diff options
Diffstat (limited to 'kernel/drivers/rtc/Kconfig')
-rw-r--r-- | kernel/drivers/rtc/Kconfig | 1559 |
1 files changed, 1559 insertions, 0 deletions
diff --git a/kernel/drivers/rtc/Kconfig b/kernel/drivers/rtc/Kconfig new file mode 100644 index 000000000..0fe4ad882 --- /dev/null +++ b/kernel/drivers/rtc/Kconfig @@ -0,0 +1,1559 @@ +# +# RTC class/drivers configuration +# + +config RTC_LIB + bool + +menuconfig RTC_CLASS + bool "Real Time Clock" + default n + depends on !S390 && !UML + select RTC_LIB + help + Generic RTC class support. If you say yes here, you will + be allowed to plug one or more RTCs to your system. You will + probably want to enable one or more of the interfaces below. + +if RTC_CLASS + +config RTC_HCTOSYS + bool "Set system time from RTC on startup and resume" + default y + help + If you say yes here, the system time (wall clock) will be set using + the value read from a specified RTC device. This is useful to avoid + unnecessary fsck runs at boot time, and to network better. + +config RTC_SYSTOHC + bool "Set the RTC time based on NTP synchronization" + default y + help + If you say yes here, the system time (wall clock) will be stored + in the RTC specified by RTC_HCTOSYS_DEVICE approximately every 11 + minutes if userspace reports synchronized NTP status. + +config RTC_HCTOSYS_DEVICE + string "RTC used to set the system time" + depends on RTC_HCTOSYS = y || RTC_SYSTOHC = y + default "rtc0" + help + The RTC device that will be used to (re)initialize the system + clock, usually rtc0. Initialization is done when the system + starts up, and when it resumes from a low power state. This + device should record time in UTC, since the kernel won't do + timezone correction. + + The driver for this RTC device must be loaded before late_initcall + functions run, so it must usually be statically linked. + + This clock should be battery-backed, so that it reads the correct + time when the system boots from a power-off state. Otherwise, your + system will need an external clock source (like an NTP server). + + If the clock you specify here is not battery backed, it may still + be useful to reinitialize system time when resuming from system + sleep states. Do not specify an RTC here unless it stays powered + during all this system's supported sleep states. + +config RTC_DEBUG + bool "RTC debug support" + help + Say yes here to enable debugging support in the RTC framework + and individual RTC drivers. + +comment "RTC interfaces" + +config RTC_INTF_SYSFS + bool "/sys/class/rtc/rtcN (sysfs)" + depends on SYSFS + default RTC_CLASS + help + Say yes here if you want to use your RTCs using sysfs interfaces, + /sys/class/rtc/rtc0 through /sys/.../rtcN. + + If unsure, say Y. + +config RTC_INTF_PROC + bool "/proc/driver/rtc (procfs for rtcN)" + depends on PROC_FS + default RTC_CLASS + help + Say yes here if you want to use your system clock RTC through + the proc interface, /proc/driver/rtc. + Other RTCs will not be available through that API. + If there is no RTC for the system clock, then the first RTC(rtc0) + is used by default. + + If unsure, say Y. + +config RTC_INTF_DEV + bool "/dev/rtcN (character devices)" + default RTC_CLASS + help + Say yes here if you want to use your RTCs using the /dev + interfaces, which "udev" sets up as /dev/rtc0 through + /dev/rtcN. + + You may want to set up a symbolic link so one of these + can be accessed as /dev/rtc, which is a name + expected by "hwclock" and some other programs. Recent + versions of "udev" are known to set up the symlink for you. + + If unsure, say Y. + +config RTC_INTF_DEV_UIE_EMUL + bool "RTC UIE emulation on dev interface" + depends on RTC_INTF_DEV + help + Provides an emulation for RTC_UIE if the underlying rtc chip + driver does not expose RTC_UIE ioctls. Those requests generate + once-per-second update interrupts, used for synchronization. + + The emulation code will read the time from the hardware + clock several times per second, please enable this option + only if you know that you really need it. + +config RTC_DRV_TEST + tristate "Test driver/device" + help + If you say yes here you get support for the + RTC test driver. It's a software RTC which can be + used to test the RTC subsystem APIs. It gets + the time from the system clock. + You want this driver only if you are doing development + on the RTC subsystem. Please read the source code + for further details. + + This driver can also be built as a module. If so, the module + will be called rtc-test. + +comment "I2C RTC drivers" + depends on I2C + +if I2C + +config RTC_DRV_88PM860X + tristate "Marvell 88PM860x" + depends on I2C && MFD_88PM860X + help + If you say yes here you get support for RTC function in Marvell + 88PM860x chips. + + This driver can also be built as a module. If so, the module + will be called rtc-88pm860x. + +config RTC_DRV_88PM80X + tristate "Marvell 88PM80x" + depends on I2C && MFD_88PM800 + help + If you say yes here you get support for RTC function in Marvell + 88PM80x chips. + + This driver can also be built as a module. If so, the module + will be called rtc-88pm80x. + +config RTC_DRV_ABB5ZES3 + depends on I2C + select REGMAP_I2C + tristate "Abracon AB-RTCMC-32.768kHz-B5ZE-S3" + help + If you say yes here you get support for the Abracon + AB-RTCMC-32.768kHz-B5ZE-S3 I2C RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ab-b5ze-s3. + +config RTC_DRV_ABX80X + tristate "Abracon ABx80x" + help + If you say yes here you get support for Abracon AB080X