diff options
Diffstat (limited to 'kernel/drivers/spi/spi.c')
-rw-r--r-- | kernel/drivers/spi/spi.c | 2408 |
1 files changed, 2408 insertions, 0 deletions
diff --git a/kernel/drivers/spi/spi.c b/kernel/drivers/spi/spi.c new file mode 100644 index 000000000..d35c1a132 --- /dev/null +++ b/kernel/drivers/spi/spi.c @@ -0,0 +1,2408 @@ +/* + * SPI init/core code + * + * Copyright (C) 2005 David Brownell + * Copyright (C) 2008 Secret Lab Technologies Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/kernel.h> +#include <linux/device.h> +#include <linux/init.h> +#include <linux/cache.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mutex.h> +#include <linux/of_device.h> +#include <linux/of_irq.h> +#include <linux/clk/clk-conf.h> +#include <linux/slab.h> +#include <linux/mod_devicetable.h> +#include <linux/spi/spi.h> +#include <linux/of_gpio.h> +#include <linux/pm_runtime.h> +#include <linux/pm_domain.h> +#include <linux/export.h> +#include <linux/sched/rt.h> +#include <linux/delay.h> +#include <linux/kthread.h> +#include <linux/ioport.h> +#include <linux/acpi.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/spi.h> + +static void spidev_release(struct device *dev) +{ + struct spi_device *spi = to_spi_device(dev); + + /* spi masters may cleanup for released devices */ + if (spi->master->cleanup) + spi->master->cleanup(spi); + + spi_master_put(spi->master); + kfree(spi); +} + +static ssize_t +modalias_show(struct device *dev, struct device_attribute *a, char *buf) +{ + const struct spi_device *spi = to_spi_device(dev); + int len; + + len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); + if (len != -ENODEV) + return len; + + return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); +} +static DEVICE_ATTR_RO(modalias); + +static struct attribute *spi_dev_attrs[] = { + &dev_attr_modalias.attr, + NULL, +}; +ATTRIBUTE_GROUPS(spi_dev); + +/* modalias support makes "modprobe $MODALIAS" new-style hotplug work, + * and the sysfs version makes coldplug work too. + */ + +static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, + const struct spi_device *sdev) +{ + while (id->name[0]) { + if (!strcmp(sdev->modalias, id->name)) + return id; + id++; + } + return NULL; +} + +const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) +{ + const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); + + return spi_match_id(sdrv->id_table, sdev); +} +EXPORT_SYMBOL_GPL(spi_get_device_id); + +static int spi_match_device(struct device *dev, struct device_driver *drv) +{ + const struct spi_device *spi = to_spi_device(dev); + const struct spi_driver *sdrv = to_spi_driver(drv); + + /* Attempt an OF style match */ + if (of_driver_match_device(dev, drv)) + return 1; + + /* Then try ACPI */ + if (acpi_driver_match_device(dev, drv)) + return 1; + + if (sdrv->id_table) + return !!spi_match_id(sdrv->id_table, spi); + + return strcmp(spi->modalias, drv->name) == 0; +} + +static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) +{ + const struct spi_device *spi = to_spi_device(dev); + int rc; + + rc = acpi_device_uevent_modalias(dev, env); + if (rc != -ENODEV) + return rc; + + add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); + return 0; +} + +struct bus_type spi_bus_type = { + .name = "spi", + .dev_groups = spi_dev_groups, + .match = spi_match_device, + .uevent = spi_uevent, +}; +EXPORT_SYMBOL_GPL(spi_bus_type); + + +static int spi_drv_probe(struct device *dev) +{ + const struct spi_driver *sdrv = to_spi_driver(dev->driver); + int ret; + + ret = of_clk_set_defaults(dev->of_node, false); + if (ret) + return ret; + + ret = dev_pm_domain_attach(dev, true); + if (ret != -EPROBE_DEFER) { + ret = sdrv->probe(to_spi_device(dev)); + if (ret) + dev_pm_domain_detach(dev, true); + } + + return ret; +} + +static int spi_drv_remove(struct device *dev) +{ + const struct spi_driver *sdrv = to_spi_driver(dev->driver); + int ret; + + ret = sdrv->remove(to_spi_device(dev)); + dev_pm_domain_detach(dev, true); + + return ret; +} + +static void spi_drv_shutdown(struct device *dev) +{ + const struct spi_driver *sdrv = to_spi_driver(dev->driver); + + sdrv->shutdown(to_spi_device(dev)); +} + +/** + * spi_register_driver - register a SPI driver + * @sdrv: the driver to register + * Context: can sleep + */ +int spi_register_driver(struct spi_driver *sdrv) +{ + sdrv->driver.bus = &spi_bus_type; + if (sdrv->probe) + sdrv->driver.probe = spi_drv_probe; + if (sdrv->remove) + sdrv->driver.remove = spi_drv_remove; + if (sdrv->shutdown) + sdrv->driver.shutdown = spi_drv_shutdown; + return driver_register(&sdrv->driver); +} +EXPORT_SYMBOL_GPL(spi_register_driver); + +/*-------------------------------------------------------------------------*/ + +/* SPI devices should normally not be created by SPI device drivers; that + * would make them board-specific. Similarly with SPI master drivers. + * Device registration normally goes into like arch/.../mach.../board-YYY.c + * with other readonly (flashable) information about mainboard devices. + */ + +struct boardinfo { + struct list_head list; + struct spi_board_info board_info; +}; + +static LIST_HEAD(board_list); +static LIST_HEAD(spi_master_list); + +/* + * Used to protect add/del opertion for board_info list and + * spi_master list, and their matching process + */ +static DEFINE_MUTEX(board_lock); + +/** + * spi_alloc_device - Allocate a new SPI device + * @master: Controller to which device is connected + * Context: can sleep + * + * Allows a driver to allocate and initialize a spi_device without + * registering it immediately. This allows a driver to directly + * fill the spi_device with device parameters before calling + * spi_add_device() on it. + * + * Caller is responsible to call spi_add_device() on the returned + * spi_device structure to add it to the SPI master. If the caller + * needs to discard the spi_device without adding it, then it should + * call spi_dev_put() on it. + * + * Returns a pointer to the new device, or NULL. + */ +struct spi_device *spi_alloc_device(struct spi_master *master) +{ + struct spi_device *spi; + + if (!spi_master_get(master)) + return NULL; + + spi = kzalloc(sizeof(*spi), GFP_KERNEL); + if (!spi) { + spi_master_put(master); + return NULL; + } + + spi->master = master; + spi->dev.parent = &master->dev; + spi->dev.bus = &spi_bus_type; + spi->dev.release = spidev_release; + spi->cs_gpio = -ENOENT; + device_initialize(&spi->dev); + return spi; +} +EXPORT_SYMBOL_GPL(spi_alloc_device); + +static void spi_dev_set_name(struct spi_device *spi) +{ + struct acpi_device *adev = ACPI_COMPANION(&spi->dev); + + if (adev) { + dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); + return; + } + + dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), + spi->chip_select); +} + +static int spi_dev_check(struct device *dev, void *data) +{ + struct spi_device *spi = to_spi_device(dev); + struct spi_device *new_spi = data; + + if (spi->master == new_spi->master && + spi->chip_select == new_spi->chip_select) + return -EBUSY; + return 0; +} + +/** + * spi_add_device - Add spi_device allocated with spi_alloc_device + * @spi: spi_device to register + * + * Companion function to spi_alloc_device. Devices allocated with + * spi_alloc_device can be added onto the spi bus with this function. + * + * Returns 0 on success; negative errno on failure + */ +int spi_add_device(struct spi_device *spi) +{ + static DEFINE_MUTEX(spi_add_lock); + struct spi_master *master = spi->master; + struct device *dev = master->dev.parent; + int status; + + /* Chipselects are numbered 0..max; validate. */ + if (spi->chip_select >= master->num_chipselect) { + dev_err(dev, "cs%d >= max %d\n", + spi->chip_select, + master->num_chipselect); + return -EINVAL; + } + + /* Set the bus ID string */ + spi_dev_set_name(spi); + + /* We need to make sure there's no other device with this + * chipselect **BEFORE** we call setup(), else we'll trash + * its configuration. Lock against concurrent add() calls. + */ + mutex_lock(&spi_add_lock); + + status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); + if (status) { + dev_err(dev, "chipselect %d already in use\n", + spi->chip_select); + goto done; + } + + if (master->cs_gpios) + spi->cs_gpio = master->cs_gpios[spi->chip_select]; + + /* Drivers may modify this initial i/o setup, but will + * normally rely on the device being setup. Devices + * using SPI_CS_HIGH can't coexist well otherwise... + */ + status = spi_setup(spi); + if (status < 0) { + dev_err(dev, "can't setup %s, status %d\n", + dev_name(&spi->dev), status); + goto done; + } + + /* Device may be bound to an active driver when this returns */ + status = device_add(&spi->dev); + if (status < 0) + dev_err(dev, "can't add %s, status %d\n", + dev_name(&spi->dev), status); + else + dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); + +done: + mutex_unlock(&spi_add_lock); + return status; +} +EXPORT_SYMBOL_GPL(spi_add_device); + +/** + * spi_new_device - instantiate one new SPI device + * @master: Controller to which device is connected + * @chip: Describes the SPI device + * Context: can sleep + * + * On typical mainboards, this is purely internal; and it's not needed + * after board init creates the hard-wired devices. Some development + * platforms may not be able to use spi_register_board_info though, and + * this is exported so that for example a USB or parport based adapter + * driver could add devices (which it would learn about out-of-band). + * + * Returns the new device, or NULL. + */ +struct spi_device *spi_new_device(struct spi_master *master, + struct spi_board_info *chip) +{ + struct spi_device *proxy; + int status; + + /* NOTE: caller did any chip->bus_num checks necessary. + * + * Also, unless we change the return value convention to use + * error-or-pointer (not NULL-or-pointer), troubleshootability + * suggests syslogged diagnostics are best here (ugh). + */ + + proxy = spi_alloc_device(master); + if (!proxy) + return NULL; + + WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); + + proxy->chip_select = chip->chip_select; + proxy->max_speed_hz = chip->max_speed_hz; + proxy->mode = chip->mode; + proxy->irq = chip->irq; + strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); + proxy->dev.platform_data = (void *) chip->platform_data; + proxy->controller_data = chip->controller_data; + proxy->controller_state = NULL; + + status = spi_add_device(proxy); + if (status < 0) { + spi_dev_put(proxy); + return NULL; + } + + return proxy; +} +EXPORT_SYMBOL_GPL(spi_new_device); + +static void spi_match_master_to_boardinfo(struct spi_master *master, + struct spi_board_info *bi) +{ + struct spi_device *dev; + + if (master->bus_num != bi->bus_num) + return; + + dev = spi_new_device(master, bi); + if (!dev) + dev_err(master->dev.parent, "can't create new device for %s\n", + bi->modalias); +} + +/** + * spi_register_board_info - register SPI devices for a given board + * @info: array of chip descriptors + * @n: how many descriptors are provided + * Context: can sleep + * + * Board-specific early init code calls this (probably during arch_initcall) + * with segments of the SPI device table. Any device nodes are created later, + * after the relevant parent SPI controller (bus_num) is defined. We keep + * this table of devices forever, so that reloading a controller driver will + * not make Linux forget about these hard-wired devices. + * + * Other code can also call this, e.g. a particular add-on board might provide + * SPI devices through its expansion connector, so code initializing that board + * would naturally declare its SPI devices. + * + * The board info passed can safely be __initdata ... but be careful of + * any embedded pointers (platform_data, etc), they're copied as-is. + */ +int spi_register_board_info(struct spi_board_info const *info, unsigned n) +{ + struct boardinfo *bi; + int i; + + if (!n) + return -EINVAL; + + bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); + if (!bi) + return -ENOMEM; + + for (i = 0; i < n; i++, bi++, info++) { + struct spi_master *master; + + memcpy(&bi->board_info, info, sizeof(*info)); + mutex_lock(&board_lock); + list_add_tail(&bi->list, &board_list); + list_for_each_entry(master, &spi_master_list, list) + spi_match_master_to_boardinfo(master, &bi->board_info); + mutex_unlock(&board_lock); + } + + return 0; +} + +/*-------------------------------------------------------------------------*/ + +static void spi_set_cs(struct spi_device *spi, bool enable) +{ + if (spi->mode & SPI_CS_HIGH) + enable = !enable; + + if (spi->cs_gpio >= 0) + gpio_set_value(spi->cs_gpio, !enable); + else if (spi->master->set_cs) + spi->master->set_cs(spi, !enable); +} + +#ifdef CONFIG_HAS_DMA +static int spi_map_buf(struct spi_master *master, struct device *dev, + struct sg_table *sgt, void *buf, size_t len, + enum dma_data_direction dir) +{ + const bool vmalloced_buf = is_vmalloc_addr(buf); + const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; + const int sgs = DIV_ROUND_UP(len, desc_len); + struct page *vm_page; + void *sg_buf; + size_t min; + int i, ret; + + ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); + if (ret != 0) + return ret; + + for (i = 0; i < sgs; i++) { + min = min_t(size_t, len, desc_len); + + if (vmalloced_buf) { + vm_page = vmalloc_to_page(buf); + if (!vm_page) { + sg_free_table(sgt); + return -ENOMEM; + } + sg_set_page(&sgt->sgl[i], vm_page, + min, offset_in_page(buf)); + } else { + sg_buf = buf; + sg_set_buf(&sgt->sgl[i], sg_buf, min); + } + + + buf += min; + len -= min; + } + + ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); + if (!ret) + ret = -ENOMEM; + if (ret < 0) { + sg_free_table(sgt); + return ret; + } + + sgt->nents = ret; + + return 0; +} + +static void spi_unmap_buf(struct spi_master *master, struct device *dev, + struct sg_table *sgt, enum dma_data_direction dir) +{ + if (sgt->orig_nents) { + dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); + sg_free_table(sgt); + } +} + +static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) +{ + struct device *tx_dev, *rx_dev; + struct spi_transfer *xfer; + int ret; + + if (!master->can_dma) + return 0; + + tx_dev = master->dma_tx->device->dev; + rx_dev = master->dma_rx->device->dev; + + list_for_each_entry(xfer, &msg->transfers, transfer_list) { + if (!master->can_dma(master, msg->spi, xfer)) + continue; + + if (xfer->tx_buf != NULL) { + ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, + (void *)xfer->tx_buf, xfer->len, + DMA_TO_DEVICE); + if (ret != 0) + return ret; + } + + if (xfer->rx_buf != NULL) { + ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, + xfer->rx_buf, xfer->len, + DMA_FROM_DEVICE); + if (ret != 0) { + spi_unmap_buf(master, tx_dev, &xfer->tx_sg, + DMA_TO_DEVICE); + return ret; + } + } + } + + master->cur_msg_mapped = true; + + return 0; +} + +static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) +{ + struct spi_transfer *xfer; + struct device *tx_dev, *rx_dev; + + if (!master->cur_msg_mapped || !master->can_dma) + return 0; + + tx_dev = master->dma_tx->device->dev; + rx_dev = master->dma_rx->device->dev; + + list_for_each_entry(xfer, &msg->transfers, transfer_list) { + /* + * Restore the original value of tx_buf or rx_buf if they are + * NULL. + */ + if (xfer->tx_buf == master->dummy_tx) + xfer->tx_buf = NULL; + if (xfer->rx_buf == master->dummy_rx) + xfer->rx_buf = NULL; + + if (!master->can_dma(master, msg->spi, xfer)) + continue; + + spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); + spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); + } + + return 0; +} +#else /* !CONFIG_HAS_DMA */ +static inline int __spi_map_msg(struct spi_master *master, + struct spi_message *msg) +{ + return 0; +} + +static inline int spi_unmap_msg(struct spi_master *master, + struct spi_message *msg) +{ + return 0; +} +#endif /* !CONFIG_HAS_DMA */ + +static int spi_map_msg(struct spi_master *master, struct spi_message *msg) +{ + struct spi_transfer *xfer; + void *tmp; + unsigned int max_tx, max_rx; + + if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { + max_tx = 0; + max_rx = 0; + + list_for_each_entry(xfer, &msg->transfers, transfer_list) { + if ((master->flags & SPI_MASTER_MUST_TX) && + !xfer->tx_buf) + max_tx = max(xfer->len, max_tx); + if ((master->flags & SPI_MASTER_MUST_RX) && + !xfer->rx_buf) + max_rx = max(xfer->len, max_rx); + } + + if (max_tx) { + tmp = krealloc(master->dummy_tx, max_tx, + GFP_KERNEL | GFP_DMA); + if (!tmp) + return -ENOMEM; + master->dummy_tx = tmp; + memset(tmp, 0, max_tx); + } + + if (max_rx) { + tmp = krealloc(master->dummy_rx, max_rx, + GFP_KERNEL | GFP_DMA); + if (!tmp) + return -ENOMEM; + master->dummy_rx = tmp; + } + + if (max_tx || max_rx) { + list_for_each_entry(xfer, &msg->transfers, + transfer_list) { + if (!xfer->tx_buf) + xfer->tx_buf = master->dummy_tx; + if (!xfer->rx_buf) + xfer->rx_buf = master->dummy_rx; + } + } + } + + return __spi_map_msg(master, msg); +} + +/* + * spi_transfer_one_message - Default implementation of transfer_one_message() + * + * This is a standard implementation of transfer_one_message() for + * drivers which impelment a transfer_one() operation. It provides + * standard handling of delays and chip select management. + */ +static int spi_transfer_one_message(struct spi_master *master, + struct spi_message *msg) +{ + struct spi_transfer *xfer; + bool keep_cs = false; + int ret = 0; + unsigned long ms = 1; + + spi_set_cs(msg->spi, true); + + list_for_each_entry(xfer, &msg->transfers, transfer_list) { + trace_spi_transfer_start(msg, xfer); + + if (xfer->tx_buf || xfer->rx_buf) { + reinit_completion(&master->xfer_completion); + + ret = master->transfer_one(master, msg->spi, xfer); + if (ret < 0) { + dev_err(&msg->spi->dev, + "SPI transfer failed: %d\n", ret); + goto out; + } + + if (ret > 0) { + ret = 0; + ms = xfer->len * 8 * 1000 / xfer->speed_hz; + ms += ms + 100; /* some tolerance */ + + ms = wait_for_completion_timeout(&master->xfer_completion, + msecs_to_jiffies(ms)); + } + + if (ms == 0) { + dev_err(&msg->spi->dev, + "SPI transfer timed out\n"); + msg->status = -ETIMEDOUT; + } + } else { + if (xfer->len) + dev_err(&msg->spi->dev, + "Bufferless transfer has length %u\n", + xfer->len); + } + + trace_spi_transfer_stop(msg, xfer); + + if (msg->status != -EINPROGRESS) + goto out; + + if (xfer->delay_usecs) + udelay(xfer->delay_usecs); + + if (xfer->cs_change) { + if (list_is_last(&xfer->transfer_list, + &msg->transfers)) { + keep_cs = true; + } else { + spi_set_cs(msg->spi, false); + udelay(10); + spi_set_cs(msg->spi, true); + } + } + + msg->actual_length += xfer->len; + } + +out: + if (ret != 0 || !keep_cs) + spi_set_cs(msg->spi, false); + + if (msg->status == -EINPROGRESS) + msg->status = ret; + + if (msg->status && master->handle_err) + master->handle_err(master, msg); + + spi_finalize_current_message(master); + + return ret; +} + +/** + * spi_finalize_current_transfer - report completion of a transfer + * @master: the master reporting completion + * + * Called by SPI drivers using the core transfer_one_message() + * implementation to notify it that the current interrupt driven + * transfer has finished and the next one may be scheduled. + */ +void spi_finalize_current_transfer(struct spi_master *master) +{ + complete(&master->xfer_completion); +} +EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); + +/** + * __spi_pump_messages - function which processes spi message queue + * @master: master to process queue for + * @in_kthread: true if we are in the context of the message pump thread + * + * This function checks if there is any spi message in the queue that + * needs processing and if so call out to the driver to initialize hardware + * and transfer each message. + * + * Note that it is called both from the kthread itself and also from + * inside spi_sync(); the queue extraction handling at the top of the + * function should deal with this safely. + */ +static void __spi_pump_messages(struct spi_master *master, bool in_kthread) +{ + unsigned long flags; + bool was_busy = false; + int ret; + + /* Lock queue */ + spin_lock_irqsave(&master->queue_lock, flags); + + /* Make sure we are not already running a message */ + if (master->cur_msg) { + spin_unlock_irqrestore(&master->queue_lock, flags); + return; + } + + /* If another context is idling the device then defer */ + if (master->idling) { + queue_kthread_work(&master->kworker, &master->pump_messages); + spin_unlock_irqrestore(&master->queue_lock, flags); + return; + } + + /* Check if the queue is idle */ + if (list_empty(&master->queue) || !master->running) { + if (!master->busy) { + spin_unlock_irqrestore(&master->queue_lock, flags); + return; + } + + /* Only do teardown in the thread */ + if (!in_kthread) { + queue_kthread_work(&master->kworker, + &master->pump_messages); + spin_unlock_irqrestore(&master->queue_lock, flags); + return; + } + + master->busy = false; + master->idling = true; + spin_unlock_irqrestore(&master->queue_lock, flags); + + kfree(master->dummy_rx); + master->dummy_rx = NULL; + kfree(master->dummy_tx); + master->dummy_tx = NULL; + if (master->unprepare_transfer_hardware && + master->unprepare_transfer_hardware(master)) + dev_err(&master->dev, + "failed to unprepare transfer hardware\n"); + if (master->auto_runtime_pm) { + pm_runtime_mark_last_busy(master->dev.parent); + pm_runtime_put_autosuspend(master->dev.parent); + } + trace_spi_master_idle(master); + + spin_lock_irqsave(&master->queue_lock, flags); + master->idling = false; + spin_unlock_irqrestore(&master->queue_lock, flags); + return; + } + + /* Extract head of queue */ + master->cur_msg = + list_first_entry(&master->queue, struct spi_message, queue); + + list_del_init(&master->cur_msg->queue); + if (master->busy) + was_busy = true; + else + master->busy = true; + spin_unlock_irqrestore(&master->queue_lock, flags); + + if (!was_busy && master->auto_runtime_pm) { + ret = pm_runtime_get_sync(master->dev.parent); + if (ret < 0) { + dev_err(&master->dev, "Failed to power device: %d\n", + ret); + return; + } + } + + if (!was_busy) + trace_spi_master_busy(master); + + if (!was_busy && master->prepare_transfer_hardware) { + ret = master->prepare_transfer_hardware(master); + if (ret) { + dev_err(&master->dev, + "failed to prepare transfer hardware\n"); + + if (master->auto_runtime_pm) + pm_runtime_put(master->dev.parent); + return; + } + } + + trace_spi_message_start(master->cur_msg); + + if (master->prepare_message) { + ret = master->prepare_message(master, master->cur_msg); + if (ret) { + dev_err(&master->dev, + "failed to prepare message: %d\n", ret); + master->cur_msg->status = ret; + spi_finalize_current_message(master); + return; + } + master->cur_msg_prepared = true; + } + + ret = spi_map_msg(master, master->cur_msg); + if (ret) { + master->cur_msg->status = ret; + spi_finalize_current_message(master); + return; + } + + ret = master->transfer_one_message(master, master->cur_msg); + if (ret) { + dev_err(&master->dev, + "failed to transfer one message from queue\n"); + return; + } +} + +/** + * spi_pump_messages - kthread work function which processes spi message queue + * @work: pointer to kthread work struct contained in the master struct + */ +static void spi_pump_messages(struct kthread_work *work) +{ + struct spi_master *master = + container_of(work, struct spi_master, pump_messages); + + __spi_pump_messages(master, true); +} + +static int spi_init_queue(struct spi_master *master) +{ + struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; + + master->running = false; + master->busy = false; + + init_kthread_worker(&master->kworker); + master->kworker_task = kthread_run(kthread_worker_fn, + &master->kworker, "%s", + dev_name(&master->dev)); + if (IS_ERR(master->kworker_task)) { + dev_err(&master->dev, "failed to create message pump task\n"); + return PTR_ERR(master->kworker_task); + } + init_kthread_work(&master->pump_messages, spi_pump_messages); + + /* + * Master config will indicate if this controller should run the + * message pump with high (realtime) priority to reduce the transfer + * latency on the bus by minimising the delay between a transfer + * request and the scheduling of the message pump thread. Without this + * setting the message pump thread will remain at default priority. + */ + if (master->rt) { + dev_info(&master->dev, + "will run message pump with realtime priority\n"); + sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); + } + + return 0; +} + +/** + * spi_get_next_queued_message() - called by driver to check for queued + * messages + * @master: the master to check for queued messages + * + * If there are more messages in the queue, the next message is returned from + * this call. + */ +struct spi_message *spi_get_next_queued_message(struct spi_master *master) +{ + struct spi_message *next; + unsigned long flags; + + /* get a pointer to the next message, if any */ + spin_lock_irqsave(&master->queue_lock, flags); + next = list_first_entry_or_null(&master->queue, struct spi_message, + queue); + spin_unlock_irqrestore(&master->queue_lock, flags); + + return next; +} +EXPORT_SYMBOL_GPL(spi_get_next_queued_message); + +/** + * spi_finalize_current_message() - the current message is complete + * @master: the master to return the message to + * + * Called by the driver to notify the core that the message in the front of the + * queue is complete and can be removed from the queue. + */ +void spi_finalize_current_message(struct spi_master *master) +{ + struct spi_message *mesg; + unsigned long flags; + int ret; + + spin_lock_irqsave(&master->queue_lock, flags); + mesg = master->cur_msg; + spin_unlock_irqrestore(&master->queue_lock, flags); + + spi_unmap_msg(master, mesg); + + if (master->cur_msg_prepared && master->unprepare_message) { + ret = master->unprepare_message(master, mesg); + if (ret) { + dev_err(&master->dev, + "failed to unprepare message: %d\n", ret); + } + } + + spin_lock_irqsave(&master->queue_lock, flags); + master->cur_msg = NULL; + master->cur_msg_prepared = false; + queue_kthread_work(&master->kworker, &master->pump_messages); + spin_unlock_irqrestore(&master->queue_lock, flags); + + trace_spi_message_done(mesg); + + mesg->state = NULL; + if (mesg->complete) + mesg->complete(mesg->context); +} +EXPORT_SYMBOL_GPL(spi_finalize_current_message); + +static int spi_start_queue(struct spi_master *master) +{ + unsigned long flags; + + spin_lock_irqsave(&master->queue_lock, flags); + + if (master->running || master->busy) { + spin_unlock_irqrestore(&master->queue_lock, flags); + return -EBUSY; + } + + master->running = true; + master->cur_msg = NULL; + spin_unlock_irqrestore(&master->queue_lock, flags); + + queue_kthread_work(&master->kworker, &master->pump_messages); + + return 0; +} + +static int spi_stop_queue(struct spi_master *master) +{ + unsigned long flags; + unsigned limit = 500; + int ret = 0; + + spin_lock_irqsave(&master->queue_lock, flags); + + /* + * This is a bit lame, but is optimized for the common execution path. + * A wait_queue on the master->busy could be used, but then the common + * execution path (pump_messages) would be required to call wake_up or + * friends on every SPI message. Do this instead. + */ + while ((!list_empty(&master->queue) || master->busy) && limit--) { + spin_unlock_irqrestore(&master->queue_lock, flags); + usleep_range(10000, 11000); + spin_lock_irqsave(&master->queue_lock, flags); + } + + if (!list_empty(&master->queue) || master->busy) + ret = -EBUSY; + else + master->running = false; + + spin_unlock_irqrestore(&master->queue_lock, flags); + + if (ret) { + dev_warn(&master->dev, + "could not stop message queue\n"); + return ret; + } + return ret; +} + +static int spi_destroy_queue(struct spi_master *master) +{ + int ret; + + ret = spi_stop_queue(master); + + /* + * flush_kthread_worker will block until all work is done. + * If the reason that stop_queue timed out is that the work will never + * finish, then it does no good to call flush/stop thread, so + * return anyway. + */ + if (ret) { + dev_err(&master->dev, "problem destroying queue\n"); + return ret; + } + + flush_kthread_worker(&master->kworker); + kthread_stop(master->kworker_task); + + return 0; +} + +static int __spi_queued_transfer(struct spi_device *spi, + struct spi_message *msg, + bool need_pump) +{ + struct spi_master *master = spi->master; + unsigned long flags; + + spin_lock_irqsave(&master->queue_lock, flags); + + if (!master->running) { + spin_unlock_irqrestore(&master->queue_lock, flags); + return -ESHUTDOWN; + } + msg->actual_length = 0; + msg->status = -EINPROGRESS; + + list_add_tail(&msg->queue, &master->queue); + if (!master->busy && need_pump) + queue_kthread_work(&master->kworker, &master->pump_messages); + + spin_unlock_irqrestore(&master->queue_lock, flags); + return 0; +} + +/** + * spi_queued_transfer - transfer function for queued transfers + * @spi: spi device which is requesting transfer + * @msg: spi message which is to handled is queued to driver queue + */ +static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) +{ + return __spi_queued_transfer(spi, msg, true); +} + +static int spi_master_initialize_queue(struct spi_master *master) +{ + int ret; + + master->transfer = spi_queued_transfer; + if (!master->transfer_one_message) + master->transfer_one_message = spi_transfer_one_message; + + /* Initialize and start queue */ + ret = spi_init_queue(master); + if (ret) { + dev_err(&master->dev, "problem initializing queue\n"); + goto err_init_queue; + } + master->queued = true; + ret = spi_start_queue(master); + if (ret) { + dev_err(&master->dev, "problem starting queue\n"); + goto err_start_queue; + } + + return 0; + +err_start_queue: + spi_destroy_queue(master); +err_init_queue: + return ret; +} + +/*-------------------------------------------------------------------------*/ + +#if defined(CONFIG_OF) +static struct spi_device * +of_register_spi_device(struct spi_master *master, struct device_node *nc) +{ + struct spi_device *spi; + int rc; + u32 value; + + /* Alloc an spi_device */ + spi = spi_alloc_device(master); + if (!spi) { + dev_err(&master->dev, "spi_device alloc error for %s\n", + nc->full_name); + rc = -ENOMEM; + goto err_out; + } + + /* Select device driver */ + rc = of_modalias_node(nc, spi->modalias, + sizeof(spi->modalias)); + if (rc < 0) { + dev_err(&master->dev, "cannot find modalias for %s\n", + nc->full_name); + goto err_out; + } + + /* Device address */ + rc = of_property_read_u32(nc, "reg", &value); + if (rc) { + dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", + nc->full_name, rc); + goto err_out; + } + spi->chip_select = value; + + /* Mode (clock phase/polarity/etc.) */ + if (of_find_property(nc, "spi-cpha", NULL)) + spi->mode |= SPI_CPHA; + if (of_find_property(nc, "spi-cpol", NULL)) + spi->mode |= SPI_CPOL; + if (of_find_property(nc, "spi-cs-high", NULL)) + spi->mode |= SPI_CS_HIGH; + if (of_find_property(nc, "spi-3wire", NULL)) + spi->mode |= SPI_3WIRE; + if (of_find_property(nc, "spi-lsb-first", NULL)) + spi->mode |= SPI_LSB_FIRST; + + /* Device DUAL/QUAD mode */ + if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { + switch (value) { + case 1: + break; + case 2: + spi->mode |= SPI_TX_DUAL; + break; + case 4: + spi->mode |= SPI_TX_QUAD; + break; + default: + dev_warn(&master->dev, + "spi-tx-bus-width %d not supported\n", + value); + break; + } + } + + if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { + switch (value) { + case 1: + break; + case 2: + spi->mode |= SPI_RX_DUAL; + break; + case 4: + spi->mode |= SPI_RX_QUAD; + break; + default: + dev_warn(&master->dev, + "spi-rx-bus-width %d not supported\n", + value); + break; + } + } + + /* Device speed */ + rc = of_property_read_u32(nc, "spi-max-frequency", &value); + if (rc) { + dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", + nc->full_name, rc); + goto err_out; + } + spi->max_speed_hz = value; + + /* IRQ */ + spi->irq = irq_of_parse_and_map(nc, 0); + + /* Store a pointer to the node in the device structure */ + of_node_get(nc); + spi->dev.of_node = nc; + + /* Register the new device */ + rc = spi_add_device(spi); + if (rc) { + dev_err(&master->dev, "spi_device register error %s\n", + nc->full_name); + goto err_out; + } + + return spi; + +err_out: + spi_dev_put(spi); + return ERR_PTR(rc); +} + +/** + * of_register_spi_devices() - Register child devices onto the SPI bus + * @master: Pointer to spi_master device + * + * Registers an spi_device for each child node of master node which has a 'reg' + * property. + */ +static void of_register_spi_devices(struct spi_master *master) +{ + struct spi_device *spi; + struct device_node *nc; + + if (!master->dev.of_node) + return; + + for_each_available_child_of_node(master->dev.of_node, nc) { + spi = of_register_spi_device(master, nc); + if (IS_ERR(spi)) + dev_warn(&master->dev, "Failed to create SPI device for %s\n", + nc->full_name); + } +} +#else +static void of_register_spi_devices(struct spi_master *master) { } +#endif + +#ifdef CONFIG_ACPI +static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) +{ + struct spi_device *spi = data; + + if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { + struct acpi_resource_spi_serialbus *sb; + + sb = &ares->data.spi_serial_bus; + if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { + spi->chip_select = sb->device_selection; + spi->max_speed_hz = sb->connection_speed; + + if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) + spi->mode |= SPI_CPHA; + if (sb->clock_polarity == ACPI_SPI_START_HIGH) + spi->mode |= SPI_CPOL; + if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) + spi->mode |= SPI_CS_HIGH; + } + } else if (spi->irq < 0) { + struct resource r; + + if (acpi_dev_resource_interrupt(ares, 0, &r)) + spi->irq = r.start; + } + + /* Always tell the ACPI core to skip this resource */ + return 1; +} + +static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, + void *data, void **return_value) +{ + struct spi_master *master = data; + struct list_head resource_list; + struct acpi_device *adev; + struct spi_device *spi; + int ret; + + if (acpi_bus_get_device(handle, &adev)) + return AE_OK; + if (acpi_bus_get_status(adev) || !adev->status.present) + return AE_OK; + + spi = spi_alloc_device(master); + if (!spi) { + dev_err(&master->dev, "failed to allocate SPI device for %s\n", + dev_name(&adev->dev)); + return AE_NO_MEMORY; + } + + ACPI_COMPANION_SET(&spi->dev, adev); + spi->irq = -1; + + INIT_LIST_HEAD(&resource_list); + ret = acpi_dev_get_resources(adev, &resource_list, + acpi_spi_add_resource, spi); + acpi_dev_free_resource_list(&resource_list); + + if (ret < 0 || !spi->max_speed_hz) { + spi_dev_put(spi); + return AE_OK; + } + + adev->power.flags.ignore_parent = true; + strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); + if (spi_add_device(spi)) { + adev->power.flags.ignore_parent = false; + dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", + dev_name(&adev->dev)); + spi_dev_put(spi); + } + + return AE_OK; +} + +static void acpi_register_spi_devices(struct spi_master *master) +{ + acpi_status status; + acpi_handle handle; + + handle = ACPI_HANDLE(master->dev.parent); + if (!handle) + return; + + status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, + acpi_spi_add_device, NULL, + master, NULL); + if (ACPI_FAILURE(status)) + dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); +} +#else +static inline void acpi_register_spi_devices(struct spi_master *master) {} +#endif /* CONFIG_ACPI */ + +static void spi_master_release(struct device *dev) +{ + struct spi_master *master; + + master = container_of(dev, struct spi_master, dev); + kfree(master); +} + +static struct class spi_master_class = { + .name = "spi_master", + .owner = THIS_MODULE, + .dev_release = spi_master_release, +}; + + + +/** + * spi_alloc_master - allocate SPI master controller + * @dev: the controller, possibly using the platform_bus + * @size: how much zeroed driver-private data to allocate; the pointer to this + * memory is in the driver_data field of the returned device, + * accessible with spi_master_get_devdata(). + * Context: can sleep + * + * This call is used only by SPI master controller drivers, which are the + * only ones directly touching chip registers. It's how they allocate + * an spi_master structure, prior to calling spi_register_master(). + * + * This must be called from context that can sleep. It returns the SPI + * master structure on success, else NULL. + * + * The caller is responsible for assigning the bus number and initializing + * the master's methods before calling spi_register_master(); and (after errors + * adding the device) calling spi_master_put() and kfree() to prevent a memory + * leak. + */ +struct spi_master *spi_alloc_master(struct device *dev, unsigned size) +{ + struct spi_master *master; + + if (!dev) + return NULL; + + master = kzalloc(size + sizeof(*master), GFP_KERNEL); + if (!master) + return NULL; + + device_initialize(&master->dev); + master->bus_num = -1; + master->num_chipselect = 1; + master->dev.class = &spi_master_class; + master->dev.parent = get_device(dev); + spi_master_set_devdata(master, &master[1]); + + return master; +} +EXPORT_SYMBOL_GPL(spi_alloc_master); + +#ifdef CONFIG_OF +static int of_spi_register_master(struct spi_master *master) +{ + int nb, i, *cs; + struct device_node *np = master->dev.of_node; + + if (!np) + return 0; + + nb = of_gpio_named_count(np, "cs-gpios"); + master->num_chipselect = max_t(int, nb, master->num_chipselect); + + /* Return error only for an incorrectly formed cs-gpios property */ + if (nb == 0 || nb == -ENOENT) + return 0; + else if (nb < 0) + return nb; + + cs = devm_kzalloc(&master->dev, + sizeof(int) * master->num_chipselect, + GFP_KERNEL); + master->cs_gpios = cs; + + if (!master->cs_gpios) + return -ENOMEM; + + for (i = 0; i < master->num_chipselect; i++) + cs[i] = -ENOENT; + + for (i = 0; i < nb; i++) + cs[i] = of_get_named_gpio(np, "cs-gpios", i); + + return 0; +} +#else +static int of_spi_register_master(struct spi_master *master) +{ + return 0; +} +#endif + +/** + * spi_register_master - register SPI master controller + * @master: initialized master, originally from spi_alloc_master() + * Context: can sleep + * + * SPI master controllers connect to their drivers using some non-SPI bus, + * such as the platform bus. The final stage of probe() in that code + * includes calling spi_register_master() to hook up to this SPI bus glue. + * + * SPI controllers use board specific (often SOC specific) bus numbers, + * and board-specific addressing for SPI devices combines those numbers + * with chip select numbers. Since SPI does not directly support dynamic + * device identification, boards need configuration tables telling which + * chip is at which address. + * + * This must be called from context that can sleep. It returns zero on + * success, else a negative error code (dropping the master's refcount). + * After a successful return, the caller is responsible for calling + * spi_unregister_master(). + */ +int spi_register_master(struct spi_master *master) +{ + static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); + struct device *dev = master->dev.parent; + struct boardinfo *bi; + int status = -ENODEV; + int dynamic = 0; + + if (!dev) + return -ENODEV; + + status = of_spi_register_master(master); + if (status) + return status; + + /* even if it's just one always-selected device, there must + * be at least one chipselect + */ + if (master->num_chipselect == 0) + return -EINVAL; + + if ((master->bus_num < 0) && master->dev.of_node) + master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); + + /* convention: dynamically assigned bus IDs count down from the max */ + if (master->bus_num < 0) { + /* FIXME switch to an IDR based scheme, something like + * I2C now uses, so we can't run out of "dynamic" IDs + */ + master->bus_num = atomic_dec_return(&dyn_bus_id); + dynamic = 1; + } + + INIT_LIST_HEAD(&master->queue); + spin_lock_init(&master->queue_lock); + spin_lock_init(&master->bus_lock_spinlock); + mutex_init(&master->bus_lock_mutex); + master->bus_lock_flag = 0; + init_completion(&master->xfer_completion); + if (!master->max_dma_len) + master->max_dma_len = INT_MAX; + + /* register the device, then userspace will see it. + * registration fails if the bus ID is in use. + */ + dev_set_name(&master->dev, "spi%u", master->bus_num); + status = device_add(&master->dev); + if (status < 0) + goto done; + dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), + dynamic ? " (dynamic)" : ""); + + /* If we're using a queued driver, start the queue */ + if (master->transfer) + dev_info(dev, "master is unqueued, this is deprecated\n"); + else { + status = spi_master_initialize_queue(master); + if (status) { + device_del(&master->dev); + goto