_hit;
+
+ blk_start_plug(&plug);
+
+ /* Then, try readahead for siblings of the desired node */
+ end = start + MAX_RA_NODE;
+ end = min(end, NIDS_PER_BLOCK);
+ for (i = start + 1; i < end; i++) {
+ nid = get_nid(parent, i, false);
+ if (!nid)
+ continue;
+ ra_node_page(sbi, nid);
+ }
+
+ blk_finish_plug(&plug);
+
+ lock_page(page);
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+page_hit:
+ if (unlikely(!PageUptodate(page))) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(-EIO);
+ }
+ return page;
+}
+
+void sync_inode_page(struct dnode_of_data *dn)
+{
+ if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
+ update_inode(dn->inode, dn->node_page);
+ } else if (dn->inode_page) {
+ if (!dn->inode_page_locked)
+ lock_page(dn->inode_page);
+ update_inode(dn->inode, dn->inode_page);
+ if (!dn->inode_page_locked)
+ unlock_page(dn->inode_page);
+ } else {
+ update_inode_page(dn->inode);
+ }
+}
+
+int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
+ struct writeback_control *wbc)
+{
+ pgoff_t index, end;
+ struct pagevec pvec;
+ int step = ino ? 2 : 0;
+ int nwritten = 0, wrote = 0;
+
+ pagevec_init(&pvec, 0);
+
+next_step:
+ index = 0;
+ end = LONG_MAX;
+
+ while (index <= end) {
+ int i, nr_pages;
+ nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
+ PAGECACHE_TAG_DIRTY,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+ if (nr_pages == 0)
+ break;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ /*
+ * flushing sequence with step:
+ * 0. indirect nodes
+ * 1. dentry dnodes
+ * 2. file dnodes
+ */
+ if (step == 0 && IS_DNODE(page))
+ continue;
+ if (step == 1 && (!IS_DNODE(page) ||
+ is_cold_node(page)))
+ continue;
+ if (step == 2 && (!IS_DNODE(page) ||
+ !is_cold_node(page)))
+ continue;
+
+ /*
+ * If an fsync mode,
+ * we should not skip writing node pages.
+ */
+ if (ino && ino_of_node(page) == ino)
+ lock_page(page);
+ else if (!trylock_page(page))
+ continue;
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+ if (ino && ino_of_node(page) != ino)
+ goto continue_unlock;
+
+ if (!PageDirty(page)) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ if (!clear_page_dirty_for_io(page))
+ goto continue_unlock;
+
+ /* called by fsync() */
+ if (ino && IS_DNODE(page)) {
+ set_fsync_mark(page, 1);
+ if (IS_INODE(page)) {
+ if (!is_checkpointed_node(sbi, ino) &&
+ !has_fsynced_inode(sbi, ino))
+ set_dentry_mark(page, 1);
+ else
+ set_dentry_mark(page, 0);
+ }
+ nwritten++;
+ } else {
+ set_fsync_mark(page, 0);
+ set_dentry_mark(page, 0);
+ }
+
+ if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
+ unlock_page(page);
+ else
+ wrote++;
+
+ if (--wbc->nr_to_write == 0)
+ break;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+
+ if (wbc->nr_to_write == 0) {
+ step = 2;
+ break;
+ }
+ }
+
+ if (step < 2) {
+ step++;
+ goto next_step;
+ }
+
+ if (wrote)
+ f2fs_submit_merged_bio(sbi, NODE, WRITE);
+ return nwritten;
+}
+
+int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ pgoff_t index = 0, end = LONG_MAX;
+ struct pagevec pvec;
+ int ret2 = 0, ret = 0;
+
+ pagevec_init(&pvec, 0);
+
+ while (index <= end) {
+ int i, nr_pages;
+ nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
+ PAGECACHE_TAG_WRITEBACK,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+ if (nr_pages == 0)
+ break;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ /* until radix tree lookup accepts end_index */
+ if (unlikely(page->index > end))
+ continue;
+
+ if (ino && ino_of_node(page) == ino) {
+ f2fs_wait_on_page_writeback(page, NODE);
+ if (TestClearPageError(page))
+ ret = -EIO;
+ }
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+
+ if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
+ ret2 = -ENOSPC;
+ if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
