diff options
Diffstat (limited to 'kernel/drivers/mtd/spi-nor')
-rw-r--r-- | kernel/drivers/mtd/spi-nor/Kconfig | 17 | ||||
-rw-r--r-- | kernel/drivers/mtd/spi-nor/Makefile | 1 | ||||
-rw-r--r-- | kernel/drivers/mtd/spi-nor/fsl-quadspi.c | 309 | ||||
-rw-r--r-- | kernel/drivers/mtd/spi-nor/nxp-spifi.c | 479 | ||||
-rw-r--r-- | kernel/drivers/mtd/spi-nor/spi-nor.c | 412 |
5 files changed, 1005 insertions, 213 deletions
diff --git a/kernel/drivers/mtd/spi-nor/Kconfig b/kernel/drivers/mtd/spi-nor/Kconfig index 64a4f0eda..2fe2a7e90 100644 --- a/kernel/drivers/mtd/spi-nor/Kconfig +++ b/kernel/drivers/mtd/spi-nor/Kconfig @@ -23,9 +23,22 @@ config MTD_SPI_NOR_USE_4K_SECTORS config SPI_FSL_QUADSPI tristate "Freescale Quad SPI controller" - depends on ARCH_MXC + depends on ARCH_MXC || COMPILE_TEST + depends on HAS_IOMEM help This enables support for the Quad SPI controller in master mode. - We only connect the NOR to this controller now. + This controller does not support generic SPI. It only supports + SPI NOR. + +config SPI_NXP_SPIFI + tristate "NXP SPI Flash Interface (SPIFI)" + depends on OF && (ARCH_LPC18XX || COMPILE_TEST) + depends on HAS_IOMEM + help + Enable support for the NXP LPC SPI Flash Interface controller. + + SPIFI is a specialized controller for connecting serial SPI + Flash. Enable this option if you have a device with a SPIFI + controller and want to access the Flash as a mtd device. endif # MTD_SPI_NOR diff --git a/kernel/drivers/mtd/spi-nor/Makefile b/kernel/drivers/mtd/spi-nor/Makefile index 6a7ce1462..e53333ef8 100644 --- a/kernel/drivers/mtd/spi-nor/Makefile +++ b/kernel/drivers/mtd/spi-nor/Makefile @@ -1,2 +1,3 @@ obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o +obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o diff --git a/kernel/drivers/mtd/spi-nor/fsl-quadspi.c b/kernel/drivers/mtd/spi-nor/fsl-quadspi.c index 5d5d36272..7b10ed413 100644 --- a/kernel/drivers/mtd/spi-nor/fsl-quadspi.c +++ b/kernel/drivers/mtd/spi-nor/fsl-quadspi.c @@ -26,6 +26,21 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/spi-nor.h> +#include <linux/mutex.h> +#include <linux/pm_qos.h> +#include <linux/sizes.h> + +/* Controller needs driver to swap endian */ +#define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0) +/* Controller needs 4x internal clock */ +#define QUADSPI_QUIRK_4X_INT_CLK (1 << 1) +/* + * TKT253890, Controller needs driver to fill txfifo till 16 byte to + * trigger data transfer even though extern data will not transferred. + */ +#define QUADSPI_QUIRK_TKT253890 (1 << 2) +/* Controller cannot wake up from wait mode, TKT245618 */ +#define QUADSPI_QUIRK_TKT245618 (1 << 3) /* The registers */ #define QUADSPI_MCR 0x00 @@ -140,15 +155,15 @@ #define LUT_MODE 4 #define LUT_MODE2 5 #define LUT_MODE4 6 -#define LUT_READ 7 -#define LUT_WRITE 8 +#define LUT_FSL_READ 7 +#define LUT_FSL_WRITE 8 #define LUT_JMP_ON_CS 9 #define LUT_ADDR_DDR 10 #define LUT_MODE_DDR 11 #define LUT_MODE2_DDR 12 #define LUT_MODE4_DDR 13 -#define LUT_READ_DDR 14 -#define LUT_WRITE_DDR 15 +#define LUT_FSL_READ_DDR 14 +#define LUT_FSL_WRITE_DDR 15 #define LUT_DATA_LEARN 16 /* @@ -191,9 +206,13 @@ #define SEQID_EN4B 10 #define SEQID_BRWR 11 +#define QUADSPI_MIN_IOMAP SZ_4M + enum fsl_qspi_devtype { FSL_QUADSPI_VYBRID, FSL_QUADSPI_IMX6SX, + FSL_QUADSPI_IMX7D, + FSL_QUADSPI_IMX6UL, }; struct fsl_qspi_devtype_data { @@ -201,29 +220,52 @@ struct fsl_qspi_devtype_data { int rxfifo; int txfifo; int ahb_buf_size; + int driver_data; }; static struct fsl_qspi_devtype_data vybrid_data = { .devtype = FSL_QUADSPI_VYBRID, .rxfifo = 128, .txfifo = 64, - .ahb_buf_size = 1024 + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN, }; static struct fsl_qspi_devtype_data imx6sx_data = { .devtype = FSL_QUADSPI_IMX6SX, .rxfifo = 128, .txfifo = 512, - .ahb_buf_size = 1024 + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_4X_INT_CLK + | QUADSPI_QUIRK_TKT245618, +}; + +static struct fsl_qspi_devtype_data imx7d_data = { + .devtype = FSL_QUADSPI_IMX7D, + .rxfifo = 512, + .txfifo = 512, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_TKT253890 + | QUADSPI_QUIRK_4X_INT_CLK, +}; + +static struct fsl_qspi_devtype_data imx6ul_data = { + .devtype = FSL_QUADSPI_IMX6UL, + .rxfifo = 128, + .txfifo = 512, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_TKT253890 + | QUADSPI_QUIRK_4X_INT_CLK, }; #define FSL_QSPI_MAX_CHIP 4 struct fsl_qspi { - struct mtd_info mtd[FSL_QSPI_MAX_CHIP]; struct spi_nor nor[FSL_QSPI_MAX_CHIP]; void __iomem *iobase; - void __iomem *ahb_base; /* Used when read from AHB bus */ + void __iomem *ahb_addr; u32 memmap_phy; + u32 memmap_offs; + u32 memmap_len; struct clk *clk, *clk_en; struct device *dev; struct completion c; @@ -233,16 +275,28 @@ struct fsl_qspi { u32 clk_rate; unsigned int chip_base_addr; /* We may support two chips. */ bool has_second_chip; + struct mutex lock; + struct pm_qos_request pm_qos_req; }; -static inline int is_vybrid_qspi(struct fsl_qspi *q) +static inline int needs_swap_endian(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN; +} + +static inline int needs_4x_clock(struct fsl_qspi *q) { - return q->devtype_data->devtype == FSL_QUADSPI_VYBRID; + return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK; } -static inline int is_imx6sx_qspi(struct fsl_qspi *q) +static inline int needs_fill_txfifo(struct fsl_qspi *q) { - return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX; + return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890; +} + +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618; } /* @@ -251,7 +305,7 @@ static inline int is_imx6sx_qspi(struct fsl_qspi *q) */ static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { - return is_vybrid_qspi(q) ? __swab32(a) : a; + return needs_swap_endian(q) ? __swab32(a) : a; } static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) @@ -312,7 +366,7 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q) writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); - writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo), + writel(LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo), base + QUADSPI_LUT(lut_base + 1)); /* Write enable */ @@ -333,24 +387,18 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q) writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); - writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); + writel(LUT0(FSL_WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); /* Read Status */ lut_base = SEQID_RDSR * 4; - writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1), + writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1), base + QUADSPI_LUT(lut_base)); /* Erase a sector */ lut_base = SEQID_SE * 4; - if (q->nor_size <= SZ_16M) { - cmd = SPINOR_OP_SE; - addrlen = ADDR24BIT; - } else { - /* use the 4-byte address */ - cmd = SPINOR_OP_SE; - addrlen = ADDR32BIT; - } + cmd = q->nor[0].erase_opcode; + addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT; writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); @@ -362,17 +410,17 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q) /* READ ID */ lut_base = SEQID_RDID * 4; - writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8), + writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8), base + QUADSPI_LUT(lut_base)); /* Write Register */ lut_base = SEQID_WRSR * 4; - writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2), + writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2), base + QUADSPI_LUT(lut_base)); /* Read Configuration Register */ lut_base = SEQID_RDCR * 4; - writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1), + writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1), base + QUADSPI_LUT(lut_base)); /* Write disable */ @@ -419,6 +467,8 @@ static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) case SPINOR_OP_BRWR: return SEQID_BRWR; default: + if (cmd == q->nor[0].erase_opcode) + return SEQID_SE; dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); break; } @@ -537,7 +587,7 @@ static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, /* clear the TX FIFO. */ tmp = readl(q->iobase + QUADSPI_MCR); - writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR); + writel(tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR); /* fill the TX data to the FIFO */ for (j = 0, i = ((count + 3) / 4); j < i; j++) { @@ -546,6 +596,11 @@ static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, txbuf++; } + /* fill the TXFIFO upto 16 bytes for i.MX7d */ + if (needs_fill_txfifo(q)) + for (; i < 4; i++) + writel(tmp, q->iobase + QUADSPI_TBDR); + /* Trigger it */ ret = fsl_qspi_runcmd(q, opcode, to, count); @@ -606,6 +661,38 @@ static void fsl_qspi_init_abh_read(struct fsl_qspi *q) q->iobase + QUADSPI_BFGENCR); } +/* This function was used to prepare and enable QSPI clock */ +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) +{ + int ret; + + ret = clk_prepare_enable(q->clk_en); + if (ret) + return ret; + + ret = clk_prepare_enable(q->clk); + if (ret) { + clk_disable_unprepare(q->clk_en); + return ret; + } + + if (needs_wakeup_wait_mode(q)) + pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); + + return 0; +} + +/* This function was used to disable and unprepare QSPI clock */ +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) +{ + if (needs_wakeup_wait_mode(q)) + pm_qos_remove_request(&q->pm_qos_req); + + clk_disable_unprepare(q->clk); + clk_disable_unprepare(q->clk_en); + +} + /* We use this function to do some basic init for spi_nor_scan(). */ static int fsl_qspi_nor_setup(struct fsl_qspi *q) { @@ -613,11 +700,23 @@ static int fsl_qspi_nor_setup(struct fsl_qspi *q) u32 reg; int ret; - /* the default frequency, we will change it in the future.*/ + /* disable and unprepare clock to avoid glitch pass to controller */ + fsl_qspi_clk_disable_unprep(q); + + /* the default frequency, we will change it in the future. */ ret = clk_set_rate(q->clk, 66000000); if (ret) return ret; + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + + /* Reset the module */ + writel(QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, + base + QUADSPI_MCR); + udelay(1); + /* Init the LUT table. */ fsl_qspi_init_lut(q); @@ -635,6 +734,9 @@ static int fsl_qspi_nor_setup(struct fsl_qspi *q) writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, base + QUADSPI_MCR); + /* clear all interrupt status */ + writel(0xffffffff, q->iobase + QUADSPI_FR); + /* enable the interrupt */ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); @@ -646,13 +748,20 @@ static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) unsigned long rate = q->clk_rate; int ret; - if (is_imx6sx_qspi(q)) + if (needs_4x_clock(q)) rate *= 4; + /* disable and unprepare clock to avoid glitch pass to controller */ + fsl_qspi_clk_disable_unprep(q); + ret = clk_set_rate(q->clk, rate); if (ret) return ret; + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + /* Init the LUT table again. */ fsl_qspi_init_lut(q); @@ -662,9 +771,11 @@ static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) return 0; } -static struct of_device_id fsl_qspi_dt_ids[] = { +static const struct of_device_id fsl_qspi_dt_ids[] = { { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, }, { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, }, + { .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, }, + { .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); @@ -687,8 +798,7 @@ static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) return 0; } -static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, - int write_enable) +static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct fsl_qspi *q = nor->priv; int ret; @@ -730,11 +840,42 @@ static int fsl_qspi_read(struct spi_nor *nor, loff_t from, struct fsl_qspi *q = nor->priv; u8 cmd = nor->read_opcode; - dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n", - cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len); + /* if necessary,ioremap buffer before AHB read, */ + if (!q->ahb_addr) { + q->memmap_offs = q->chip_base_addr + from; + q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; + + q->ahb_addr = ioremap_nocache( + q->memmap_phy + q->memmap_offs, + q->memmap_len); + if (!q->ahb_addr) { + dev_err(q->dev, "ioremap failed\n"); + return -ENOMEM; + } + /* ioremap if the data requested is out of range */ + } else if (q->chip_base_addr + from < q->memmap_offs + || q->chip_base_addr + from + len > + q->memmap_offs + q->memmap_len) { + iounmap(q->ahb_addr); + + q->memmap_offs = q->chip_base_addr + from; + q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; + q->ahb_addr = ioremap_nocache( + q->memmap_phy + q->memmap_offs, + q->memmap_len); + if (!q->ahb_addr) { + dev_err(q->dev, "ioremap failed\n"); + return -ENOMEM; + } + } + + dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n", + cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, + len); /* Read out the data directly from the AHB buffer.