summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/misc/mei/hw-me.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/drivers/misc/mei/hw-me.c')
-rw-r--r--kernel/drivers/misc/mei/hw-me.c998
1 files changed, 998 insertions, 0 deletions
diff --git a/kernel/drivers/misc/mei/hw-me.c b/kernel/drivers/misc/mei/hw-me.c
new file mode 100644
index 000000000..43d7101ff
--- /dev/null
+++ b/kernel/drivers/misc/mei/hw-me.c
@@ -0,0 +1,998 @@
+/*
+ *
+ * Intel Management Engine Interface (Intel MEI) Linux driver
+ * Copyright (c) 2003-2012, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ */
+
+#include <linux/pci.h>
+
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+
+#include "mei_dev.h"
+#include "hbm.h"
+
+#include "hw-me.h"
+#include "hw-me-regs.h"
+
+#include "mei-trace.h"
+
+/**
+ * mei_me_reg_read - Reads 32bit data from the mei device
+ *
+ * @hw: the me hardware structure
+ * @offset: offset from which to read the data
+ *
+ * Return: register value (u32)
+ */
+static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
+ unsigned long offset)
+{
+ return ioread32(hw->mem_addr + offset);
+}
+
+
+/**
+ * mei_me_reg_write - Writes 32bit data to the mei device
+ *
+ * @hw: the me hardware structure
+ * @offset: offset from which to write the data
+ * @value: register value to write (u32)
+ */
+static inline void mei_me_reg_write(const struct mei_me_hw *hw,
+ unsigned long offset, u32 value)
+{
+ iowrite32(value, hw->mem_addr + offset);
+}
+
+/**
+ * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
+ * read window register
+ *
+ * @dev: the device structure
+ *
+ * Return: ME_CB_RW register value (u32)
+ */
+static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
+{
+ return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
+}
+
+/**
+ * mei_me_hcbww_write - write 32bit data to the host circular buffer
+ *
+ * @dev: the device structure
+ * @data: 32bit data to be written to the host circular buffer
+ */
+static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
+{
+ mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
+}
+
+/**
+ * mei_me_mecsr_read - Reads 32bit data from the ME CSR
+ *
+ * @dev: the device structure
+ *
+ * Return: ME_CSR_HA register value (u32)
+ */
+static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
+{
+ u32 reg;
+
+ reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
+ trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
+
+ return reg;
+}
+
+/**
+ * mei_hcsr_read - Reads 32bit data from the host CSR
+ *
+ * @dev: the device structure
+ *
+ * Return: H_CSR register value (u32)
+ */
+static inline u32 mei_hcsr_read(const struct mei_device *dev)
+{
+ u32 reg;
+
+ reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
+ trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
+
+ return reg;
+}
+
+/**
+ * mei_hcsr_write - writes H_CSR register to the mei device
+ *
+ * @dev: the device structure
+ * @reg: new register value
+ */
+static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
+{
+ trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
+ mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
+}
+
+/**
+ * mei_hcsr_set - writes H_CSR register to the mei device,
+ * and ignores the H_IS bit for it is write-one-to-zero.