+ ret2 = -EIO;
+ if (!ret)
+ ret = ret2;
+ return ret;
+}
+
+static int f2fs_write_node_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(page);
+ nid_t nid;
+ struct node_info ni;
+ struct f2fs_io_info fio = {
+ .type = NODE,
+ .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
+ };
+
+ trace_f2fs_writepage(page, NODE);
+
+ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
+ goto redirty_out;
+ if (unlikely(f2fs_cp_error(sbi)))
+ goto redirty_out;
+
+ f2fs_wait_on_page_writeback(page, NODE);
+
+ /* get old block addr of this node page */
+ nid = nid_of_node(page);
+ f2fs_bug_on(sbi, page->index != nid);
+
+ get_node_info(sbi, nid, &ni);
+
+ /* This page is already truncated */
+ if (unlikely(ni.blk_addr == NULL_ADDR)) {
+ ClearPageUptodate(page);
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ unlock_page(page);
+ return 0;
+ }
+
+ if (wbc->for_reclaim) {
+ if (!down_read_trylock(&sbi->node_write))
+ goto redirty_out;
+ } else {
+ down_read(&sbi->node_write);
+ }
+
+ set_page_writeback(page);
+ fio.blk_addr = ni.blk_addr;
+ write_node_page(sbi, page, nid, &fio);
+ set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ up_read(&sbi->node_write);
+ unlock_page(page);
+
+ if (wbc->for_reclaim)
+ f2fs_submit_merged_bio(sbi, NODE, WRITE);
+
+ return 0;
+
+redirty_out:
+ redirty_page_for_writepage(wbc, page);
+ return AOP_WRITEPAGE_ACTIVATE;
+}
+
+static int f2fs_write_node_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
+ long diff;
+
+ trace_f2fs_writepages(mapping->host, wbc, NODE);
+
+ /* balancing f2fs's metadata in background */
+ f2fs_balance_fs_bg(sbi);
+
+ /* collect a number of dirty node pages and write together */
+ if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
+ goto skip_write;
+
+ diff = nr_pages_to_write(sbi, NODE, wbc);
+ wbc->sync_mode = WB_SYNC_NONE;
+ sync_node_pages(sbi, 0, wbc);
+ wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
+ return 0;
+
+skip_write:
+ wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
+ return 0;
+}
+
+static int f2fs_set_node_page_dirty(struct page *page)
+{
+ trace_f2fs_set_page_dirty(page, NODE);
+
+ SetPageUptodate(page);
+ if (!PageDirty(page)) {
+ __set_page_dirty_nobuffers(page);
+ inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
+ SetPagePrivate(page);
+ f2fs_trace_pid(page);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Structure of the f2fs node operations
+ */
+const struct address_space_operations f2fs_node_aops = {
+ .writepage = f2fs_write_node_page,
+ .writepages = f2fs_write_node_pages,
+ .set_page_dirty = f2fs_set_node_page_dirty,
+ .invalidatepage = f2fs_invalidate_page,
+ .releasepage = f2fs_release_page,
+};
+
+static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
+ nid_t n)
+{
+ return radix_tree_lookup(&nm_i->free_nid_root, n);
+}
+
+static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
+ struct free_nid *i)
+{
+ list_del(&i->list);
+ radix_tree_delete(&nm_i->free_nid_root, i->nid);
+}
+
+static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+ struct nat_entry *ne;
+ bool allocated = false;
+
+ if (!available_free_memory(sbi, FREE_NIDS))
+ return -1;
+
+ /* 0 nid should not be used */
+ if (unlikely(nid == 0))
+ return 0;
+
+ if (build) {
+ /* do not add allocated nids */
+ down_read(&nm_i->nat_tree_lock);
+ ne = __lookup_nat_cache(nm_i, nid);
+ if (ne &&
+ (!get_nat_flag(ne, IS_CHECKPOINTED) ||
+ nat_get_blkaddr(ne) != NULL_ADDR))
+ allocated = true;
+ up_read(&nm_i->nat_tree_lock);
+ if (allocated)
+ return 0;
+ }
+
+ i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
+ i->nid = nid;
+ i->state = NID_NEW;
+
+ if (radix_tree_preload(GFP_NOFS)) {
+ kmem_cache_free(free_nid_slab, i);
+ return 0;
+ }
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