*/ - memcpy(buf, q->ahb_base + q->chip_base_addr + from, len); + memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, + len); *retlen += len; return 0; @@ -746,7 +887,7 @@ static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) int ret; dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", - nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs); + nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs); ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); if (ret) @@ -761,26 +902,26 @@ static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) struct fsl_qspi *q = nor->priv; int ret; - ret = clk_enable(q->clk_en); - if (ret) - return ret; + mutex_lock(&q->lock); - ret = clk_enable(q->clk); - if (ret) { - clk_disable(q->clk_en); - return ret; - } + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + goto err_mutex; fsl_qspi_set_base_addr(q, nor); return 0; + +err_mutex: + mutex_unlock(&q->lock); + return ret; } static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { struct fsl_qspi *q = nor->priv; - clk_disable(q->clk); - clk_disable(q->clk_en); + fsl_qspi_clk_disable_unprep(q); + mutex_unlock(&q->lock); } static int fsl_qspi_probe(struct platform_device *pdev) @@ -804,6 +945,10 @@ static int fsl_qspi_probe(struct platform_device *pdev) if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) return -ENODEV; + q->dev = dev; + q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; + platform_set_drvdata(pdev, q); + /* find the resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); q->iobase = devm_ioremap_resource(dev, res); @@ -812,9 +957,11 @@ static int fsl_qspi_probe(struct platform_device *pdev) res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI-memory"); - q->ahb_base = devm_ioremap_resource(dev, res); - if (IS_ERR(q->ahb_base)) - return PTR_ERR(q->ahb_base); + if (!devm_request_mem_region(dev, res->start, resource_size(res), + res->name)) { + dev_err(dev, "can't request region for resource %pR\n", res); + return -EBUSY; + } q->memmap_phy = res->start; @@ -827,15 +974,9 @@ static int fsl_qspi_probe(struct platform_device *pdev) if (IS_ERR(q->clk)) return PTR_ERR(q->clk); - ret = clk_prepare_enable(q->clk_en); - if (ret) { - dev_err(dev, "cannot enable the qspi_en clock: %d\n", ret); - return ret; - } - - ret = clk_prepare_enable(q->clk); + ret = fsl_qspi_clk_prep_enable(q); if (ret) { - dev_err(dev, "cannot enable the qspi clock: %d\n", ret); + dev_err(dev, "can not enable the clock\n"); goto clk_failed; } @@ -853,10 +994,6 @@ static int fsl_qspi_probe(struct platform_device *pdev) goto irq_failed; } - q->dev = dev; - q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; - platform_set_drvdata(pdev, q); - ret = fsl_qspi_nor_setup(q); if (ret) goto irq_failed; @@ -864,21 +1001,20 @@ static int fsl_qspi_probe(struct platform_device *pdev) if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) q->has_second_chip = true; + mutex_init(&q->lock); + /* iterate the subnodes. */ for_each_available_child_of_node(dev->of_node, np) { - char modalias[40]; - /* skip the holes */ if (!q->has_second_chip) i *= 2; nor = &q->nor[i]; - mtd = &q->mtd[i]; + mtd = &nor->mtd; - nor->mtd = mtd; nor->dev = dev; + nor->flash_node = np; nor->priv = q; - mtd->priv = nor; /* fill the hooks */ nor->read_reg = fsl_qspi_read_reg; @@ -890,26 +1026,22 @@ static int fsl_qspi_probe(struct platform_device *pdev) nor->prepare = fsl_qspi_prep; nor->unprepare = fsl_qspi_unprep; - ret = of_modalias_node(np, modalias, sizeof(modalias)); - if (ret < 0) - goto irq_failed; - ret = of_property_read_u32(np, "spi-max-frequency", &q->clk_rate); if (ret < 0) - goto irq_failed; + goto mutex_failed; /* set the chip address for READID */ fsl_qspi_set_base_addr(q, nor); - ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD); + ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD); if (ret) - goto irq_failed; + goto mutex_failed; ppdata.of_node = np; ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (ret) - goto irq_failed; + goto mutex_failed; /* Set the correct NOR size now. */ if (q->nor_size == 0) { @@ -939,8 +1071,7 @@ static int fsl_qspi_probe(struct platform_device *pdev) if (ret) goto last_init_failed; - clk_disable(q->clk); - clk_disable(q->clk_en); + fsl_qspi_clk_disable_unprep(q); return 0; last_init_failed: @@ -948,12 +1079,14 @@ last_init_failed: /* skip the holes */ if (!q->has_second_chip) i *= 2; - mtd_device_unregister(&q->mtd[i]); + mtd_device_unregister(&q->nor[i].mtd); } +mutex_failed: + mutex_destroy(&q->lock); irq_failed: - clk_disable_unprepare(q->clk); + fsl_qspi_clk_disable_unprep(q); clk_failed: - clk_disable_unprepare(q->clk_en); + dev_err(dev, "Freescale QuadSPI probe failed\n"); return ret; } @@ -966,15 +1099,18 @@ static int fsl_qspi_remove(struct platform_device *pdev) /* skip the holes */ if (!q->has_second_chip) i *= 2; - mtd_device_unregister(&q->mtd[i]); + mtd_device_unregister(&q->nor[i].mtd); } /* disable the hardware */ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); writel(0x0, q->iobase + QUADSPI_RSER); - clk_unprepare(q->clk); - clk_unprepare(q->clk_en); + mutex_destroy(&q->lock); + + if (q->ahb_addr) + iounmap(q->ahb_addr); + return 0; } @@ -985,12 +1121,19 @@ static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state) static int fsl_qspi_resume(struct platform_device *pdev) { + int ret; struct fsl_qspi *q = platform_get_drvdata(pdev); + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + fsl_qspi_nor_setup(q); fsl_qspi_set_map_addr(q); fsl_qspi_nor_setup_last(q); + fsl_qspi_clk_disable_unprep(q); + return 0; } diff --git a/kernel/drivers/mtd/spi-nor/nxp-spifi.c b/kernel/drivers/mtd/spi-nor/nxp-spifi.c new file mode 100644 index 000000000..9e82098ae --- /dev/null +++ b/kernel/drivers/mtd/spi-nor/nxp-spifi.c @@ -0,0 +1,479 @@ +/* + * SPI-NOR driver for NXP SPI Flash Interface (SPIFI) + * + * Copyright (C) 2015 Joachim Eastwood <manabian@gmail.com> + * + * Based on Freescale QuadSPI driver: + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/spi/spi.h> + +/* NXP SPIFI registers, bits and macros */ +#define SPIFI_CTRL 0x000 +#define SPIFI_CTRL_TIMEOUT(timeout) (timeout) +#define SPIFI_CTRL_CSHIGH(cshigh) ((cshigh) << 16) +#define SPIFI_CTRL_MODE3 BIT(23) +#define SPIFI_CTRL_DUAL BIT(28) +#define SPIFI_CTRL_FBCLK BIT(30) +#define SPIFI_CMD 0x004 +#define SPIFI_CMD_DATALEN(dlen) ((dlen) & 0x3fff) +#define SPIFI_CMD_DOUT BIT(15) +#define SPIFI_CMD_INTLEN(ilen) ((ilen) << 16) +#define SPIFI_CMD_FIELDFORM(field) ((field) << 19) +#define SPIFI_CMD_FIELDFORM_ALL_SERIAL SPIFI_CMD_FIELDFORM(0x0) +#define SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA SPIFI_CMD_FIELDFORM(0x1) +#define SPIFI_CMD_FRAMEFORM(frame) ((frame) << 21) +#define SPIFI_CMD_FRAMEFORM_OPCODE_ONLY SPIFI_CMD_FRAMEFORM(0x1) +#define SPIFI_CMD_OPCODE(op) ((op) << 24) +#define SPIFI_ADDR 0x008 +#define SPIFI_IDATA 0x00c +#define SPIFI_CLIMIT 0x010 +#define SPIFI_DATA 0x014 +#define SPIFI_MCMD 0x018 +#define SPIFI_STAT 0x01c +#define SPIFI_STAT_MCINIT BIT(0) +#define SPIFI_STAT_CMD BIT(1) +#define SPIFI_STAT_RESET BIT(4) + +#define SPI_NOR_MAX_ID_LEN 6 + +struct nxp_spifi { + struct device *dev; + struct clk *clk_spifi; + struct clk *clk_reg; + void __iomem *io_base; + void __iomem *flash_base; + struct spi_nor nor; + bool memory_mode; + u32 mcmd; +}; + +static int nxp_spifi_wait_for_cmd(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + !(stat & SPIFI_STAT_CMD), 10, 30); + if (ret) + dev_warn(spifi->dev, "command timed out\n"); + + return ret; +} + +static int nxp_spifi_reset(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + writel(SPIFI_STAT_RESET, spifi->io_base + SPIFI_STAT); + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + !(stat & SPIFI_STAT_RESET), 10, 30); + if (ret) + dev_warn(spifi->dev, "state reset timed out\n"); + + return ret; +} + +static int nxp_spifi_set_memory_mode_off(struct nxp_spifi *spifi) +{ + int ret; + + if (!spifi->memory_mode) + return 0; + + ret = nxp_spifi_reset(spifi); + if (ret) + dev_err(spifi->dev, "unable to enter command mode\n"); + else + spifi->memory_mode = false; + + return ret; +} + +static int nxp_spifi_set_memory_mode_on(struct nxp_spifi *spifi) +{ + u8 stat; + int ret; + + if (spifi->memory_mode) + return 0; + + writel(spifi->mcmd, spifi->io_base + SPIFI_MCMD); + ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat, + stat & SPIFI_STAT_MCINIT, 10, 30); + if (ret) + dev_err(spifi->dev, "unable to enter memory mode\n"); + else + spifi->memory_mode = true; + + return ret; +} + +static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + cmd = SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_OPCODE(opcode) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_FRAMEFORM_OPCODE_ONLY; + writel(cmd, spifi->io_base + SPIFI_CMD); + + while (len--) + *buf++ = readb(spifi->io_base + SPIFI_DATA); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + cmd = SPIFI_CMD_DOUT | + SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_OPCODE(opcode) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_FRAMEFORM_OPCODE_ONLY; + writel(cmd, spifi->io_base + SPIFI_CMD); + + while (len--) + writeb(*buf++, spifi->io_base + SPIFI_DATA); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_read(struct spi_nor *nor, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct nxp_spifi *spifi = nor->priv; + int ret; + + ret = nxp_spifi_set_memory_mode_on(spifi); + if (ret) + return ret; + + memcpy_fromio(buf, spifi->flash_base + from, len); + *retlen += len; + + return 0; +} + +static void nxp_spifi_write(struct spi_nor *nor, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return; + + writel(to, spifi->io_base + SPIFI_ADDR); + *retlen += len; + + cmd = SPIFI_CMD_DOUT | + SPIFI_CMD_DATALEN(len) | + SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_OPCODE(nor->program_opcode) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1); + writel(cmd, spifi->io_base + SPIFI_CMD); + + while (len--) + writeb(*buf++, spifi->io_base + SPIFI_DATA); + + nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_erase(struct spi_nor *nor, loff_t offs) +{ + struct nxp_spifi *spifi = nor->priv; + u32 cmd; + int ret; + + ret = nxp_spifi_set_memory_mode_off(spifi); + if (ret) + return ret; + + writel(offs, spifi->io_base + SPIFI_ADDR); + + cmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL | + SPIFI_CMD_OPCODE(nor->erase_opcode) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1); + writel(cmd, spifi->io_base + SPIFI_CMD); + + return nxp_spifi_wait_for_cmd(spifi); +} + +static int nxp_spifi_setup_memory_cmd(struct nxp_spifi *spifi) +{ + switch (spifi->nor.flash_read) { + case SPI_NOR_NORMAL: + case SPI_NOR_FAST: + spifi->mcmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL; + break; + case SPI_NOR_DUAL: + case SPI_NOR_QUAD: + spifi->mcmd = SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA; + break; + default: + dev_err(spifi->dev, "unsupported SPI read mode\n"); + return -EINVAL; + } + + /* Memory mode supports address length between 1 and 4 */ + if (spifi->nor.addr_width < 1 || spifi->nor.addr_width > 4) + return -EINVAL; + + spifi->mcmd |= SPIFI_CMD_OPCODE(spifi->nor.read_opcode) | + SPIFI_CMD_INTLEN(spifi->nor.read_dummy / 8) | + SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1); + + return 0; +} + +static void nxp_spifi_dummy_id_read(struct spi_nor *nor) +{ + u8 id[SPI_NOR_MAX_ID_LEN]; + nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); +} + +static int nxp_spifi_setup_flash(struct nxp_spifi *spifi, + struct device_node *np) +{ + struct mtd_part_parser_data ppdata; + enum read_mode flash_read; + u32 ctrl, property; + u16 mode = 0; + int ret; + + if (!of_property_read_u32(np, "spi-rx-bus-width", &property)) { + switch (property) { + case 1: + break; + case 2: + mode |= SPI_RX_DUAL; + break; + case 4: + mode |= SPI_RX_QUAD; + break; + default: + dev_err(spifi->dev, "unsupported rx-bus-width\n"); + return -EINVAL; + } + } + + if (of_find_property(np, "spi-cpha", NULL)) + mode |= SPI_CPHA; + + if (of_find_property(np, "spi-cpol", NULL)) + mode |= SPI_CPOL; + + /* Setup control register defaults */ + ctrl = SPIFI_CTRL_TIMEOUT(1000) | + SPIFI_CTRL_CSHIGH(15) | + SPIFI_CTRL_FBCLK; + + if (mode & SPI_RX_DUAL) { + ctrl |= SPIFI_CTRL_DUAL; + flash_read = SPI_NOR_DUAL; + } else if (mode & SPI_RX_QUAD) { + ctrl &= ~SPIFI_CTRL_DUAL; + flash_read = SPI_NOR_QUAD; + } else { + ctrl |= SPIFI_CTRL_DUAL; + flash_read = SPI_NOR_NORMAL; + } + + switch (mode & (SPI_CPHA | SPI_CPOL)) { + case SPI_MODE_0: + ctrl &= ~SPIFI_CTRL_MODE3; + break; + case SPI_MODE_3: + ctrl |= SPIFI_CTRL_MODE3; + break; + default: + dev_err(spifi->dev, "only mode 0 and 3 supported\n"); + return -EINVAL; + } + + writel(ctrl, spifi->io_base + SPIFI_CTRL); + + spifi->nor.dev = spifi->dev; + spifi->nor.flash_node = np; + spifi->nor.priv = spifi; + spifi->nor.read = nxp_spifi_read; + spifi->nor.write = nxp_spifi_write; + spifi->nor.erase = nxp_spifi_erase; + spifi->nor.read_reg = nxp_spifi_read_reg; + spifi->nor.write_reg = nxp_spifi_write_reg; + + /* + * The first read on a hard reset isn't reliable so do a + * dummy read of the id before calling spi_nor_scan(). + * The reason for this