and AB180X + families of ultra-low-power battery- and capacitor-backed real-time + clock chips. + + This driver can also be built as a module. If so, the module + will be called rtc-abx80x. + +config RTC_DRV_AS3722 + tristate "ams AS3722 RTC driver" + depends on MFD_AS3722 + help + If you say yes here you get support for the RTC of ams AS3722 PMIC + chips. + + This driver can also be built as a module. If so, the module + will be called rtc-as3722. + +config RTC_DRV_DS1307 + tristate "Dallas/Maxim DS1307/37/38/39/40, ST M41T00, EPSON RX-8025" + help + If you say yes here you get support for various compatible RTC + chips (often with battery backup) connected with I2C. This driver + should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00, + EPSON RX-8025 and probably other chips. In some cases the RTC + must already have been initialized (by manufacturing or a + bootloader). + + The first seven registers on these chips hold an RTC, and other + registers may add features such as NVRAM, a trickle charger for + the RTC/NVRAM backup power, and alarms. NVRAM is visible in + sysfs, but other chip features may not be available. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1307. + +config RTC_DRV_DS1374 + tristate "Dallas/Maxim DS1374" + depends on I2C + help + If you say yes here you get support for Dallas Semiconductor + DS1374 real-time clock chips. If an interrupt is associated + with the device, the alarm functionality is supported. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1374. + +config RTC_DRV_DS1374_WDT + bool "Dallas/Maxim DS1374 watchdog timer" + depends on RTC_DRV_DS1374 + help + If you say Y here you will get support for the + watchdog timer in the Dallas Semiconductor DS1374 + real-time clock chips. + +config RTC_DRV_DS1672 + tristate "Dallas/Maxim DS1672" + help + If you say yes here you get support for the + Dallas/Maxim DS1672 timekeeping chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1672. + +config RTC_DRV_DS3232 + tristate "Dallas/Maxim DS3232" + depends on I2C + help + If you say yes here you get support for Dallas Semiconductor + DS3232 real-time clock chips. If an interrupt is associated + with the device, the alarm functionality is supported. + + This driver can also be built as a module. If so, the module + will be called rtc-ds3232. + +config RTC_DRV_HYM8563 + tristate "Haoyu Microelectronics HYM8563" + depends on I2C && OF + help + Say Y to enable support for the HYM8563 I2C RTC chip. Apart + from the usual rtc functions it provides a clock output of + up to 32kHz. + + This driver can also be built as a module. If so, the module + will be called rtc-hym8563. + +config RTC_DRV_LP8788 + tristate "TI LP8788 RTC driver" + depends on MFD_LP8788 + help + Say Y to enable support for the LP8788 RTC/ALARM driver. + +config RTC_DRV_MAX6900 + tristate "Maxim MAX6900" + help + If you say yes here you will get support for the + Maxim MAX6900 I2C RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-max6900. + +config RTC_DRV_MAX8907 + tristate "Maxim MAX8907" + depends on MFD_MAX8907 + help + If you say yes here you will get support for the + RTC of Maxim MAX8907 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max8907. + +config RTC_DRV_MAX8925 + tristate "Maxim MAX8925" + depends on MFD_MAX8925 + help + If you say yes here you will get support for the + RTC of Maxim MAX8925 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max8925. + +config RTC_DRV_MAX8998 + tristate "Maxim MAX8998" + depends on MFD_MAX8998 + help + If you say yes here you will get support for the + RTC of Maxim MAX8998 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max8998. + +config RTC_DRV_MAX8997 + tristate "Maxim MAX8997" + depends on MFD_MAX8997 + help + If you say yes here you will get support for the + RTC of Maxim MAX8997 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max8997. + +config RTC_DRV_MAX77686 + tristate "Maxim MAX77686" + depends on MFD_MAX77686 + help + If you say yes here you will get support for the + RTC of Maxim MAX77686 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max77686. + +config RTC_DRV_RK808 + tristate "Rockchip RK808 RTC" + depends on MFD_RK808 + help + If you say yes here you will get support for the + RTC of RK808 PMIC. + + This driver can also be built as a module. If so, the module + will be called rk808-rtc. + +config RTC_DRV_MAX77802 + tristate "Maxim 77802 RTC" + depends on MFD_MAX77686 + help + If you say yes here you will get support for the + RTC of Maxim MAX77802 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-max77802. + +config RTC_DRV_RS5C372 + tristate "Ricoh R2025S/D, RS5C372A/B, RV5C386, RV5C387A" + help + If you say yes here you get support for the + Ricoh R2025S/D, RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-rs5c372. + +config RTC_DRV_ISL1208 + tristate "Intersil ISL1208" + help + If you say yes here you get support for the + Intersil ISL1208 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-isl1208. + +config RTC_DRV_ISL12022 + tristate "Intersil ISL12022" + help + If you say yes here you get support for the + Intersil ISL12022 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-isl12022. + +config RTC_DRV_ISL12057 + depends on I2C + select REGMAP_I2C + tristate "Intersil ISL12057" + help + If you say yes here you get support for the Intersil ISL12057 + I2C RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-isl12057. + +config RTC_DRV_X1205 + tristate "Xicor/Intersil X1205" + help + If you say yes here you get support for the + Xicor/Intersil X1205 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-x1205. + +config RTC_DRV_PALMAS + tristate "TI Palmas RTC driver" + depends on MFD_PALMAS + help + If you say yes here you get support for the RTC of TI PALMA series PMIC + chips. + + This driver can also be built as a module. If so, the module + will be called rtc-palma. + +config RTC_DRV_PCF2127 + tristate "NXP PCF2127" + help + If you say yes here you get support for the NXP PCF2127/29 RTC + chips. + + This driver can also be built as a module. If so, the module + will be called rtc-pcf2127. + +config RTC_DRV_PCF8523 + tristate "NXP PCF8523" + help + If you say yes here you get support for the NXP PCF8523 RTC + chips. + + This driver can also be built as a module. If so, the module + will be called rtc-pcf8523. + +config RTC_DRV_PCF8563 + tristate "Philips PCF8563/Epson RTC8564" + help + If you say yes here you get support for the + Philips PCF8563 RTC chip. The Epson RTC8564 + should work as well. + + This driver can also be built as a module. If so, the module + will be called rtc-pcf8563. + +config RTC_DRV_PCF85063 + tristate "nxp PCF85063" + help + If you say yes here you get support for the PCF85063 RTC chip + + This driver can also be built as a module. If so, the module + will be called rtc-pcf85063. + +config RTC_DRV_PCF8583 + tristate "Philips PCF8583" + help + If you say yes here you get support for the Philips PCF8583 + RTC chip found on Acorn RiscPCs. This driver supports the + platform specific method of retrieving the current year from + the RTC's SRAM. It will work on other platforms with the same + chip, but the year will probably have to be tweaked. + + This driver can also be built as a module. If so, the module + will be called rtc-pcf8583. + +config RTC_DRV_M41T80 + tristate "ST M41T62/65/M41T80/81/82/83/84/85/87 and compatible" + help + If you say Y here you will get support for the ST M41T60 + and M41T80 RTC chips series. Currently, the following chips are + supported: M41T62, M41T65, M41T80, M41T81, M41T82, M41T83, M41ST84, + M41ST85, M41ST87, and MicroCrystal RV4162. + + This driver can also be built as a module. If so, the module + will be called rtc-m41t80. + +config RTC_DRV_M41T80_WDT + bool "ST M41T65/M41T80 series RTC watchdog timer" + depends on RTC_DRV_M41T80 + help + If you say Y here you will get support for the + watchdog timer in the ST M41T60 and M41T80 RTC chips series. + +config RTC_DRV_BQ32K + tristate "TI BQ32000" + help + If you say Y here you will get support for the TI + BQ32000 I2C RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-bq32k. + +config RTC_DRV_DM355EVM + tristate "TI DaVinci DM355 EVM RTC" + depends on MFD_DM355EVM_MSP + help + Supports the RTC firmware in the MSP430 on the DM355 EVM. + +config RTC_DRV_TWL92330 + bool "TI TWL92330/Menelaus" + depends on MENELAUS + help + If you say yes here you get support for the RTC on the + TWL92330 "Menelaus" power management chip, used with OMAP2 + platforms. The support is integrated with the rest of + the Menelaus driver; it's not separate module. + +config RTC_DRV_TWL4030 + tristate "TI TWL4030/TWL5030/TWL6030/TPS659x0" + depends on TWL4030_CORE + help + If you say yes here you get support for the RTC on the + TWL4030/TWL5030/TWL6030 family chips, used mostly with OMAP3 platforms. + + This driver can also be built as a module. If so, the module + will be called rtc-twl. + +config RTC_DRV_TPS6586X + tristate "TI TPS6586X RTC driver" + depends on MFD_TPS6586X + help + TI Power Management IC TPS6586X supports RTC functionality + along with alarm. This driver supports the RTC driver for + the TPS6586X RTC module. + +config RTC_DRV_TPS65910 + tristate "TI TPS65910 RTC driver" + depends on RTC_CLASS && MFD_TPS65910 + help + If you say yes here you get support for the RTC on the + TPS65910 chips. + + This driver can also be built as a module. If so, the module + will be called rtc-tps65910. + +config RTC_DRV_TPS80031 + tristate "TI TPS80031/TPS80032 RTC driver" + depends on MFD_TPS80031 + help + TI Power Management IC TPS80031 supports RTC functionality + along with alarm. This driver supports the RTC driver for + the TPS80031 RTC module. + +config RTC_DRV_RC5T583 + tristate "RICOH 5T583 RTC driver" + depends on MFD_RC5T583 + help + If you say yes here you get support for the RTC on the + RICOH 5T583 chips. + + This driver can also be built as a module. If so, the module + will be called rtc-rc5t583. + +config RTC_DRV_S35390A + tristate "Seiko Instruments S-35390A" + select BITREVERSE + help + If you say yes here you will get support for the Seiko + Instruments S-35390A. + + This driver can also be built as a module. If so the module + will be called rtc-s35390a. + +config RTC_DRV_FM3130 + tristate "Ramtron FM3130" + help + If you say Y here you will get support for the + Ramtron FM3130 RTC chips. + Ramtron FM3130 is a chip with two separate devices inside, + RTC clock and FRAM. This driver provides only RTC functionality. + + This driver can also be built as a module. If so the module + will be called rtc-fm3130. + +config RTC_DRV_RX8581 + tristate "Epson RX-8581" + help + If you say yes here you will get support for the Epson RX-8581. + + This driver can also be built as a module. If so the module + will be called rtc-rx8581. + +config RTC_DRV_RX8025 + tristate "Epson RX-8025SA/NB" + help + If you say yes here you get support for the Epson + RX-8025SA/NB RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-rx8025. + +config RTC_DRV_EM3027 + tristate "EM Microelectronic EM3027" + help + If you say yes here you get support for the EM + Microelectronic EM3027 RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-em3027. + +config RTC_DRV_RV3029C2 + tristate "Micro Crystal RTC" + help + If you say yes here you get support for the Micro Crystal + RV3029-C2 RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-rv3029c2. + +config RTC_DRV_S5M + tristate "Samsung S2M/S5M series" + depends on MFD_SEC_CORE + help + If you say yes here you will get support for the + RTC of Samsung S2MPS14 and S5M PMIC series. + + This driver can also be built as a module. If so, the module + will be called rtc-s5m. + +endif # I2C + +comment "SPI RTC drivers" + +if SPI_MASTER + +config RTC_DRV_M41T93 + tristate "ST M41T93" + help + If you say yes here you will get support for the + ST M41T93 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-m41t93. + +config RTC_DRV_M41T94 + tristate "ST M41T94" + help + If you say yes here you will get support for the + ST M41T94 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-m41t94. + +config RTC_DRV_DS1305 + tristate "Dallas/Maxim DS1305/DS1306" + help + Select this driver to get support for the Dallas/Maxim DS1305 + and DS1306 real time clock chips. These support a trickle + charger, alarms, and NVRAM in addition to the clock. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1305. + +config RTC_DRV_DS1343 + select REGMAP_SPI + tristate "Dallas/Maxim DS1343/DS1344" + help + If you say yes here you get support for the + Dallas/Maxim DS1343 and DS1344 real time clock chips. + Support for trickle charger, alarm is provided. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1343. + +config RTC_DRV_DS1347 + tristate "Dallas/Maxim DS1347" + help + If you say yes here you get support for the + Dallas/Maxim DS1347 chips. + + This driver only supports the RTC feature, and not other chip + features such as alarms. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1347. + +config RTC_DRV_DS1390 + tristate "Dallas/Maxim DS1390/93/94" + help + If you say yes here you get support for the + Dallas/Maxim DS1390/93/94 chips. + + This driver only supports the RTC feature, and not other chip + features such as alarms and trickle charging. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1390. + +config RTC_DRV_MAX6902 + tristate "Maxim MAX6902" + help + If you say yes here you will get support for the + Maxim MAX6902 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-max6902. + +config RTC_DRV_R9701 + tristate "Epson RTC-9701JE" + help + If you say yes here you will get support for the + Epson RTC-9701JE SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-r9701. + +config RTC_DRV_RS5C348 + tristate "Ricoh RS5C348A/B" + help + If you say yes here you get support for the + Ricoh RS5C348A and RS5C348B RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-rs5c348. + +config RTC_DRV_DS3234 + tristate "Maxim/Dallas DS3234" + help + If you say yes here you get support for the + Maxim/Dallas DS3234 SPI RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds3234. + +config RTC_DRV_PCF2123 + tristate "NXP PCF2123" + help + If you say yes here you get support for the NXP PCF2123 + RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-pcf2123. + +config RTC_DRV_RX4581 + tristate "Epson RX-4581" + help + If you say yes here you will get support for the Epson RX-4581. + + This driver can also be built as a module. If so the module + will be called rtc-rx4581. + +config RTC_DRV_MCP795 + tristate "Microchip MCP795" + help + If you say yes here you will get support for the Microchip MCP795. + + This driver can also be built as a module. If so the module + will be called rtc-mcp795. + +endif # SPI_MASTER + +comment "Platform RTC drivers" + +# this 'CMOS' RTC driver is arch dependent because <asm-generic/rtc.h> +# requires <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a +# global rtc_lock ... it's not yet just another platform_device. + +config RTC_DRV_CMOS + tristate "PC-style 'CMOS'" + depends on X86 || ARM || M32R || PPC || MIPS || SPARC64 + default y if X86 + help + Say "yes" here to get direct support for the real time clock + found in every PC or ACPI-based system, and some other boards. + Specifically the original MC146818, compatibles like those in + PC south bridges, the DS12887 or M48T86, some multifunction + or LPC bus chips, and so on. + + Your system will need to define the platform device used by + this driver, otherwise it won't be accessible. This means + you can safely enable this driver if you don't know whether + or not your board has this kind of hardware. + + This driver can also be built as a module. If so, the module + will be called rtc-cmos. + +config RTC_DRV_ALPHA + bool "Alpha PC-style CMOS" + depends on ALPHA + default y + help + Direct support for the real-time clock found on every Alpha + system, specifically MC146818 compatibles. If in doubt, say Y. + +config RTC_DRV_VRTC + tristate "Virtual RTC for Intel MID platforms" + depends on X86_INTEL_MID + default y if X86_INTEL_MID + + help + Say "yes" here to get direct support for the real time clock + found on Moorestown platforms. The VRTC is a emulated RTC that + derives its clock source from a real RTC in the PMIC. The MC146818 + style programming interface is mostly conserved, but any + updates are done via IPC calls to the system controller FW. + +config RTC_DRV_DS1216 + tristate "Dallas DS1216" + depends on SNI_RM + help + If you say yes here you get support for the Dallas DS1216 RTC chips. + +config RTC_DRV_DS1286 + tristate "Dallas DS1286" + depends on HAS_IOMEM + help + If you say yes here you get support for the Dallas DS1286 RTC chips. + +config RTC_DRV_DS1302 + tristate "Dallas DS1302" + depends on SH_SECUREEDGE5410 + help + If you say yes here you get support for the Dallas DS1302 RTC chips. + +config RTC_DRV_DS1511 + tristate "Dallas DS1511" + depends on HAS_IOMEM + help + If you say yes here you get support for the + Dallas DS1511 timekeeping/watchdog chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1511. + +config RTC_DRV_DS1553 + tristate "Maxim/Dallas DS1553" + depends on HAS_IOMEM + help + If you say yes here you get support for the + Maxim/Dallas DS1553 timekeeping chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1553. + +config RTC_DRV_DS1685_FAMILY + tristate "Dallas/Maxim DS1685 Family" + help + If you say yes here you get support for the Dallas/Maxim DS1685 + family of real time chips. This family includes the DS1685/DS1687, + DS1689/DS1693, DS17285/DS17287, DS17485/DS17487, and + DS17885/DS17887 chips. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1685. + +choice + prompt "Subtype" + depends on RTC_DRV_DS1685_FAMILY + default RTC_DRV_DS1685 + +config RTC_DRV_DS1685 + bool "DS1685/DS1687" + help + This enables support for the Dallas/Maxim DS1685/DS1687 real time + clock chip. + + This chip is commonly found in SGI O2 (IP32) and SGI Octane (IP30) + systems, as well as EPPC-405-UC modules by electronic system design + GmbH. + +config RTC_DRV_DS1689 + bool "DS1689/DS1693" + help + This enables support for the Dallas/Maxim DS1689/DS1693 real time + clock chip. + + This is an older RTC chip, supplanted by the DS1685/DS1687 above, + which supports a few minor features such as Vcc, Vbat, and Power + Cycle counters, plus a customer-specific, 8-byte ROM/Serial number. + + It also works for the even older DS1688/DS1691 RTC chips, which are + virtually the same and carry the same model number. Both chips + have 114 bytes of user NVRAM. + +config RTC_DRV_DS17285 + bool "DS17285/DS17287" + help + This enables support for the Dallas/Maxim DS17285/DS17287 real time + clock chip. + + This chip features 2kb of extended NV-SRAM. It may possibly be + found in some SGI O2 systems (rare). + +config RTC_DRV_DS17485 + bool "DS17485/DS17487" + help + This enables support for the Dallas/Maxim DS17485/DS17487 real time + clock chip. + + This chip features 4kb of extended NV-SRAM. + +config RTC_DRV_DS17885 + bool "DS17885/DS17887" + help + This enables support for the Dallas/Maxim DS17885/DS17887 real time + clock chip. + + This chip features 8kb of extended NV-SRAM. + +endchoice + +config RTC_DS1685_PROC_REGS + bool "Display register values in /proc" + depends on RTC_DRV_DS1685_FAMILY && PROC_FS + help + Enable this to display a readout of all of the RTC registers in + /proc/drivers/rtc. Keep in mind that this can potentially lead + to lost interrupts, as reading Control Register C will clear + all pending IRQ flags. + + Unless you are debugging this driver, choose N. + +config RTC_DS1685_SYSFS_REGS + bool "SysFS access to RTC register bits" + depends on RTC_DRV_DS1685_FAMILY && SYSFS + help + Enable this to provide access to the RTC control register bits + in /sys. Some of the bits are read-write, others are read-only. + + Keep in mind that reading Control C's bits automatically clears + all pending IRQ flags - this can cause lost interrupts. + + If you know that you need access to these bits, choose Y, Else N. + +config RTC_DRV_DS1742 + tristate "Maxim/Dallas DS1742/1743" + depends on HAS_IOMEM + help + If you say yes here you get support for the + Maxim/Dallas DS1742/1743 timekeeping chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1742. + +config RTC_DRV_DS2404 + tristate "Maxim/Dallas DS2404" + help + If you say yes here you get support for the + Dallas DS2404 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ds2404. + +config RTC_DRV_DA9052 + tristate "Dialog DA9052/DA9053 RTC" + depends on PMIC_DA9052 + help + Say y here to support the RTC driver for Dialog Semiconductor + DA9052-BC and DA9053-AA/Bx PMICs. + +config RTC_DRV_DA9055 + tristate "Dialog Semiconductor DA9055 RTC" + depends on MFD_DA9055 + help + If you say yes here you will get support for the + RTC of the Dialog DA9055 PMIC. + + This driver can also be built as a module. If so, the module + will be called rtc-da9055 + +config RTC_DRV_DA9063 + tristate "Dialog Semiconductor DA9063 RTC" + depends on MFD_DA9063 + help + If you say yes here you will get support for the RTC subsystem + of the Dialog Semiconductor DA9063. + + This driver can also be built as a module. If so, the module + will be called "rtc-da9063". + +config RTC_DRV_EFI + tristate "EFI RTC" + depends on EFI && !X86 + help + If you say yes here you will get support for the EFI + Real Time Clock. + + This driver can also be built as a module. If so, the module + will be called rtc-efi. + +config RTC_DRV_STK17TA8 + tristate "Simtek STK17TA8" + depends on HAS_IOMEM + help + If you say yes here you get support for the + Simtek STK17TA8 timekeeping chip. + + This driver can also be built as a module. If so, the module + will be called rtc-stk17ta8. + +config RTC_DRV_M48T86 + tristate "ST M48T86/Dallas DS12887" + help + If you say Y here you will get support for the + ST M48T86 and Dallas DS12887 RTC chips. + + This driver