+ spin_unlock(&nm_i->free_nid_list_lock);
+ radix_tree_preload_end();
+ kmem_cache_free(free_nid_slab, i);
+ return 0;
+ }
+ list_add_tail(&i->list, &nm_i->free_nid_list);
+ nm_i->fcnt++;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ radix_tree_preload_end();
+ return 1;
+}
+
+static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
+{
+ struct free_nid *i;
+ bool need_free = false;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ if (i && i->state == NID_NEW) {
+ __del_from_free_nid_list(nm_i, i);
+ nm_i->fcnt--;
+ need_free = true;
+ }
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ if (need_free)
+ kmem_cache_free(free_nid_slab, i);
+}
+
+static void scan_nat_page(struct f2fs_sb_info *sbi,
+ struct page *nat_page, nid_t start_nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct f2fs_nat_block *nat_blk = page_address(nat_page);
+ block_t blk_addr;
+ int i;
+
+ i = start_nid % NAT_ENTRY_PER_BLOCK;
+
+ for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
+
+ if (unlikely(start_nid >= nm_i->max_nid))
+ break;
+
+ blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
+ f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
+ if (blk_addr == NULL_ADDR) {
+ if (add_free_nid(sbi, start_nid, true) < 0)
+ break;
+ }
+ }
+}
+
+static void build_free_nids(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ int i = 0;
+ nid_t nid = nm_i->next_scan_nid;
+
+ /* Enough entries */
+ if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
+ return;
+
+ /* readahead nat pages to be scanned */
+ ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
+
+ while (1) {
+ struct page *page = get_current_nat_page(sbi, nid);
+
+ scan_nat_page(sbi, page, nid);
+ f2fs_put_page(page, 1);
+
+ nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
+ if (unlikely(nid >= nm_i->max_nid))
+ nid = 0;
+
+ if (i++ == FREE_NID_PAGES)
+ break;
+ }
+
+ /* go to the next free nat pages to find free nids abundantly */
+ nm_i->next_scan_nid = nid;
+
+ /* find free nids from current sum_pages */
+ mutex_lock(&curseg->curseg_mutex);
+ for (i = 0; i < nats_in_cursum(sum); i++) {
+ block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
+ nid = le32_to_cpu(nid_in_journal(sum, i));
+ if (addr == NULL_ADDR)
+ add_free_nid(sbi, nid, true);
+ else
+ remove_free_nid(nm_i, nid);
+ }
+ mutex_unlock(&curseg->curseg_mutex);
+}
+
+/*
+ * If this function returns success, caller can obtain a new nid
+ * from second parameter of this function.
+ * The returned nid could be used ino as well as nid when inode is created.
+ */
+bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i = NULL;
+retry:
+ if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
+ return false;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+
+ /* We should not use stale free nids created by build_free_nids */
+ if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
+ f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
+ list_for_each_entry(i, &nm_i->free_nid_list, list)
+ if (i->state == NID_NEW)
+ break;
+
+ f2fs_bug_on(sbi, i->state != NID_NEW);
+ *nid = i->nid;
+ i->state = NID_ALLOC;
+ nm_i->fcnt--;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ return true;
+ }
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ /* Let's scan nat pages and its caches to get free nids */
+ mutex_lock(&nm_i->build_lock);
+ build_free_nids(sbi);
+ mutex_unlock(&nm_i->build_lock);
+ goto retry;
+}
+
+/*
+ * alloc_nid() should be called prior to this function.
+ */
+void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
+ __del_from_free_nid_list(nm_i, i);
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ kmem_cache_free(free_nid_slab, i);
+}
+
+/*
+ * alloc_nid() should be called prior to this function.