problem is unknown. + * + * The official NXP spifilib uses more or less the same + * workaround that is applied here by reading the device + * id multiple times. + */ + nxp_spifi_dummy_id_read(&spifi->nor); + + ret = spi_nor_scan(&spifi->nor, NULL, flash_read); + if (ret) { + dev_err(spifi->dev, "device scan failed\n"); + return ret; + } + + ret = nxp_spifi_setup_memory_cmd(spifi); + if (ret) { + dev_err(spifi->dev, "memory command setup failed\n"); + return ret; + } + + ppdata.of_node = np; + ret = mtd_device_parse_register(&spifi->nor.mtd, NULL, &ppdata, NULL, 0); + if (ret) { + dev_err(spifi->dev, "mtd device parse failed\n"); + return ret; + } + + return 0; +} + +static int nxp_spifi_probe(struct platform_device *pdev) +{ + struct device_node *flash_np; + struct nxp_spifi *spifi; + struct resource *res; + int ret; + + spifi = devm_kzalloc(&pdev->dev, sizeof(*spifi), GFP_KERNEL); + if (!spifi) + return -ENOMEM; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "spifi"); + spifi->io_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(spifi->io_base)) + return PTR_ERR(spifi->io_base); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash"); + spifi->flash_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(spifi->flash_base)) + return PTR_ERR(spifi->flash_base); + + spifi->clk_spifi = devm_clk_get(&pdev->dev, "spifi"); + if (IS_ERR(spifi->clk_spifi)) { + dev_err(&pdev->dev, "spifi clock not found\n"); + return PTR_ERR(spifi->clk_spifi); + } + + spifi->clk_reg = devm_clk_get(&pdev->dev, "reg"); + if (IS_ERR(spifi->clk_reg)) { + dev_err(&pdev->dev, "reg clock not found\n"); + return PTR_ERR(spifi->clk_reg); + } + + ret = clk_prepare_enable(spifi->clk_reg); + if (ret) { + dev_err(&pdev->dev, "unable to enable reg clock\n"); + return ret; + } + + ret = clk_prepare_enable(spifi->clk_spifi); + if (ret) { + dev_err(&pdev->dev, "unable to enable spifi clock\n"); + goto dis_clk_reg; + } + + spifi->dev = &pdev->dev; + platform_set_drvdata(pdev, spifi); + + /* Initialize and reset device */ + nxp_spifi_reset(spifi); + writel(0, spifi->io_base + SPIFI_IDATA); + writel(0, spifi->io_base + SPIFI_MCMD); + nxp_spifi_reset(spifi); + + flash_np = of_get_next_available_child(pdev->dev.of_node, NULL); + if (!flash_np) { + dev_err(&pdev->dev, "no SPI flash device to configure\n"); + ret = -ENODEV; + goto dis_clks; + } + + ret = nxp_spifi_setup_flash(spifi, flash_np); + if (ret) { + dev_err(&pdev->dev, "unable to setup flash chip\n"); + goto dis_clks; + } + + return 0; + +dis_clks: + clk_disable_unprepare(spifi->clk_spifi); +dis_clk_reg: + clk_disable_unprepare(spifi->clk_reg); + return ret; +} + +static int nxp_spifi_remove(struct platform_device *pdev) +{ + struct nxp_spifi *spifi = platform_get_drvdata(pdev); + + mtd_device_unregister(&spifi->nor.mtd); + clk_disable_unprepare(spifi->clk_spifi); + clk_disable_unprepare(spifi->clk_reg); + + return 0; +} + +static const struct of_device_id nxp_spifi_match[] = { + {.compatible = "nxp,lpc1773-spifi"}, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, nxp_spifi_match); + +static struct platform_driver nxp_spifi_driver = { + .probe = nxp_spifi_probe, + .remove = nxp_spifi_remove, + .driver = { + .name = "nxp-spifi", + .of_match_table = nxp_spifi_match, + }, +}; +module_platform_driver(nxp_spifi_driver); + +MODULE_DESCRIPTION("NXP SPI Flash Interface driver"); +MODULE_AUTHOR("Joachim Eastwood <manabian@gmail.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/kernel/drivers/mtd/spi-nor/spi-nor.c b/kernel/drivers/mtd/spi-nor/spi-nor.c index 14a5d2325..32477c4eb 100644 --- a/kernel/drivers/mtd/spi-nor/spi-nor.c +++ b/kernel/drivers/mtd/spi-nor/spi-nor.c @@ -16,19 +16,32 @@ #include <linux/device.h> #include <linux/mutex.h> #include <linux/math64.h> +#include <linux/sizes.h> -#include <linux/mtd/cfi.h> #include <linux/mtd/mtd.h> #include <linux/of_platform.h> #include <linux/spi/flash.h> #include <linux/mtd/spi-nor.h> /* Define max times to check status register before we give up. */ -#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ + +/* + * For everything but full-chip erase; probably could be much smaller, but kept + * around for safety for now + */ +#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) + +/* + * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up + * for larger flash + */ +#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) #define SPI_NOR_MAX_ID_LEN 6 struct flash_info { + char *name; + /* * This array stores the ID bytes. * The first three bytes are the JEDIC ID. @@ -59,7 +72,7 @@ struct flash_info { #define JEDEC_MFR(info) ((info)->id[0]) -static const struct spi_device_id *spi_nor_match_id(const char *name); +static const struct flash_info *spi_nor_match_id(const char *name); /* * Read the status register, returning its value in the location @@ -143,7 +156,7 @@ static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) static inline int write_sr(struct spi_nor *nor, u8 val) { nor->cmd_buf[0] = val; - return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); } /* @@ -152,7 +165,7 @@ static inline int write_sr(struct spi_nor *nor, u8 val) */ static inline int write_enable(struct spi_nor *nor) { - return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); + return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); } /* @@ -160,7 +173,7 @@ static inline int write_enable(struct spi_nor *nor) */ static inline int write_disable(struct spi_nor *nor) { - return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); + return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); } static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) @@ -169,7 +182,7 @@ static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) } /* Enable/disable 4-byte addressing mode. */ -static inline int set_4byte(struct spi_nor *nor, struct flash_info *info, +static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info, int enable) { int status; @@ -177,16 +190,16 @@ static inline int set_4byte(struct spi_nor *nor, struct flash_info *info, u8 cmd; switch (JEDEC_MFR(info)) { - case CFI_MFR_ST: /* Micron, actually */ + case SNOR_MFR_MICRON: /* Some Micron need WREN command; all will accept it */ need_wren = true; - case CFI_MFR_MACRONIX: - case 0xEF /* winbond */: + case SNOR_MFR_MACRONIX: + case SNOR_MFR_WINBOND: if (need_wren) write_enable(nor); cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; - status = nor->write_reg(nor, cmd, NULL, 0, 0); + status = nor->write_reg(nor, cmd, NULL, 0); if (need_wren) write_disable(nor); @@ -194,7 +207,7 @@ static inline int set_4byte(struct spi_nor *nor, struct flash_info *info, default: /* Spansion style */ nor->cmd_buf[0] = enable << 7; - return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); + return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); } } static inline int spi_nor_sr_ready(struct spi_nor *nor) @@ -231,12 +244,13 @@ static int spi_nor_ready(struct spi_nor *nor) * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ -static int spi_nor_wait_till_ready(struct spi_nor *nor) +static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, + unsigned long timeout_jiffies) { unsigned long deadline; int timeout = 0, ret; - deadline = jiffies + MAX_READY_WAIT_JIFFIES; + deadline = jiffies + timeout_jiffies; while (!timeout) { if (time_after_eq(jiffies, deadline)) @@ -256,6 +270,12 @@ static int spi_nor_wait_till_ready(struct spi_nor *nor) return -ETIMEDOUT; } +static int spi_nor_wait_till_ready(struct spi_nor *nor) +{ + return spi_nor_wait_till_ready_with_timeout(nor, + DEFAULT_READY_WAIT_JIFFIES); +} + /* * Erase the whole flash memory * @@ -263,9 +283,9 @@ static int spi_nor_wait_till_ready(struct spi_nor *nor) */ static int erase_chip(struct spi_nor *nor) { - dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); + dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); - return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); + return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); } static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) @@ -319,6 +339,8 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) /* whole-chip erase? */ if (len == mtd->size) { + unsigned long timeout; + write_enable(nor); if (erase_chip(nor)) { @@ -326,7 +348,16 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) goto erase_err; } - ret = spi_nor_wait_till_ready(nor); + /* + * Scale the timeout linearly with the size of the flash, with + * a minimum calibrated to an old 2MB flash. We could try to + * pull these from CFI/SFDP, but these values should be good + * enough for now. + */ + timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, + CHIP_ERASE_2MB_READY_WAIT_JIFFIES * + (unsigned long)(mtd->size / SZ_2M)); + ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); if (ret) goto erase_err; @@ -369,72 +400,171 @@ erase_err: return ret; } +static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, + uint64_t *len) +{ + struct mtd_info *mtd = &nor->mtd; + u8 mask = SR_BP2 | SR_BP1 | SR_BP0; + int shift = ffs(mask) - 1; + int pow; + + if (!(sr & mask)) { + /* No protection */ + *ofs = 0; + *len = 0; + } else { + pow = ((sr & mask) ^ mask) >> shift; + *len = mtd->size >> pow; + *ofs = mtd->size - *len; + } +} + +/* + * Return 1 if the entire region is locked, 0 otherwise + */ +static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, + u8 sr) +{ + loff_t lock_offs; + uint64_t lock_len; + + stm_get_locked_range(nor, sr, &lock_offs, &lock_len); + + return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); +} + +/* + * Lock a region of the flash. Compatible with ST Micro and similar flash. + * Supports only the block protection bits BP{0,1,2} in the status register + * (SR). Does not support these features found in newer SR bitfields: + * - TB: top/bottom protect - only handle TB=0 (top protect) + * - SEC: sector/block protect - only handle SEC=0 (block protect) + * - CMP: complement protect - only support CMP=0 (range is not complemented) + * + * Sample table portion for 8MB flash (Winbond w25q64fw): + * + * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion + * -------------------------------------------------------------------------- + * X | X | 0 | 0 | 0 | NONE | NONE + * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 + * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 + * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 + * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 + * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 + * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 + * X | X | 1 | 1 | 1 | 8 MB | ALL + * + * Returns negative on errors, 0 on success. + */ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) { - struct mtd_info *mtd = nor->mtd; - uint32_t offset = ofs; - uint8_t status_old, status_new; - int ret = 0; + struct mtd_info *mtd = &nor->mtd; + u8 status_old, status_new; + u8 mask = SR_BP2 | SR_BP1 | SR_BP0; + u8 shift = ffs(mask) - 1, pow, val; status_old = read_sr(nor); - if (offset < mtd->size - (mtd->size / 2)) - status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; - else if (offset < mtd->size - (mtd->size / 4)) - status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; - else if (offset < mtd->size - (mtd->size / 8)) - status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; - else if (offset < mtd->size - (mtd->size / 16)) - status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; - else if (offset < mtd->size - (mtd->size / 32)) - status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; - else if (offset < mtd->size - (mtd->size / 64)) - status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; - else - status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; + /* SPI NOR always locks to the end */ + if (ofs + len != mtd->size) { + /* Does combined region extend to end? */ + if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len, + status_old)) + return -EINVAL; + len = mtd->size - ofs; + } + + /* + * Need smallest pow such that: + * + * 1 / (2^pow) <= (len / size) + * + * so (assuming power-of-2 size) we do: + * + * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) + */ + pow = ilog2(mtd->size) - ilog2(len); + val = mask - (pow << shift); + if (val & ~mask) + return -EINVAL; + /* Don't "lock" with no region! */ + if (!