can also be built as a module. If so, the module + will be called rtc-m48t86. + +config RTC_DRV_M48T35 + tristate "ST M48T35" + depends on HAS_IOMEM + help + If you say Y here you will get support for the + ST M48T35 RTC chip. + + This driver can also be built as a module, if so, the module + will be called "rtc-m48t35". + +config RTC_DRV_M48T59 + tristate "ST M48T59/M48T08/M48T02" + depends on HAS_IOMEM + help + If you say Y here you will get support for the + ST M48T59 RTC chip and compatible ST M48T08 and M48T02. + + These chips are usually found in Sun SPARC and UltraSPARC + workstations. + + This driver can also be built as a module, if so, the module + will be called "rtc-m48t59". + +config RTC_DRV_MSM6242 + tristate "Oki MSM6242" + depends on HAS_IOMEM + help + If you say yes here you get support for the Oki MSM6242 + timekeeping chip. It is used in some Amiga models (e.g. A2000). + + This driver can also be built as a module. If so, the module + will be called rtc-msm6242. + +config RTC_DRV_BQ4802 + tristate "TI BQ4802" + depends on HAS_IOMEM + help + If you say Y here you will get support for the TI + BQ4802 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-bq4802. + +config RTC_DRV_RP5C01 + tristate "Ricoh RP5C01" + depends on HAS_IOMEM + help + If you say yes here you get support for the Ricoh RP5C01 + timekeeping chip. It is used in some Amiga models (e.g. A3000 + and A4000). + + This driver can also be built as a module. If so, the module + will be called rtc-rp5c01. + +config RTC_DRV_V3020 + tristate "EM Microelectronic V3020" + help + If you say yes here you will get support for the + EM Microelectronic v3020 RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-v3020. + +config RTC_DRV_WM831X + tristate "Wolfson Microelectronics WM831x RTC" + depends on MFD_WM831X + help + If you say yes here you will get support for the RTC subsystem + of the Wolfson Microelectronics WM831X series PMICs. + + This driver can also be built as a module. If so, the module + will be called "rtc-wm831x". + +config RTC_DRV_WM8350 + tristate "Wolfson Microelectronics WM8350 RTC" + depends on MFD_WM8350 + help + If you say yes here you will get support for the RTC subsystem + of the Wolfson Microelectronics WM8350. + + This driver can also be built as a module. If so, the module + will be called "rtc-wm8350". + +config RTC_DRV_SPEAR + tristate "SPEAR ST RTC" + depends on PLAT_SPEAR + default y + help + If you say Y here you will get support for the RTC found on + spear + +config RTC_DRV_PCF50633 + depends on MFD_PCF50633 + tristate "NXP PCF50633 RTC" + help + If you say yes here you get support for the RTC subsystem of the + NXP PCF50633 used in embedded systems. + +config RTC_DRV_AB3100 + tristate "ST-Ericsson AB3100 RTC" + depends on AB3100_CORE + default y if AB3100_CORE + help + Select this to enable the ST-Ericsson AB3100 Mixed Signal IC RTC + support. This chip contains a battery- and capacitor-backed RTC. + +config RTC_DRV_AB8500 + tristate "ST-Ericsson AB8500 RTC" + depends on AB8500_CORE + select RTC_INTF_DEV + select RTC_INTF_DEV_UIE_EMUL + help + Select this to enable the ST-Ericsson AB8500 power management IC RTC + support. This chip contains a battery- and capacitor-backed RTC. + +config RTC_DRV_NUC900 + tristate "NUC910/NUC920 RTC driver" + depends on ARCH_W90X900 + help + If you say yes here you get support for the RTC subsystem of the + NUC910/NUC920 used in embedded systems. + +config RTC_DRV_OPAL + tristate "IBM OPAL RTC driver" + depends on PPC_POWERNV + default y + help + If you say yes here you get support for the PowerNV platform RTC + driver based on OPAL interfaces. + + This driver can also be built as a module. If so, the module + will be called rtc-opal. + +comment "on-CPU RTC drivers" + +config RTC_DRV_DAVINCI + tristate "TI DaVinci RTC" + depends on ARCH_DAVINCI_DM365 + help + If you say yes here you get support for the RTC on the + DaVinci platforms (DM365). + + This driver can also be built as a module. If so, the module + will be called rtc-davinci. + +config RTC_DRV_DIGICOLOR + tristate "Conexant Digicolor RTC" + depends on ARCH_DIGICOLOR + help + If you say yes here you get support for the RTC on Conexant + Digicolor platforms. This currently includes the CX92755 SoC. + + This driver can also be built as a module. If so, the module + will be called rtc-digicolor. + +config RTC_DRV_IMXDI + tristate "Freescale IMX DryIce Real Time Clock" + depends on ARCH_MXC + help + Support for Freescale IMX DryIce RTC + + This driver can also be built as a module, if so, the module + will be called "rtc-imxdi". + +config RTC_DRV_OMAP + tristate "TI OMAP Real Time Clock" + depends on ARCH_OMAP || ARCH_DAVINCI + help + Say "yes" here to support the on chip real time clock + present on TI OMAP1, AM33xx, DA8xx/OMAP-L13x, AM43xx and DRA7xx. + + This driver can also be built as a module, if so, module + will be called rtc-omap. + +config HAVE_S3C_RTC + bool + help + This will include RTC support for Samsung SoCs. If + you want to include RTC support for any machine, kindly + select this in the respective mach-XXXX/Kconfig file. + +config RTC_DRV_S3C + tristate "Samsung S3C series SoC RTC" + depends on ARCH_S3C64XX || HAVE_S3C_RTC + help + RTC (Realtime Clock) driver for the clock inbuilt into the + Samsung S3C24XX series of SoCs. This can provide periodic + interrupt rates from 1Hz to 64Hz for user programs, and + wakeup from Alarm. + + The driver currently supports the common features on