+ *
+ * @dev: the device structure
+ * @reg: new register value
+ */
+static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
+{
+ reg &= ~H_IS;
+ mei_hcsr_write(dev, reg);
+}
+
+/**
+ * mei_me_fw_status - read fw status register from pci config space
+ *
+ * @dev: mei device
+ * @fw_status: fw status register values
+ *
+ * Return: 0 on success, error otherwise
+ */
+static int mei_me_fw_status(struct mei_device *dev,
+ struct mei_fw_status *fw_status)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ struct mei_me_hw *hw = to_me_hw(dev);
+ const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
+ int ret;
+ int i;
+
+ if (!fw_status)
+ return -EINVAL;
+
+ fw_status->count = fw_src->count;
+ for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
+ ret = pci_read_config_dword(pdev,
+ fw_src->status[i], &fw_status->status[i]);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * mei_me_hw_config - configure hw dependent settings
+ *
+ * @dev: mei device
+ */
+static void mei_me_hw_config(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+ u32 hcsr = mei_hcsr_read(dev);
+ /* Doesn't change in runtime */
+ dev->hbuf_depth = (hcsr & H_CBD) >> 24;
+
+ hw->pg_state = MEI_PG_OFF;
+}
+
+/**
+ * mei_me_pg_state - translate internal pg state
+ * to the mei power gating state
+ *
+ * @dev: mei device
+ *
+ * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
+ */
+static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+
+ return hw->pg_state;
+}
+
+/**
+ * mei_me_intr_clear - clear and stop interrupts
+ *
+ * @dev: the device structure
+ */
+static void mei_me_intr_clear(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ if ((hcsr & H_IS) == H_IS)
+ mei_hcsr_write(dev, hcsr);
+}
+/**
+ * mei_me_intr_enable - enables mei device interrupts
+ *
+ * @dev: the device structure
+ */
+static void mei_me_intr_enable(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ hcsr |= H_IE;
+ mei_hcsr_set(dev, hcsr);
+}
+
+/**
+ * mei_me_intr_disable - disables mei device interrupts
+ *
+ * @dev: the device structure
+ */
+static void mei_me_intr_disable(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ hcsr &= ~H_IE;
+ mei_hcsr_set(dev, hcsr);
+}
+
+/**
+ * mei_me_hw_reset_release - release device from the reset
+ *
+ * @dev: the device structure
+ */
+static void mei_me_hw_reset_release(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ hcsr |= H_IG;
+ hcsr &= ~H_RST;
+ mei_hcsr_set(dev, hcsr);
+
+ /* complete this write before we set host ready on another CPU */
+ mmiowb();
+}
+/**
+ * mei_me_hw_reset - resets fw via mei csr register.
+ *
+ * @dev: the device structure
+ * @intr_enable: if interrupt should be enabled after reset.
+ *
+ * Return: always 0
+ */
+static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ /* H_RST may be found lit before reset is started,
+ * for example if preceding reset flow hasn't completed.
+ * In that case asserting H_RST will be ignored, therefore
+ * we need to clean H_RST bit to start a successful reset sequence.
+ */
+ if ((hcsr & H_RST) == H_RST) {
+ dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
+ hcsr &= ~H_RST;
+ mei_hcsr_set(dev, hcsr);
+ hcsr = mei_hcsr_read(dev);
+ }
+
+ hcsr |= H_RST | H_IG | H_IS;
+
+ if (intr_enable)
+ hcsr |= H_IE;
+ else
+ hcsr &= ~H_IE;
+
+ dev->recvd_hw_ready = false;
+ mei_hcsr_write(dev, hcsr);
+
+ /*
+ * Host reads the H_CSR once to ensure that the
+ * posted write to H_CSR completes.