+ */
+void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+ bool need_free = false;
+
+ if (!nid)
+ return;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
+ if (!available_free_memory(sbi, FREE_NIDS)) {
+ __del_from_free_nid_list(nm_i, i);
+ need_free = true;
+ } else {
+ i->state = NID_NEW;
+ nm_i->fcnt++;
+ }
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ if (need_free)
+ kmem_cache_free(free_nid_slab, i);
+}
+
+void recover_inline_xattr(struct inode *inode, struct page *page)
+{
+ void *src_addr, *dst_addr;
+ size_t inline_size;
+ struct page *ipage;
+ struct f2fs_inode *ri;
+
+ ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
+ f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
+
+ ri = F2FS_INODE(page);
+ if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
+ clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
+ goto update_inode;
+ }
+
+ dst_addr = inline_xattr_addr(ipage);
+ src_addr = inline_xattr_addr(page);
+ inline_size = inline_xattr_size(inode);
+
+ f2fs_wait_on_page_writeback(ipage, NODE);
+ memcpy(dst_addr, src_addr, inline_size);
+update_inode:
+ update_inode(inode, ipage);
+ f2fs_put_page(ipage, 1);
+}
+
+void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
+ nid_t new_xnid = nid_of_node(page);
+ struct node_info ni;
+
+ /* 1: invalidate the previous xattr nid */
+ if (!prev_xnid)
+ goto recover_xnid;
+
+ /* Deallocate node address */
+ get_node_info(sbi, prev_xnid, &ni);
+ f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
+ invalidate_blocks(sbi, ni.blk_addr);
+ dec_valid_node_count(sbi, inode);
+ set_node_addr(sbi, &ni, NULL_ADDR, false);
+
+recover_xnid:
+ /* 2: allocate new xattr nid */
+ if (unlikely(!inc_valid_node_count(sbi, inode)))
+ f2fs_bug_on(sbi, 1);
+
+ remove_free_nid(NM_I(sbi), new_xnid);
+ get_node_info(sbi, new_xnid, &ni);
+ ni.ino = inode->i_ino;
+ set_node_addr(sbi, &ni, NEW_ADDR, false);
+ F2FS_I(inode)->i_xattr_nid = new_xnid;
+
+ /* 3: update xattr blkaddr */
+ refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
+ set_node_addr(sbi, &ni, blkaddr, false);
+
+ update_inode_page(inode);
+}
+
+int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
+{
+ struct f2fs_inode *src, *dst;
+ nid_t ino = ino_of_node(page);
+ struct node_info old_ni, new_ni;
+ struct page *ipage;
+
+ get_node_info(sbi, ino, &old_ni);
+
+ if (unlikely(old_ni.blk_addr != NULL_ADDR))
+ return -EINVAL;
+
+ ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
+ if (!ipage)
+ return -ENOMEM;
+
+ /* Should not use this inode from free nid list */
+ remove_free_nid(NM_I(sbi), ino);
+
+ SetPageUptodate(ipage);
+ fill_node_footer(ipage, ino, ino, 0, true);
+
+ src = F2FS_INODE(page);
+ dst = F2FS_INODE(ipage);
+
+ memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
+ dst->i_size = 0;
+ dst->i_blocks = cpu_to_le64(1);
+ dst->i_links = cpu_to_le32(1);
+ dst->i_xattr_nid = 0;
+ dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
+
+ new_ni = old_ni;
+ new_ni.ino = ino;
+
+ if (unlikely(!inc_valid_node_count(sbi, NULL)))
+ WARN_ON(1);
+ set_node_addr(sbi, &new_ni, NEW_ADDR, false);
+ inc_valid_inode_count(sbi);
+ set_page_dirty(ipage);
+ f2fs_put_page(ipage, 1);
+ return 0;
+}
+
+int restore_node_summary(struct f2fs_sb_info *sbi,
+ unsigned int segno, struct f2fs_summary_block *sum)
+{
+ struct f2fs_node *rn;
+ struct f2fs_summary *sum_entry;
+ block_t addr;
+ int bio_blocks = MAX_BIO_BLOCKS(sbi);
+ int i, idx, last_offset, nrpages;
+
+ /* scan the node segment */
+ last_offset = sbi->blocks_per_seg;
+ addr = START_BLOCK(sbi, segno);
+ sum_entry = &sum->entries[0];
+
+ for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
+ nrpages = min(last_offset - i, bio_blocks);
+
+ /* readahead node pages */
+ ra_meta_pages(sbi, addr, nrpages, META_POR);
+
+ for (idx = addr; idx < addr + nrpages; idx++) {
+ struct page *page = get_meta_page(sbi, idx);
+
+ rn = F2FS_NODE(page);
+ sum_entry->nid = rn->footer.nid;
+ sum_entry->version = 0;
+ sum_entry->ofs_in_node = 0;
+ sum_entry++;
+ f2fs_put_page(page, 1);
+ }
+
+ invalidate_mapping_pages(META_MAPPING(sbi), addr,
+ addr + nrpages);
+ }
+ return 0;
+}
+
+static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ int i;
+
+ mutex_lock(&curseg->curseg_mutex);
+ for (i = 0; i < nats_in_cursum(sum); i++) {
+ struct nat_entry *ne;
+ struct f2fs_nat_entry raw_ne;
+ nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
+
+ raw_ne = nat_in_journal(sum, i);
+
+ down_write(&nm_i->nat_tree_lock);
+ ne = __lookup_nat_cache(nm_i, nid);
+ if (!ne) {
+ ne = grab_nat_entry(nm_i, nid);
+ node_info_from_raw_nat(&ne->ni, &raw_ne);
+ }
+ __set_nat_cache_dirty(nm_i, ne);
+ up_write(&nm_i->nat_tree_lock);
+ }
+ update_nats_in_cursum(sum, -i);
+ mutex_unlock(&curseg->curseg_mutex);
+}
+
+static void __adjust_nat_entry_set(struct nat_entry_set *nes,
+ struct list_head *head, int max)
+{
+ struct nat_entry_set *cur;
+
+ if (nes->entry_cnt >= max)
+ goto add_out;
+
+ list_for_each_entry(cur, head, set_list) {
+ if (cur->entry_cnt >= nes->entry_cnt) {
+ list_add(&nes->set_list, cur->set_list.prev);
+ return;
+ }
+ }
+add_out:
+ list_add_tail(&nes->set_list, head);
+}
+
+static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
+ struct nat_entry_set *set)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
+ bool to_journal = true;
+ struct f2fs_nat_block *nat_blk;
+ struct nat_entry *ne, *cur;
+ struct page *page = NULL;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ /*
+ * there are two steps to flush nat entries:
+ * #1, flush nat entries to journal in current hot data summary block.