(val & mask)) + return -EINVAL; + + status_new = (status_old & ~mask) | val; /* Only modify protection if it will not unlock other areas */ - if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > - (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { - write_enable(nor); - ret = write_sr(nor, status_new); - } + if ((status_new & mask) <= (status_old & mask)) + return -EINVAL; - return ret; + write_enable(nor); + return write_sr(nor, status_new); } +/* + * Unlock a region of the flash. See stm_lock() for more info + * + * Returns negative on errors, 0 on success. + */ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) { - struct mtd_info *mtd = nor->mtd; - uint32_t offset = ofs; + struct mtd_info *mtd = &nor->mtd; uint8_t status_old, status_new; - int ret = 0; + u8 mask = SR_BP2 | SR_BP1 | SR_BP0; + u8 shift = ffs(mask) - 1, pow, val; status_old = read_sr(nor); - if (offset+len > mtd->size - (mtd->size / 64)) - status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); - else if (offset+len > mtd->size - (mtd->size / 32)) - status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; - else if (offset+len > mtd->size - (mtd->size / 16)) - status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; - else if (offset+len > mtd->size - (mtd->size / 8)) - status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; - else if (offset+len > mtd->size - (mtd->size / 4)) - status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; - else if (offset+len > mtd->size - (mtd->size / 2)) - status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; - else - status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; + /* Cannot unlock; would unlock larger region than requested */ + if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize, + status_old)) + return -EINVAL; - /* Only modify protection if it will not lock other areas */ - if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < - (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { - write_enable(nor); - ret = write_sr(nor, status_new); + /* + * Need largest pow such that: + * + * 1 / (2^pow) >= (len / size) + * + * so (assuming power-of-2 size) we do: + * + * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) + */ + pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len)); + if (ofs + len == mtd->size) { + val = 0; /* fully unlocked */ + } else { + val = mask - (pow << shift); + /* Some power-of-two sizes are not supported */ + if (val & ~mask) + return -EINVAL; } - return ret; + status_new = (status_old & ~mask) | val; + + /* Only modify protection if it will not lock other areas */ + if ((status_new & mask) >= (status_old & mask)) + return -EINVAL; + + write_enable(nor); + return write_sr(nor, status_new); +} + +/* + * Check if a region of the flash is (completely) locked. See stm_lock() for + * more info. + * + * Returns 1 if entire region is locked, 0 if any portion is unlocked, and + * negative on errors. + */ +static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) +{ + int status; + + status = read_sr(nor); + if (status < 0) + return status; + + return stm_is_locked_sr(nor, ofs, len, status); } static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) @@ -467,9 +597,23 @@ static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return ret; } +static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); + if (ret) + return ret; + + ret = nor->flash_is_locked(nor, ofs, len); + + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); + return ret; +} + /* Used when the "_ext_id" is two bytes at most */ #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - ((kernel_ulong_t)&(struct flash_info) { \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ @@ -481,11 +625,9 @@ static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ - .flags = (_flags), \ - }) + .flags = (_flags), #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - ((kernel_ulong_t)&(struct flash_info) { \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ @@ -498,23 +640,27 @@ static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ - .flags = (_flags), \ - }) + .flags = (_flags), #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ - ((kernel_ulong_t)&(struct flash_info) { \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .addr_width = (_addr_width), \ - .flags = (_flags), \ - }) + .flags = (_flags), /* NOTE: double check command sets and memory organization when you add * more nor chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. + * + * All newly added entries should describe *hardware* and should use SECT_4K + * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage + * scenarios excluding small sectors there is config option that can be + * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. + * For historical (and compatibility) reasons (before we got above config) some + * old entries may be missing 4K flag. */ -static const struct spi_device_id spi_nor_ids[] = { +static const struct flash_info spi_nor_ids[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, @@ -538,7 +684,7 @@ static const struct spi_device_id spi_nor_ids[] = { { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, - { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, 0) }, + { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, /* ESMT */ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, @@ -560,7 +706,11 @@ static const struct spi_device_id spi_nor_ids[] = { { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, + /* ISSI */ + { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, + /* Macronix */ + { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, @@ -578,7 +728,9 @@ static const struct spi_device_id spi_nor_ids[] = { /* Micron */ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, - { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SPI_NOR_QUAD_READ) }, + { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, + { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, + { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, @@ -595,25 +747,28 @@ static const struct spi_device_id spi_nor_ids[] = { * for the chips listed here (without boot sectors). */ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, - { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, + { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, - { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, - { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, - { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, + { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, + { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, - { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, - { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, + { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) }, + { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, + { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, + { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, @@ -624,6 +779,8 @@ static const struct spi_device_id spi_nor_ids[] = { { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, + { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, + { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, @@ -672,10 +829,11 @@ static const struct spi_device_id