+ */
+ hcsr = mei_hcsr_read(dev);
+
+ if ((hcsr & H_RST) == 0)
+ dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
+
+ if ((hcsr & H_RDY) == H_RDY)
+ dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
+
+ if (intr_enable == false)
+ mei_me_hw_reset_release(dev);
+
+ return 0;
+}
+
+/**
+ * mei_me_host_set_ready - enable device
+ *
+ * @dev: mei device
+ */
+static void mei_me_host_set_ready(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ hcsr |= H_IE | H_IG | H_RDY;
+ mei_hcsr_set(dev, hcsr);
+}
+
+/**
+ * mei_me_host_is_ready - check whether the host has turned ready
+ *
+ * @dev: mei device
+ * Return: bool
+ */
+static bool mei_me_host_is_ready(struct mei_device *dev)
+{
+ u32 hcsr = mei_hcsr_read(dev);
+
+ return (hcsr & H_RDY) == H_RDY;
+}
+
+/**
+ * mei_me_hw_is_ready - check whether the me(hw) has turned ready
+ *
+ * @dev: mei device
+ * Return: bool
+ */
+static bool mei_me_hw_is_ready(struct mei_device *dev)
+{
+ u32 mecsr = mei_me_mecsr_read(dev);
+
+ return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
+}
+
+/**
+ * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
+ * or timeout is reached
+ *
+ * @dev: mei device
+ * Return: 0 on success, error otherwise
+ */
+static int mei_me_hw_ready_wait(struct mei_device *dev)
+{
+ mutex_unlock(&dev->device_lock);
+ wait_event_timeout(dev->wait_hw_ready,
+ dev->recvd_hw_ready,
+ mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
+ mutex_lock(&dev->device_lock);
+ if (!dev->recvd_hw_ready) {
+ dev_err(dev->dev, "wait hw ready failed\n");
+ return -ETIME;
+ }
+
+ mei_me_hw_reset_release(dev);
+ dev->recvd_hw_ready = false;
+ return 0;
+}
+
+/**
+ * mei_me_hw_start - hw start routine
+ *
+ * @dev: mei device
+ * Return: 0 on success, error otherwise
+ */
+static int mei_me_hw_start(struct mei_device *dev)
+{
+ int ret = mei_me_hw_ready_wait(dev);
+
+ if (ret)
+ return ret;
+ dev_dbg(dev->dev, "hw is ready\n");
+
+ mei_me_host_set_ready(dev);
+ return ret;
+}
+
+
+/**
+ * mei_hbuf_filled_slots - gets number of device filled buffer slots
+ *
+ * @dev: the device structure
+ *
+ * Return: number of filled slots
+ */
+static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
+{
+ u32 hcsr;
+ char read_ptr, write_ptr;
+
+ hcsr = mei_hcsr_read(dev);
+
+ read_ptr = (char) ((hcsr & H_CBRP) >> 8);
+ write_ptr = (char) ((hcsr & H_CBWP) >> 16);
+
+ return (unsigned char) (write_ptr - read_ptr);
+}
+
+/**
+ * mei_me_hbuf_is_empty - checks if host buffer is empty.
+ *
+ * @dev: the device structure
+ *
+ * Return: true if empty, false - otherwise.
+ */
+static bool mei_me_hbuf_is_empty(struct mei_device *dev)
+{
+ return mei_hbuf_filled_slots(dev) == 0;
+}
+
+/**
+ * mei_me_hbuf_empty_slots - counts write empty slots.
+ *
+ * @dev: the device structure
+ *
+ * Return: -EOVERFLOW if overflow, otherwise empty slots count
+ */
+static int mei_me_hbuf_empty_slots(struct mei_device *dev)
+{
+ unsigned char filled_slots, empty_slots;
+
+ filled_slots = mei_hbuf_filled_slots(dev);
+ empty_slots = dev->hbuf_depth - filled_slots;
+
+ /* check for overflow */
+ if (filled_slots > dev->hbuf_depth)
+ return -EOVERFLOW;
+
+ return empty_slots;
+}
+
+/**
+ * mei_me_hbuf_max_len - returns size of hw buffer.
+ *
+ * @dev: the device structure
+ *
+ * Return: size of hw buffer in bytes
+ */
+static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
+{
+ return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
+}
+
+
+/**
+ * mei_me_write_message - writes a message to mei device.