+ * #2, flush nat entries to nat page.
+ */
+ if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
+ to_journal = false;
+
+ if (to_journal) {
+ mutex_lock(&curseg->curseg_mutex);
+ } else {
+ page = get_next_nat_page(sbi, start_nid);
+ nat_blk = page_address(page);
+ f2fs_bug_on(sbi, !nat_blk);
+ }
+
+ /* flush dirty nats in nat entry set */
+ list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
+ struct f2fs_nat_entry *raw_ne;
+ nid_t nid = nat_get_nid(ne);
+ int offset;
+
+ if (nat_get_blkaddr(ne) == NEW_ADDR)
+ continue;
+
+ if (to_journal) {
+ offset = lookup_journal_in_cursum(sum,
+ NAT_JOURNAL, nid, 1);
+ f2fs_bug_on(sbi, offset < 0);
+ raw_ne = &nat_in_journal(sum, offset);
+ nid_in_journal(sum, offset) = cpu_to_le32(nid);
+ } else {
+ raw_ne = &nat_blk->entries[nid - start_nid];
+ }
+ raw_nat_from_node_info(raw_ne, &ne->ni);
+
+ down_write(&NM_I(sbi)->nat_tree_lock);
+ nat_reset_flag(ne);
+ __clear_nat_cache_dirty(NM_I(sbi), ne);
+ up_write(&NM_I(sbi)->nat_tree_lock);
+
+ if (nat_get_blkaddr(ne) == NULL_ADDR)
+ add_free_nid(sbi, nid, false);
+ }
+
+ if (to_journal)
+ mutex_unlock(&curseg->curseg_mutex);
+ else
+ f2fs_put_page(page, 1);
+
+ f2fs_bug_on(sbi, set->entry_cnt);
+
+ down_write(&nm_i->nat_tree_lock);
+ radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
+ up_write(&nm_i->nat_tree_lock);
+ kmem_cache_free(nat_entry_set_slab, set);
+}
+
+/*
+ * This function is called during the checkpointing process.
+ */
+void flush_nat_entries(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ struct nat_entry_set *setvec[SETVEC_SIZE];
+ struct nat_entry_set *set, *tmp;
+ unsigned int found;
+ nid_t set_idx = 0;
+ LIST_HEAD(sets);
+
+ if (!nm_i->dirty_nat_cnt)
+ return;
+ /*
+ * if there are no enough space in journal to store dirty nat
+ * entries, remove all entries from journal and merge them
+ * into nat entry set.