all the + S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440 + and S3C2442. + + This driver can also be build as a module. If so, the module + will be called rtc-s3c. + +config RTC_DRV_EP93XX + tristate "Cirrus Logic EP93XX" + depends on ARCH_EP93XX + help + If you say yes here you get support for the + RTC embedded in the Cirrus Logic EP93XX processors. + + This driver can also be built as a module. If so, the module + will be called rtc-ep93xx. + +config RTC_DRV_SA1100 + tristate "SA11x0/PXA2xx/PXA910" + depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP + help + If you say Y here you will get access to the real time clock + built into your SA11x0 or PXA2xx CPU. + + To compile this driver as a module, choose M here: the + module will be called rtc-sa1100. + +config RTC_DRV_SH + tristate "SuperH On-Chip RTC" + depends on SUPERH && HAVE_CLK + help + Say Y here to enable support for the on-chip RTC found in + most SuperH processors. + + To compile this driver as a module, choose M here: the + module will be called rtc-sh. + +config RTC_DRV_VR41XX + tristate "NEC VR41XX" + depends on CPU_VR41XX + help + If you say Y here you will get access to the real time clock + built into your NEC VR41XX CPU. + + To compile this driver as a module, choose M here: the + module will be called rtc-vr41xx. + +config RTC_DRV_PL030 + tristate "ARM AMBA PL030 RTC" + depends on ARM_AMBA + help + If you say Y here you will get access to ARM AMBA + PrimeCell PL030 RTC found on certain ARM SOCs. + + To compile this driver as a module, choose M here: the + module will be called rtc-pl030. + +config RTC_DRV_PL031 + tristate "ARM AMBA PL031 RTC" + depends on ARM_AMBA + help + If you say Y here you will get access to ARM AMBA + PrimeCell PL031 RTC found on certain ARM SOCs. + + To compile this driver as a module, choose M here: the + module will be called rtc-pl031. + +config RTC_DRV_AT32AP700X + tristate "AT32AP700X series RTC" + depends on PLATFORM_AT32AP + help + Driver for the internal RTC (Realtime Clock) on Atmel AVR32 + AT32AP700x family processors. + +config RTC_DRV_AT91RM9200 + tristate "AT91RM9200 or some AT91SAM9 RTC" + depends on ARCH_AT91 + help + Driver for the internal RTC (Realtime Clock) module found on + Atmel AT91RM9200's and some AT91SAM9 chips. On AT91SAM9 chips + this is powered by the backup power supply. + +config RTC_DRV_AT91SAM9 + tristate "AT91SAM9 RTT as RTC" + depends on ARCH_AT91 + select MFD_SYSCON + help + Some AT91SAM9 SoCs provide an RTT (Real Time Timer) block which + can be used as an RTC thanks to the backup power supply (e.g. a + small coin cell battery) which keeps this block and the GPBR + (General Purpose Backup Registers) block powered when the device + is shutdown. + Some AT91SAM9 SoCs provide a real RTC block, on those ones you'd + probably want to use the real RTC block instead of the "RTT as an + RTC" driver. + +config RTC_DRV_AU1XXX + tristate "Au1xxx Counter0 RTC support" + depends on MIPS_ALCHEMY + help + This is a driver for the Au1xxx on-chip Counter0 (Time-Of-Year + counter) to be used as a RTC. + + This driver can also be built as a module. If so, the module + will be called rtc-au1xxx. + +config RTC_DRV_BFIN + tristate "Blackfin On-Chip RTC" + depends on BLACKFIN && !BF561 + help + If you say yes here you will get support for the + Blackfin On-Chip Real Time Clock. + + This driver can also be built as a module. If so, the module + will be called rtc-bfin. + +config RTC_DRV_RS5C313 + tristate "Ricoh RS5C313" + depends on SH_LANDISK + help + If you say yes here you get support for the Ricoh RS5C313 RTC chips. + +config RTC_DRV_GENERIC + tristate "Generic RTC support" + # Please consider writing a new RTC driver instead of using the generic + # RTC abstraction + depends on PARISC || M68K || PPC || SUPERH32 + help + Say Y or M here to enable RTC support on systems using the generic + RTC abstraction. If you do not know what you are doing, you should + just say Y. + +config RTC_DRV_PXA + tristate "PXA27x/PXA3xx" + depends on ARCH_PXA + help + If you say Y here you will get access to the real time clock + built into your PXA27x or PXA3xx CPU. + + This RTC driver uses PXA RTC registers available since pxa27x + series (RDxR, RYxR) instead of legacy RCNR, RTAR. + +config RTC_DRV_VT8500 + tristate "VIA/WonderMedia 85xx SoC RTC" + depends on ARCH_VT8500 + help + If you say Y here you will get access to the real time clock + built into your VIA VT8500 SoC or its relatives. + + +config RTC_DRV_SUN4V + bool "SUN4V Hypervisor RTC" + depends on SPARC64 + help + If you say Y here you will get support for the Hypervisor + based RTC on SUN4V systems. + +config RTC_DRV_SUN6I + tristate "Allwinner A31 RTC" + depends on MACH_SUN6I || MACH_SUN8I + help + If you say Y here you will get support for the RTC found on + Allwinner A31. + +config RTC_DRV_SUNXI + tristate "Allwinner sun4i/sun7i RTC" + depends on MACH_SUN4I || MACH_SUN7I + help + If you say Y here you will get support for the RTC found on + Allwinner A10/A20. + +config RTC_DRV_STARFIRE + bool "Starfire RTC" + depends on SPARC64 + help + If you say Y here you will get support for the RTC found on + Starfire systems. + +config RTC_DRV_TX4939 + tristate "TX4939 SoC" + depends on SOC_TX4939 + help + Driver for the internal RTC (Realtime Clock) module found on + Toshiba TX4939 SoC. + +config RTC_DRV_MV + tristate "Marvell SoC RTC" + depends on ARCH_DOVE || ARCH_MVEBU + help + If you say yes here you will get support for the in-chip