+ *
+ * @dev: the device structure
+ * @header: mei HECI header of message
+ * @buf: message payload will be written
+ *
+ * Return: -EIO if write has failed
+ */
+static int mei_me_write_message(struct mei_device *dev,
+ struct mei_msg_hdr *header,
+ unsigned char *buf)
+{
+ unsigned long rem;
+ unsigned long length = header->length;
+ u32 *reg_buf = (u32 *)buf;
+ u32 hcsr;
+ u32 dw_cnt;
+ int i;
+ int empty_slots;
+
+ dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
+
+ empty_slots = mei_hbuf_empty_slots(dev);
+ dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
+
+ dw_cnt = mei_data2slots(length);
+ if (empty_slots < 0 || dw_cnt > empty_slots)
+ return -EMSGSIZE;
+
+ mei_me_hcbww_write(dev, *((u32 *) header));
+
+ for (i = 0; i < length / 4; i++)
+ mei_me_hcbww_write(dev, reg_buf[i]);
+
+ rem = length & 0x3;
+ if (rem > 0) {
+ u32 reg = 0;
+
+ memcpy(&reg, &buf[length - rem], rem);
+ mei_me_hcbww_write(dev, reg);
+ }
+
+ hcsr = mei_hcsr_read(dev) | H_IG;
+ mei_hcsr_set(dev, hcsr);
+ if (!mei_me_hw_is_ready(dev))
+ return -EIO;
+
+ return 0;
+}
+
+/**
+ * mei_me_count_full_read_slots - counts read full slots.
+ *
+ * @dev: the device structure
+ *
+ * Return: -EOVERFLOW if overflow, otherwise filled slots count
+ */
+static int mei_me_count_full_read_slots(struct mei_device *dev)
+{
+ u32 me_csr;
+ char read_ptr, write_ptr;
+ unsigned char buffer_depth, filled_slots;
+
+ me_csr = mei_me_mecsr_read(dev);
+ buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
+ read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
+ write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
+ filled_slots = (unsigned char) (write_ptr - read_ptr);
+
+ /* check for overflow */
+ if (filled_slots > buffer_depth)
+ return -EOVERFLOW;
+
+ dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
+ return (int)filled_slots;
+}
+
+/**
+ * mei_me_read_slots - reads a message from mei device.
+ *
+ * @dev: the device structure
+ * @buffer: message buffer will be written
+ * @buffer_length: message size will be read
+ *
+ * Return: always 0
+ */
+static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
+ unsigned long buffer_length)
+{
+ u32 *reg_buf = (u32 *)buffer;
+ u32 hcsr;
+
+ for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
+ *reg_buf++ = mei_me_mecbrw_read(dev);
+
+ if (buffer_length > 0) {
+ u32 reg = mei_me_mecbrw_read(dev);
+
+ memcpy(reg_buf, &reg, buffer_length);
+ }
+
+ hcsr = mei_hcsr_read(dev) | H_IG;
+ mei_hcsr_set(dev, hcsr);
+ return 0;
+}
+
+/**
+ * mei_me_pg_set - write pg enter register
+ *
+ * @dev: the device structure
+ */
+static void mei_me_pg_set(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+ u32 reg;
+
+ reg = mei_me_reg_read(hw, H_HPG_CSR);
+ trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
+
+ reg |= H_HPG_CSR_PGI;
+
+ trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
+ mei_me_reg_write(hw, H_HPG_CSR, reg);
+}
+
+/**
+ * mei_me_pg_unset - write pg exit register
+ *
+ * @dev: the device structure
+ */
+static void mei_me_pg_unset(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+ u32 reg;
+
+ reg = mei_me_reg_read(hw, H_HPG_CSR);
+ trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
+
+ WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
+
+ reg |= H_HPG_CSR_PGIHEXR;
+
+ trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
+ mei_me_reg_write(hw, H_HPG_CSR, reg);
+}
+
+/**
+ * mei_me_pg_enter_sync - perform pg entry procedure
+ *
+ * @dev: the device structure
+ *
+ * Return: 0 on success an error code otherwise
+ */
+int mei_me_pg_enter_sync(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+ unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