done; + } + } + + mutex_lock(&board_lock); + list_add_tail(&master->list, &spi_master_list); + list_for_each_entry(bi, &board_list, list) + spi_match_master_to_boardinfo(master, &bi->board_info); + mutex_unlock(&board_lock); + + /* Register devices from the device tree and ACPI */ + of_register_spi_devices(master); + acpi_register_spi_devices(master); +done: + return status; +} +EXPORT_SYMBOL_GPL(spi_register_master); + +static void devm_spi_unregister(struct device *dev, void *res) +{ + spi_unregister_master(*(struct spi_master **)res); +} + +/** + * dev_spi_register_master - register managed SPI master controller + * @dev: device managing SPI master + * @master: initialized master, originally from spi_alloc_master() + * Context: can sleep + * + * Register a SPI device as with spi_register_master() which will + * automatically be unregister + */ +int devm_spi_register_master(struct device *dev, struct spi_master *master) +{ + struct spi_master **ptr; + int ret; + + ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); + if (!ptr) + return -ENOMEM; + + ret = spi_register_master(master); + if (!ret) { + *ptr = master; + devres_add(dev, ptr); + } else { + devres_free(ptr); + } + + return ret; +} +EXPORT_SYMBOL_GPL(devm_spi_register_master); + +static int __unregister(struct device *dev, void *null) +{ + spi_unregister_device(to_spi_device(dev)); + return 0; +} + +/** + * spi_unregister_master - unregister SPI master controller + * @master: the master being unregistered + * Context: can sleep + * + * This call is used only by SPI master controller drivers, which are the + * only ones directly touching chip registers. + * + * This must be called from context that can sleep. + */ +void spi_unregister_master(struct spi_master *master) +{ + int dummy; + + if (master->queued) { + if (spi_destroy_queue(master)) + dev_err(&master->dev, "queue remove failed\n"); + } + + mutex_lock(&board_lock); + list_del(&master->list); + mutex_unlock(&board_lock); + + dummy = device_for_each_child(&master->dev, NULL, __unregister); + device_unregister(&master->dev); +} +EXPORT_SYMBOL_GPL(spi_unregister_master); + +int spi_master_suspend(struct spi_master *master) +{ + int ret; + + /* Basically no-ops for non-queued masters */ + if (!master->queued) + return 0; + + ret = spi_stop_queue(master); + if (ret) + dev_err(&master->dev, "queue stop failed\n"); + + return ret; +} +EXPORT_SYMBOL_GPL(spi_master_suspend); + +int spi_master_resume(struct spi_master *master) +{ + int ret; + + if (!master->queued) + return 0; + + ret = spi_start_queue(master); + if (ret) + dev_err(&master->dev, "queue restart failed\n"); + + return ret; +} +EXPORT_SYMBOL_GPL(spi_master_resume); + +static int __spi_master_match(struct device *dev, const void *data) +{ + struct spi_master *m; + const u16 *bus_num = data; + + m = container_of(dev, struct spi_master, dev); + return m->bus_num == *bus_num; +} + +/** + * spi_busnum_to_master - look up master associated with bus_num + * @bus_num: the master's bus number + * Context: can sleep + * + * This call may be used with devices that are registered after + * arch init time. It returns a refcounted pointer to the relevant + * spi_master (which the caller must release), or NULL if there is + * no such master registered. + */ +struct spi_master *spi_busnum_to_master(u16 bus_num) +{ + struct device *dev; + struct spi_master *master = NULL; + + dev = class_find_device(&spi_master_class, NULL, &bus_num, + __spi_master_match); + if (dev) + master = container_of(dev, struct spi_master, dev); + /* reference got in class_find_device */ + return master; +} +EXPORT_SYMBOL_GPL(spi_busnum_to_master); + + +/*-------------------------------------------------------------------------*/ + +/* Core methods for SPI master protocol drivers. Some of the + * other core methods are currently defined as inline functions. + */ + +/** + * spi_setup - setup SPI mode and clock rate + * @spi: the device whose settings are being modified + * Context: can sleep, and no requests are queued to the device + * + * SPI protocol drivers may need to update the transfer mode if the + * device doesn't work with its default. They may likewise need + * to update clock rates or word sizes from initial values. This function + * changes those settings, and must be called from a context that can sleep. + * Except for SPI_CS_HIGH, which takes effect immediately, the changes take + * effect the next time the device is selected and data is transferred to + * or from it. When this function returns, the spi device is deselected. + * + * Note that this call will fail if the protocol driver specifies an option + * that the underlying controller or its driver does not support. For + * example, not all hardware supports wire transfers using nine bit words, + * LSB-first wire encoding, or active-high chipselects. + */ +int spi_setup(struct spi_device *spi) +{ + unsigned bad_bits, ugly_bits; + int status = 0; + + /* check mode to prevent that DUAL and QUAD set at the same time + */ + if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || + ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { + dev_err(&spi->dev, + "setup: can not select dual and quad at the same time\n"); + return -EINVAL; + } + /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden + */ + if ((spi->mode & SPI_3WIRE) && (spi->mode & + (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) + return -EINVAL; + /* help drivers fail *cleanly* when they need options + * that aren't supported with their current master + */ + bad_bits = spi->mode & ~spi->master->mode_bits; + ugly_bits = bad_bits & + (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); + if (ugly_bits) { + dev_warn(&spi->dev, + "setup: ignoring unsupported mode bits %x\n", + ugly_bits); + spi->mode &= ~ugly_bits; + bad_bits &= ~ugly_bits; + } + if (bad_bits) { + dev_err(&spi->dev, "setup: unsupported mode bits %x\n", + bad_bits); + return -EINVAL; + } + + if (!spi->bits_per_word) + spi->bits_per_word = 8; + + if (!spi->max_speed_hz) + spi->max_speed_hz = spi->master->max_speed_hz; + + spi_set_cs(spi, false); + + if (spi->master->setup) + status = spi->master->setup(spi); + + dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", + (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), + (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", + (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", + (spi->mode & SPI_3WIRE) ? "3wire, " : "", + (spi->mode & SPI_LOOP) ? "loopback, " : "", + spi->bits_per_word, spi->max_speed_hz, + status); + + return status; +} +EXPORT_SYMBOL_GPL(spi_setup); + +static int __spi_validate(struct spi_device *spi, struct spi_message *message) +{ + struct spi_master *master = spi->master; + struct spi_transfer *xfer; + int w_size; + + if (list_empty(&message->transfers)) + return -EINVAL; + + /* Half-duplex links include original MicroWire, and ones with + * only one data pin like SPI_3WIRE (switches direction) or where + * either MOSI or MISO is missing. They can also be caused by + * software limitations. + */ + if ((master->flags & SPI_MASTER_HALF_DUPLEX) + || (spi->mode & SPI_3WIRE)) { + unsigned flags = master->flags; + + list_for_each_entry(xfer, &message->transfers, transfer_list) { + if (xfer->rx_buf && xfer->tx_buf) + return -EINVAL; + if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) + return -EINVAL; + if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) + return -EINVAL; + } + } + + /** + * Set transfer bits_per_word and max speed as spi device default if + * it is not set for this transfer. + * Set transfer tx_nbits and rx_nbits as single transfer default + * (SPI_NBITS_SINGLE) if it is not set for this transfer. + */ + list_for_each_entry(xfer, &message->transfers, transfer_list) { + message->frame_length += xfer->len; + if (!xfer->bits_per_word) + xfer->bits_per_word = spi->bits_per_word; + + if (!xfer->speed_hz) + xfer->speed_hz = spi->max_speed_hz; + + if (master->max_speed_hz && + xfer->speed_hz > master->max_speed_hz) + xfer->speed_hz = master->max_speed_hz; + + if (master->bits_per_word_mask) { + /* Only 32 bits fit in the mask */ + if (xfer->bits_per_word > 32) + return -EINVAL; + if (!