spi_nor_ids[] = { { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, - { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) }, + { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, @@ -690,11 +848,11 @@ static const struct spi_device_id spi_nor_ids[] = { { }, }; -static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) +static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) { int tmp; u8 id[SPI_NOR_MAX_ID_LEN]; - struct flash_info *info; + const struct flash_info *info; tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); if (tmp < 0) { @@ -703,7 +861,7 @@ static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) } for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { - info = (void *)spi_nor_ids[tmp].driver_data; + info = &spi_nor_ids[tmp]; if (info->id_len) { if (!memcmp(info->id, id, info->id_len)) return &spi_nor_ids[tmp]; @@ -857,8 +1015,7 @@ static int macronix_quad_enable(struct spi_nor *nor) val = read_sr(nor); write_enable(nor); - nor->cmd_buf[0] = val | SR_QUAD_EN_MX; - nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); + write_sr(nor, val | SR_QUAD_EN_MX); if (spi_nor_wait_till_ready(nor)) return 1; @@ -883,7 +1040,7 @@ static int write_sr_cr(struct spi_nor *nor, u16 val) nor->cmd_buf[0] = val & 0xff; nor->cmd_buf[1] = (val >> 8); - return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2); } static int spansion_quad_enable(struct spi_nor *nor) @@ -925,7 +1082,7 @@ static int micron_quad_enable(struct spi_nor *nor) /* set EVCR, enable quad I/O */ nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON; - ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0); + ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1); if (ret < 0) { dev_err(nor->dev, "error while writing EVCR register\n"); return ret; @@ -949,19 +1106,19 @@ static int micron_quad_enable(struct spi_nor *nor) return 0; } -static int set_quad_mode(struct spi_nor *nor, struct flash_info *info) +static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info) { int status; switch (JEDEC_MFR(info)) { - case CFI_MFR_MACRONIX: + case SNOR_MFR_MACRONIX: status = macronix_quad_enable(nor); if (status) { dev_err(nor->dev, "Macronix quad-read not enabled\n"); return -EINVAL; } return status; - case CFI_MFR_ST: + case SNOR_MFR_MICRON: status = micron_quad_enable(nor); if (status) { dev_err(nor->dev, "Micron quad-read not enabled\n"); @@ -991,11 +1148,10 @@ static int spi_nor_check(struct spi_nor *nor) int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) { - const struct spi_device_id *id = NULL; - struct flash_info *info; + const struct flash_info *info = NULL; struct device *dev = nor->dev; - struct mtd_info *mtd = nor->mtd; - struct device_node *np = dev->of_node; + struct mtd_info *mtd = &nor->mtd; + struct device_node *np = nor->flash_node; int ret; int i; @@ -1003,27 +1159,25 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) if (ret) return ret; - /* Try to auto-detect if chip name wasn't specified */ - if (!name) - id = spi_nor_read_id(nor); - else - id = spi_nor_match_id(name); - if (IS_ERR_OR_NULL(id)) + if (name) + info = spi_nor_match_id(name); + /* Try to auto-detect if chip name wasn't specified or not found */ + if (!info) + info = spi_nor_read_id(nor); + if (IS_ERR_OR_NULL(info)) return -ENOENT; - info = (void *)id->driver_data; - /* * If caller has specified name of flash model that can normally be * detected using JEDEC, let's verify it. */ if (name && info->id_len) { - const struct spi_device_id *jid; + const struct flash_info *jinfo; - jid = spi_nor_read_id(nor); - if (IS_ERR(jid)) { - return PTR_ERR(jid); - } else if (jid != id) { + jinfo = spi_nor_read_id(nor); + if (IS_ERR(jinfo)) { + return PTR_ERR(jinfo); + } else if (jinfo != info) { /* * JEDEC knows better, so overwrite platform ID. We * can't trust partitions any longer, but we'll let @@ -1032,28 +1186,28 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) * information, even if it's not 100% accurate. */ dev_warn(dev, "found %s, expected %s\n", - jid->name, id->name); - id = jid; - info = (void *)jid->driver_data; + jinfo->name, info->name); + info = jinfo; } } mutex_init(&nor->lock); /* - * Atmel, SST and Intel/Numonyx serial nor tend to power - * up with the software protection bits set + * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up + * with the software protection bits set */ - if (JEDEC_MFR(info) == CFI_MFR_ATMEL || - JEDEC_MFR(info) == CFI_MFR_INTEL || - JEDEC_MFR(info) == CFI_MFR_SST) { + if (JEDEC_MFR(info) == SNOR_MFR_ATMEL || + JEDEC_MFR(info) == SNOR_MFR_INTEL || + JEDEC_MFR(info) == SNOR_MFR_SST) { write_enable(nor); write_sr(nor, 0); } if (!mtd->name) mtd->name = dev_name(dev); + mtd->priv = nor; mtd->type = MTD_NORFLASH; mtd->writesize = 1; mtd->flags = MTD_CAP_NORFLASH; @@ -1061,15 +1215,17 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) mtd->_erase = spi_nor_erase; mtd->_read = spi_nor_read; - /* nor protection support for STmicro chips */ - if (JEDEC_MFR(info) == CFI_MFR_ST) { + /* NOR protection support for STmicro/Micron chips and similar */ + if (JEDEC_MFR(info) == SNOR_MFR_MICRON) { nor->flash_lock = stm_lock; nor->flash_unlock = stm_unlock; + nor->flash_is_locked = stm_is_locked; } - if (nor->flash_lock && nor->flash_unlock) { + if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { mtd->_lock = spi_nor_lock; mtd->_unlock = spi_nor_unlock; + mtd->_is_locked = spi_nor_is_locked; } /* sst nor chips use AAI word program */ @@ -1156,7 +1312,7 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) else if (mtd->size > 0x1000000) { /* enable 4-byte addressing if the device exceeds 16MiB */ nor->addr_width = 4; - if (JEDEC_MFR(info) == CFI_MFR_AMD) { + if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) { /* Dedicated 4-byte command set */ switch (nor->flash_read) { case SPI_NOR_QUAD: @@ -1184,7 +1340,7 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) nor->read_dummy = spi_nor_read_dummy_cycles(nor); - dev_info(dev, "%s (%lld Kbytes)\n", id->name, + dev_info(dev, "%s (%lld Kbytes)\n", info->name, (long long)mtd->size >> 10); dev_dbg(dev, @@ -1207,11 +1363,11 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) } EXPORT_SYMBOL_GPL(spi_nor_scan); -static const struct spi_device_id *spi_nor_match_id(const char *name) +static const struct flash_info *spi_nor_match_id(const char *name) { - const struct spi_device_id *id = spi_nor_ids; + const struct flash_info *id = spi_nor_ids; - while (id->name[0]) { + while (id->name) { if (!strcmp(name, id->name)) return id; id++; |