+ int ret;
+
+ dev->pg_event = MEI_PG_EVENT_WAIT;
+
+ ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
+ if (ret)
+ return ret;
+
+ mutex_unlock(&dev->device_lock);
+ wait_event_timeout(dev->wait_pg,
+ dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
+ mutex_lock(&dev->device_lock);
+
+ if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
+ mei_me_pg_set(dev);
+ ret = 0;
+ } else {
+ ret = -ETIME;
+ }
+
+ dev->pg_event = MEI_PG_EVENT_IDLE;
+ hw->pg_state = MEI_PG_ON;
+
+ return ret;
+}
+
+/**
+ * mei_me_pg_exit_sync - perform pg exit procedure
+ *
+ * @dev: the device structure
+ *
+ * Return: 0 on success an error code otherwise
+ */
+int mei_me_pg_exit_sync(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+ unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
+ int ret;
+
+ if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
+ goto reply;
+
+ dev->pg_event = MEI_PG_EVENT_WAIT;
+
+ mei_me_pg_unset(dev);
+
+ mutex_unlock(&dev->device_lock);
+ wait_event_timeout(dev->wait_pg,
+ dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
+ mutex_lock(&dev->device_lock);
+
+reply:
+ if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
+ ret = -ETIME;
+ goto out;
+ }
+
+ dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
+ ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
+ if (ret)
+ return ret;
+
+ mutex_unlock(&dev->device_lock);
+ wait_event_timeout(dev->wait_pg,
+ dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
+ mutex_lock(&dev->device_lock);
+
+ if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
+ ret = 0;
+ else
+ ret = -ETIME;
+
+out:
+ dev->pg_event = MEI_PG_EVENT_IDLE;
+ hw->pg_state = MEI_PG_OFF;
+
+ return ret;
+}
+
+/**
+ * mei_me_pg_in_transition - is device now in pg transition
+ *
+ * @dev: the device structure
+ *
+ * Return: true if in pg transition, false otherwise
+ */
+static bool mei_me_pg_in_transition(struct mei_device *dev)
+{
+ return dev->pg_event >= MEI_PG_EVENT_WAIT &&
+ dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
+}
+
+/**
+ * mei_me_pg_is_enabled - detect if PG is supported by HW
+ *
+ * @dev: the device structure
+ *
+ * Return: true is pg supported, false otherwise
+ */
+static bool mei_me_pg_is_enabled(struct mei_device *dev)
+{
+ u32 reg = mei_me_mecsr_read(dev);
+
+ if ((reg & ME_PGIC_HRA) == 0)
+ goto notsupported;
+
+ if (!dev->hbm_f_pg_supported)
+ goto notsupported;
+
+ return true;
+
+notsupported:
+ dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
+ !!(reg & ME_PGIC_HRA),
+ dev->version.major_version,
+ dev->version.minor_version,
+ HBM_MAJOR_VERSION_PGI,
+ HBM_MINOR_VERSION_PGI);
+
+ return false;
+}
+
+/**
+ * mei_me_pg_intr - perform pg processing in interrupt thread handler
+ *
+ * @dev: the device structure
+ */
+static void mei_me_pg_intr(struct mei_device *dev)
+{
+ struct mei_me_hw *hw = to_me_hw(dev);
+
+ if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
+ return;
+
+ dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
+ hw->pg_state = MEI_PG_OFF;
+ if (waitqueue_active(&dev->wait_pg))
+ wake_up(&dev->wait_pg);
+}
+
+/**
+ * mei_me_irq_quick_handler - The ISR of the MEI device
+ *
+ * @irq: The irq number
+ * @dev_id: pointer to the device structure
+ *
+ * Return: irqreturn_t
+ */
+
+irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
+{
+ struct mei_device *dev = (struct mei_device *) dev_id;
+ u32 hcsr = mei_hcsr_read(dev);
+
+ if ((hcsr & H_IS) != H_IS)
+ return IRQ_NONE;
+
+ /* clear H_IS bit in H_CSR */
+ mei_hcsr_write(dev, hcsr);
+
+ return IRQ_WAKE_THREAD;
+}
+
+/**
+ * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
+ * processing.