(master->bits_per_word_mask & + BIT(xfer->bits_per_word - 1))) + return -EINVAL; + } + + /* + * SPI transfer length should be multiple of SPI word size + * where SPI word size should be power-of-two multiple + */ + if (xfer->bits_per_word <= 8) + w_size = 1; + else if (xfer->bits_per_word <= 16) + w_size = 2; + else + w_size = 4; + + /* No partial transfers accepted */ + if (xfer->len % w_size) + return -EINVAL; + + if (xfer->speed_hz && master->min_speed_hz && + xfer->speed_hz < master->min_speed_hz) + return -EINVAL; + + if (xfer->tx_buf && !xfer->tx_nbits) + xfer->tx_nbits = SPI_NBITS_SINGLE; + if (xfer->rx_buf && !xfer->rx_nbits) + xfer->rx_nbits = SPI_NBITS_SINGLE; + /* check transfer tx/rx_nbits: + * 1. check the value matches one of single, dual and quad + * 2. check tx/rx_nbits match the mode in spi_device + */ + if (xfer->tx_buf) { + if (xfer->tx_nbits != SPI_NBITS_SINGLE && + xfer->tx_nbits != SPI_NBITS_DUAL && + xfer->tx_nbits != SPI_NBITS_QUAD) + return -EINVAL; + if ((xfer->tx_nbits == SPI_NBITS_DUAL) && + !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) + return -EINVAL; + if ((xfer->tx_nbits == SPI_NBITS_QUAD) && + !(spi->mode & SPI_TX_QUAD)) + return -EINVAL; + } + /* check transfer rx_nbits */ + if (xfer->rx_buf) { + if (xfer->rx_nbits != SPI_NBITS_SINGLE && + xfer->rx_nbits != SPI_NBITS_DUAL && + xfer->rx_nbits != SPI_NBITS_QUAD) + return -EINVAL; + if ((xfer->rx_nbits == SPI_NBITS_DUAL) && + !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) + return -EINVAL; + if ((xfer->rx_nbits == SPI_NBITS_QUAD) && + !(spi->mode & SPI_RX_QUAD)) + return -EINVAL; + } + } + + message->status = -EINPROGRESS; + + return 0; +} + +static int __spi_async(struct spi_device *spi, struct spi_message *message) +{ + struct spi_master *master = spi->master; + + message->spi = spi; + + trace_spi_message_submit(message); + + return master->transfer(spi, message); +} + +/** + * spi_async - asynchronous SPI transfer + * @spi: device with which data will be exchanged + * @message: describes the data transfers, including completion callback + * Context: any (irqs may be blocked, etc) + * + * This call may be used in_irq and other contexts which can't sleep, + * as well as from task contexts which can sleep. + * + * The completion callback is invoked in a context which can't sleep. + * Before that invocation, the value of message->status is undefined. + * When the callback is issued, message->status holds either zero (to + * indicate complete success) or a negative error code. After that + * callback returns, the driver which issued the transfer request may + * deallocate the associated memory; it's no longer in use by any SPI + * core or controller driver code. + * + * Note that although all messages to a spi_device are handled in + * FIFO order, messages may go to different devices in other orders. + * Some device might be higher priority, or have various "hard" access + * time requirements, for example. + * + * On detection of any fault during the transfer, processing of + * the entire message is aborted, and the device is deselected. + * Until returning from the associated message completion callback, + * no other spi_message queued to that device will be processed. + * (This rule applies equally to all the synchronous transfer calls, + * which are wrappers around this core asynchronous primitive.) + */ +int spi_async(struct spi_device *spi, struct spi_message *message) +{ + struct spi_master *master = spi->master; + int ret; + unsigned long flags; + + ret = __spi_validate(spi, message); + if (ret != 0) + return ret; + + spin_lock_irqsave(&master->bus_lock_spinlock, flags); + + if (master->bus_lock_flag) + ret = -EBUSY; + else + ret = __spi_async(spi, message); + + spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); + + return ret; +} +EXPORT_SYMBOL_GPL(spi_async); + +/** + * spi_async_locked - version of spi_async with exclusive bus usage + * @spi: device with which data will be exchanged + * @message: describes the data transfers, including completion callback + * Context: any (irqs may be blocked, etc) + * + * This call may be used in_irq and other contexts which can't sleep, + * as well as from task contexts which can sleep. + * + * The completion callback is invoked in a context which can't sleep. + * Before that invocation, the value of message->status is undefined. + * When the callback is issued, message->status holds either zero (to + * indicate complete success) or a negative error code. After that + * callback returns, the driver which issued the transfer request may + * deallocate the associated memory; it's no longer in use by any SPI + * core or controller driver code. + * + * Note that although all messages to a spi_device are handled in + * FIFO order, messages may go to different devices in other orders. + * Some device might be higher priority, or have various "hard" access + * time requirements, for example. + * + * On detection of any fault during the transfer, processing of + * the entire message is aborted, and the device is deselected. + * Until returning from the associated message completion callback, + * no other spi_message queued to that device will be processed. + * (This rule applies equally to all the synchronous transfer calls, + * which are wrappers around this core asynchronous primitive.) + */ +int spi_async_locked(struct spi_device *spi, struct spi_message *message) +{ + struct spi_master *master = spi->master; + int ret; + unsigned long flags; + + ret = __spi_validate(spi, message); + if (ret != 0) + return ret; + + spin_lock_irqsave(&master->bus_lock_spinlock, flags); + + ret = __spi_async(spi, message); + + spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); + + return ret; + +} +EXPORT_SYMBOL_GPL(spi_async_locked); + + +/*-------------------------------------------------------------------------*/ + +/* Utility methods for SPI master protocol drivers, layered on + * top of the core. Some other utility methods are defined as + * inline functions. + */ + +static void spi_complete(void *arg) +{ + complete(arg); +} + +static int __spi_sync(struct spi_device *spi, struct spi_message *message, + int bus_locked) +{ + DECLARE_COMPLETION_ONSTACK(done); + int status; + struct spi_master *master = spi->master; + unsigned long flags; + + status = __spi_validate(spi, message); + if (status != 0) + return status; + + message->complete = spi_complete; + message->context = &done; + message->spi = spi; + + if (!bus_locked) + mutex_lock(&master->bus_lock_mutex); + + /* If we're not using the legacy transfer method then we will + * try to transfer in the calling context so special case. + * This code would be less tricky if we could remove the + * support for driver implemented message queues. + */ + if (master->transfer == spi_queued_transfer) { + spin_lock_irqsave(&master->bus_lock_spinlock, flags); + + trace_spi_message_submit(message); + + status = __spi_queued_transfer(spi, message, false); + + spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); + } else { + status = spi_async_locked(spi, message); + } + + if (!bus_locked) + mutex_unlock(&master->bus_lock_mutex); + + if (status == 0) { + /* Push out the messages in the calling context if we + * can. + */ + if (master->transfer == spi_queued_transfer) + __spi_pump_messages(master, false); + + wait_for_completion(&done); + status = message->status; + } + message->context = NULL; + return status; +} + +/** + * spi_sync - blocking/synchronous SPI data transfers + * @spi: device with which data will be exchanged + * @message: describes the data transfers + * Context: can sleep + * + * This call may only be used from a context that may sleep. The sleep + * is non-interruptible, and has no timeout. Low-overhead controller + * drivers may DMA directly into and out of the message buffers. + * + * Note that the SPI device's chip select is active during the message, + * and then is normally disabled between messages. Drivers for some + * frequently-used devices may want to minimize costs of selecting a chip, + * by leaving it selected in anticipation that the next message will go + * to the same chip. (That may increase power usage.) + * + * Also, the caller is guaranteeing that the memory associated with