+ */
+ if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
+ remove_nats_in_journal(sbi);
+
+ down_write(&nm_i->nat_tree_lock);
+ while ((found = __gang_lookup_nat_set(nm_i,
+ set_idx, SETVEC_SIZE, setvec))) {
+ unsigned idx;
+ set_idx = setvec[found - 1]->set + 1;
+ for (idx = 0; idx < found; idx++)
+ __adjust_nat_entry_set(setvec[idx], &sets,
+ MAX_NAT_JENTRIES(sum));
+ }
+ up_write(&nm_i->nat_tree_lock);
+
+ /* flush dirty nats in nat entry set */
+ list_for_each_entry_safe(set, tmp, &sets, set_list)
+ __flush_nat_entry_set(sbi, set);
+
+ f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
+}
+
+static int init_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned char *version_bitmap;
+ unsigned int nat_segs, nat_blocks;
+
+ nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
+
+ /* segment_count_nat includes pair segment so divide to 2. */
+ nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
+ nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
+
+ nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
+
+ /* not used nids: 0, node, meta, (and root counted as valid node) */
+ nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
+ nm_i->fcnt = 0;
+ nm_i->nat_cnt = 0;
+ nm_i->ram_thresh = DEF_RAM_THRESHOLD;
+
+ INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
+ INIT_LIST_HEAD(&nm_i->free_nid_list);
+ INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
+ INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
+ INIT_LIST_HEAD(&nm_i->nat_entries);
+
+ mutex_init(&nm_i->build_lock);
+ spin_lock_init(&nm_i->free_nid_list_lock);
+ init_rwsem(&nm_i->nat_tree_lock);
+
+ nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
+ nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
+ version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
+ if (!version_bitmap)
+ return -EFAULT;
+
+ nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
+ GFP_KERNEL);
+ if (!nm_i->nat_bitmap)
+ return -ENOMEM;
+ return 0;
+}
+
+int build_node_manager(struct f2fs_sb_info *sbi)
+{
+ int err;
+
+ sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
+ if (!sbi->nm_info)
+ return -ENOMEM;
+
+ err = init_node_manager(sbi);
+ if (err)
+ return err;
+
+ build_free_nids(sbi);
+ return 0;
+}
+
+void destroy_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i, *next_i;
+ struct nat_entry *natvec[NATVEC_SIZE];
+ struct nat_entry_set *setvec[SETVEC_SIZE];
+ nid_t nid = 0;
+ unsigned int found;
+
+ if (!nm_i)
+ return;
+
+ /* destroy free nid list */
+ spin_lock(&nm_i->free_nid_list_lock);
+ list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
+ f2fs_bug_on(sbi, i->state == NID_ALLOC);
+ __del_from_free_nid_list(nm_i, i);
+ nm_i->fcnt--;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ kmem_cache_free(free_nid_slab, i);
+ spin_lock(&nm_i->free_nid_list_lock);
+ }
+ f2fs_bug_on(sbi, nm_i->fcnt);
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ /* destroy nat cache */
+ down_write(&nm_i->nat_tree_lock);
+ while ((found = __gang_lookup_nat_cache(nm_i,
+ nid, NATVEC_SIZE, natvec))) {
+ unsigned idx;
+
+ nid = nat_get_nid(natvec[found - 1]) + 1;
+ for (idx = 0; idx < found; idx++)
+ __del_from_nat_cache(nm_i, natvec[idx]);
+ }
+ f2fs_bug_on(sbi, nm_i->nat_cnt);
+
+ /* destroy nat set cache */
+ nid = 0;
+ while ((found = __gang_lookup_nat_set(nm_i,
+ nid, SETVEC_SIZE, setvec))) {
+ unsigned idx;
+
+ nid = setvec[found - 1]->set + 1;
+ for (idx = 0; idx < found; idx++) {
+ /* entry_cnt is not zero, when cp_error was occurred */
+ f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
+ radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
+ kmem_cache_free(nat_entry_set_slab, setvec[idx]);
+ }
+ }
+ up_write(&nm_i->nat_tree_lock);
+
+ kfree(nm_i->nat_bitmap);
+ sbi->nm_info = NULL;
+ kfree(nm_i);
+}
+
+int __init create_node_manager_caches(void)
+{
+ nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
+ sizeof(struct nat_entry));
+ if (!nat_entry_slab)
+ goto fail;
+
+ free_nid_slab = f2fs_kmem_cache_create("free_nid",
+ sizeof(struct free_nid));
+ if (!free_nid_slab)
+ goto destroy_nat_entry;
+
+ nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
+ sizeof(struct nat_entry_set));
+ if (!nat_entry_set_slab)
+ goto destroy_free_nid;
+ return 0;
+
+destroy_free_nid:
+ kmem_cache_destroy(free_nid_slab);
+destroy_nat_entry:
+ kmem_cache_destroy(nat_entry_slab);
+fail:
+ return -ENOMEM;
+}
+
+void destroy_node_manager_caches(void)
+{
+ kmem_cache_destroy(nat_entry_set_slab);
+ kmem_cache_destroy(free_nid_slab);
+ kmem_cache_destroy(nat_entry_slab);
+}