RTC + that can be found in some of Marvell's SoC devices, such as + the Kirkwood 88F6281 and 88F6192. + + This driver can also be built as a module. If so, the module + will be called rtc-mv. + +config RTC_DRV_ARMADA38X + tristate "Armada 38x Marvell SoC RTC" + depends on ARCH_MVEBU + help + If you say yes here you will get support for the in-chip RTC + that can be found in the Armada 38x Marvell's SoC device + + This driver can also be built as a module. If so, the module + will be called armada38x-rtc. + +config RTC_DRV_PS3 + tristate "PS3 RTC" + depends on PPC_PS3 + help + If you say yes here you will get support for the RTC on PS3. + + This driver can also be built as a module. If so, the module + will be called rtc-ps3. + +config RTC_DRV_COH901331 + tristate "ST-Ericsson COH 901 331 RTC" + depends on ARCH_U300 + help + If you say Y here you will get access to ST-Ericsson + COH 901 331 RTC clock found in some ST-Ericsson Mobile + Platforms. + + This driver can also be built as a module. If so, the module + will be called "rtc-coh901331". + + +config RTC_DRV_STMP + tristate "Freescale STMP3xxx/i.MX23/i.MX28 RTC" + depends on ARCH_MXS + help + If you say yes here you will get support for the onboard + STMP3xxx/i.MX23/i.MX28 RTC. + + This driver can also be built as a module. If so, the module + will be called rtc-stmp3xxx. + +config RTC_DRV_PCAP + tristate "PCAP RTC" + depends on EZX_PCAP + help + If you say Y here you will get support for the RTC found on + the PCAP2 ASIC used on some Motorola phones. + +config RTC_DRV_MC13XXX + depends on MFD_MC13XXX + tristate "Freescale MC13xxx RTC" + help + This enables support for the RTCs found on Freescale's PMICs + MC13783 and MC13892. + +config RTC_DRV_MPC5121 + tristate "Freescale MPC5121 built-in RTC" + depends on PPC_MPC512x || PPC_MPC52xx + help + If you say yes here you will get support for the + built-in RTC on MPC5121 or on MPC5200. + + This driver can also be built as a module. If so, the module + will be called rtc-mpc5121. + +config RTC_DRV_JZ4740 + tristate "Ingenic JZ4740 SoC" + depends on MACH_JZ4740 + help + If you say yes here you get support for the Ingenic JZ4740 SoC RTC + controller. + + This driver can also be buillt as a module. If so, the module + will be called rtc-jz4740. + +config RTC_DRV_LPC32XX + depends on ARCH_LPC32XX + tristate "NXP LPC32XX RTC" + help + This enables support for the NXP RTC in the LPC32XX + + This driver can also be buillt as a module. If so, the module + will be called rtc-lpc32xx. + +config RTC_DRV_PM8XXX + tristate "Qualcomm PMIC8XXX RTC" + depends on MFD_PM8XXX || MFD_SPMI_PMIC + help + If you say yes here you get support for the + Qualcomm PMIC8XXX RTC. + + To compile this driver as a module, choose M here: the + module will be called rtc-pm8xxx. + +config RTC_DRV_TEGRA + tristate "NVIDIA Tegra Internal RTC driver" + depends on ARCH_TEGRA + help + If you say yes here you get support for the + Tegra 200 series internal RTC module. + + This drive can also be built as a module. If so, the module + will be called rtc-tegra. + +config RTC_DRV_TILE + tristate "Tilera hypervisor RTC support" + depends on TILE + help + Enable support for the Linux driver side of the Tilera + hypervisor's real-time clock interface. + +config RTC_DRV_PUV3 + tristate "PKUnity v3 RTC support" + depends on ARCH_PUV3 + help + This enables support for the RTC in the PKUnity-v3 SoCs. + + This drive can also be built as a module. If so, the module + will be called rtc-puv3. + +config RTC_DRV_LOONGSON1 + tristate "loongson1 RTC support" + depends on MACH_LOONGSON1 + help + This is a driver for the loongson1 on-chip Counter0 (Time-Of-Year + counter) to be used as a RTC. + + This driver can also be built as a module. If so, the module + will be called rtc-ls1x. + +config RTC_DRV_MXC + tristate "Freescale MXC Real Time Clock" + depends on ARCH_MXC + help + If you say yes here you get support for the Freescale MXC + RTC module. + + This driver can also be built as a module, if so, the module + will be called "rtc-mxc". + +config RTC_DRV_SNVS + tristate "Freescale SNVS RTC support" + depends on HAS_IOMEM + depends on OF + help + If you say yes here you get support for the Freescale SNVS + Low Power (LP) RTC module. + + This driver can also be built as a module, if so, the module + will be called "rtc-snvs". + +config RTC_DRV_SIRFSOC + tristate "SiRFSOC RTC" + depends on ARCH_SIRF + help + Say "yes" here to support the real time clock on SiRF SOC chips. + This driver can also be built as a module called rtc-sirfsoc. + +config RTC_DRV_MOXART + tristate "MOXA ART RTC" + depends on ARCH_MOXART || COMPILE_TEST + help + If you say yes here you get support for the MOXA ART + RTC module. + + This driver can also be built as a module. If so, the module + will be called rtc-moxart + +config RTC_DRV_XGENE + tristate "APM X-Gene RTC" + depends on HAS_IOMEM + help + If you say yes here you get support for the APM X-Gene SoC real time + clock. + + This driver can also be built as a module, if so, the module + will be called "rtc-xgene". + +comment "HID Sensor RTC drivers" + +config RTC_DRV_HID_SENSOR_TIME + tristate "HID Sensor Time" + depends on USB_HID + select IIO + select HID_SENSOR_HUB + select HID_SENSOR_IIO_COMMON + help + Say yes here to build support for the HID Sensors of type Time. + This drivers makes such sensors available as RTCs. + + If this driver is compiled as a module, it will be named + rtc-hid-sensor-time. + + +endif # RTC_CLASS |