the + * message will not be freed before this call returns. + * + * It returns zero on success, else a negative error code. + */ +int spi_sync(struct spi_device *spi, struct spi_message *message) +{ + return __spi_sync(spi, message, 0); +} +EXPORT_SYMBOL_GPL(spi_sync); + +/** + * spi_sync_locked - version of spi_sync with exclusive bus usage + * @spi: device with which data will be exchanged + * @message: describes the data transfers + * Context: can sleep + * + * This call may only be used from a context that may sleep. The sleep + * is non-interruptible, and has no timeout. Low-overhead controller + * drivers may DMA directly into and out of the message buffers. + * + * This call should be used by drivers that require exclusive access to the + * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must + * be released by a spi_bus_unlock call when the exclusive access is over. + * + * It returns zero on success, else a negative error code. + */ +int spi_sync_locked(struct spi_device *spi, struct spi_message *message) +{ + return __spi_sync(spi, message, 1); +} +EXPORT_SYMBOL_GPL(spi_sync_locked); + +/** + * spi_bus_lock - obtain a lock for exclusive SPI bus usage + * @master: SPI bus master that should be locked for exclusive bus access + * Context: can sleep + * + * This call may only be used from a context that may sleep. The sleep + * is non-interruptible, and has no timeout. + * + * This call should be used by drivers that require exclusive access to the + * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the + * exclusive access is over. Data transfer must be done by spi_sync_locked + * and spi_async_locked calls when the SPI bus lock is held. + * + * It returns zero on success, else a negative error code. + */ +int spi_bus_lock(struct spi_master *master) +{ + unsigned long flags; + + mutex_lock(&master->bus_lock_mutex); + + spin_lock_irqsave(&master->bus_lock_spinlock, flags); + master->bus_lock_flag = 1; + spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); + + /* mutex remains locked until spi_bus_unlock is called */ + + return 0; +} +EXPORT_SYMBOL_GPL(spi_bus_lock); + +/** + * spi_bus_unlock - release the lock for exclusive SPI bus usage + * @master: SPI bus master that was locked for exclusive bus access + * Context: can sleep + * + * This call may only be used from a context that may sleep. The sleep + * is non-interruptible, and has no timeout. + * + * This call releases an SPI bus lock previously obtained by an spi_bus_lock + * call. + * + * It returns zero on success, else a negative error code. + */ +int spi_bus_unlock(struct spi_master *master) +{ + master->bus_lock_flag = 0; + + mutex_unlock(&master->bus_lock_mutex); + + return 0; +} +EXPORT_SYMBOL_GPL(spi_bus_unlock); + +/* portable code must never pass more than 32 bytes */ +#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) + +static u8 *buf; + +/** + * spi_write_then_read - SPI synchronous write followed by read + * @spi: device with which data will be exchanged + * @txbuf: data to be written (need not be dma-safe) + * @n_tx: size of txbuf, in bytes + * @rxbuf: buffer into which data will be read (need not be dma-safe) + * @n_rx: size of rxbuf, in bytes + * Context: can sleep + * + * This performs a half duplex MicroWire style transaction with the + * device, sending txbuf and then reading rxbuf. The return value + * is zero for success, else a negative errno status code. + * This call may only be used from a context that may sleep. + * + * Parameters to this routine are always copied using a small buffer; + * portable code should never use this for more than 32 bytes. + * Performance-sensitive or bulk transfer code should instead use + * spi_{async,sync}() calls with dma-safe buffers. + */ +int spi_write_then_read(struct spi_device *spi, + const void *txbuf, unsigned n_tx, + void *rxbuf, unsigned n_rx) +{ + static DEFINE_MUTEX(lock); + + int status; + struct spi_message message; + struct spi_transfer x[2]; + u8 *local_buf; + + /* Use preallocated DMA-safe buffer if we can. We can't avoid + * copying here, (as a pure convenience thing), but we can + * keep heap costs out of the hot path unless someone else is + * using the pre-allocated buffer or the transfer is too large. + */ + if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { + local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), + GFP_KERNEL | GFP_DMA); + if (!local_buf) + return -ENOMEM; + } else { + local_buf = buf; + } + + spi_message_init(&message); + memset(x, 0, sizeof(x)); + if (n_tx) { + x[0].len = n_tx; + spi_message_add_tail(&x[0], &message); + } + if (n_rx) { + x[1].len = n_rx; + spi_message_add_tail(&x[1], &message); + } + + memcpy(local_buf, txbuf, n_tx); + x[0].tx_buf = local_buf; + x[1].rx_buf = local_buf + n_tx; + + /* do the i/o */ + status = spi_sync(spi, &message); + if (status == 0) + memcpy(rxbuf, x[1].rx_buf, n_rx); + + if (x[0].tx_buf == buf) + mutex_unlock(&lock); + else + kfree(local_buf); + + return status; +} +EXPORT_SYMBOL_GPL(spi_write_then_read); + +/*-------------------------------------------------------------------------*/ + +#if IS_ENABLED(CONFIG_OF_DYNAMIC) +static int __spi_of_device_match(struct device *dev, void *data) +{ + return dev->of_node == data; +} + +/* must call put_device() when done with returned spi_device device */ +static struct spi_device *of_find_spi_device_by_node(struct device_node *node) +{ + struct device *dev = bus_find_device(&spi_bus_type, NULL, node, + __spi_of_device_match); + return dev ? to_spi_device(dev) : NULL; +} + +static int __spi_of_master_match(struct device *dev, const void *data) +{ + return dev->of_node == data; +} + +/* the spi masters are not using spi_bus, so we find it with another way */ +static struct spi_master *of_find_spi_master_by_node(struct device_node *node) +{ + struct device *dev; + + dev = class_find_device(&spi_master_class, NULL, node, + __spi_of_master_match); + if (!dev) + return NULL; + + /* reference got in class_find_device */ + return container_of(dev, struct spi_master, dev); +} + +static int of_spi_notify(struct notifier_block *nb, unsigned long action, + void *arg) +{ + struct of_reconfig_data *rd = arg; + struct spi_master *master; + struct spi_device *spi; + + switch (of_reconfig_get_state_change(action, arg)) { + case OF_RECONFIG_CHANGE_ADD: + master = of_find_spi_master_by_node(rd->dn->parent); + if (master == NULL) + return NOTIFY_OK; /* not for us */ + + spi = of_register_spi_device(master, rd->dn); + put_device(&master->dev); + + if (IS_ERR(spi)) { + pr_err("%s: failed to create for '%s'\n", + __func__, rd->dn->full_name); + return notifier_from_errno(PTR_ERR(spi)); + } + break; + + case OF_RECONFIG_CHANGE_REMOVE: + /* find our device by node */ + spi = of_find_spi_device_by_node(rd->dn); + if (spi == NULL) + return NOTIFY_OK; /* no? not meant for us */ + + /* unregister takes one ref away */ + spi_unregister_device(spi); + + /* and put the reference of the find */ + put_device(&spi->dev); + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block spi_of_notifier = { + .notifier_call = of_spi_notify, +}; +#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ +extern struct notifier_block spi_of_notifier; +#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ + +static int __init spi_init(void) +{ + int status; + + buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); + if (!buf) { + status = -ENOMEM; + goto err0; + } + + status = bus_register(&spi_bus_type); + if (status < 0) + goto err1; + + status = class_register(&spi_master_class); + if (status < 0) + goto err2; + + if (IS_ENABLED(CONFIG_OF_DYNAMIC)) + WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); + + return 0; + +err2: + bus_unregister(&spi_bus_type); +err1: + kfree(buf); + buf = NULL; +err0: + return status; +} + +/* board_info is normally registered in arch_initcall(), + * but even essential drivers wait till later + * + * REVISIT only boardinfo really needs static linking. the rest (device and + * driver registration) _could_ be dynamically linked (modular) ... costs + * include needing to have boardinfo data structures be much more public. + */ +postcore_initcall(spi_init); + |