+ *
+ * @irq: The irq number
+ * @dev_id: pointer to the device structure
+ *
+ * Return: irqreturn_t
+ *
+ */
+irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
+{
+ struct mei_device *dev = (struct mei_device *) dev_id;
+ struct mei_cl_cb complete_list;
+ s32 slots;
+ int rets = 0;
+
+ dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
+ /* initialize our complete list */
+ mutex_lock(&dev->device_lock);
+ mei_io_list_init(&complete_list);
+
+ /* Ack the interrupt here
+ * In case of MSI we don't go through the quick handler */
+ if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
+ mei_clear_interrupts(dev);
+
+ /* check if ME wants a reset */
+ if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
+ dev_warn(dev->dev, "FW not ready: resetting.\n");
+ schedule_work(&dev->reset_work);
+ goto end;
+ }
+
+ mei_me_pg_intr(dev);
+
+ /* check if we need to start the dev */
+ if (!mei_host_is_ready(dev)) {
+ if (mei_hw_is_ready(dev)) {
+ dev_dbg(dev->dev, "we need to start the dev.\n");
+ dev->recvd_hw_ready = true;
+ wake_up(&dev->wait_hw_ready);
+ } else {
+ dev_dbg(dev->dev, "Spurious Interrupt\n");
+ }
+ goto end;
+ }
+ /* check slots available for reading */
+ slots = mei_count_full_read_slots(dev);
+ while (slots > 0) {
+ dev_dbg(dev->dev, "slots to read = %08x\n", slots);
+ rets = mei_irq_read_handler(dev, &complete_list, &slots);
+ /* There is a race between ME write and interrupt delivery:
+ * Not all data is always available immediately after the
+ * interrupt, so try to read again on the next interrupt.
+ */
+ if (rets == -ENODATA)
+ break;
+
+ if (rets && dev->dev_state != MEI_DEV_RESETTING) {
+ dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
+ rets);
+ schedule_work(&dev->reset_work);
+ goto end;
+ }
+ }
+
+ dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
+
+ /*
+ * During PG handshake only allowed write is the replay to the
+ * PG exit message, so block calling write function
+ * if the pg event is in PG handshake
+ */
+ if (dev->pg_event != MEI_PG_EVENT_WAIT &&
+ dev->pg_event != MEI_PG_EVENT_RECEIVED) {
+ rets = mei_irq_write_handler(dev, &complete_list);
+ dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
+ }
+
+ mei_irq_compl_handler(dev, &complete_list);
+
+end:
+ dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
+ mutex_unlock(&dev->device_lock);
+ return IRQ_HANDLED;
+}
+
+static const struct mei_hw_ops mei_me_hw_ops = {
+
+ .fw_status = mei_me_fw_status,
+ .pg_state = mei_me_pg_state,
+
+ .host_is_ready = mei_me_host_is_ready,
+
+ .hw_is_ready = mei_me_hw_is_ready,
+ .hw_reset = mei_me_hw_reset,
+ .hw_config = mei_me_hw_config,
+ .hw_start = mei_me_hw_start,
+
+ .pg_in_transition = mei_me_pg_in_transition,
+ .pg_is_enabled = mei_me_pg_is_enabled,
+
+ .intr_clear = mei_me_intr_clear,
+ .intr_enable = mei_me_intr_enable,
+ .intr_disable = mei_me_intr_disable,
+
+ .hbuf_free_slots = mei_me_hbuf_empty_slots,
+ .hbuf_is_ready = mei_me_hbuf_is_empty,
+ .hbuf_max_len = mei_me_hbuf_max_len,
+
+ .write = mei_me_write_message,
+
+ .rdbuf_full_slots = mei_me_count_full_read_slots,
+ .read_hdr = mei_me_mecbrw_read,
+ .read = mei_me_read_slots
+};
+
+static bool mei_me_fw_type_nm(struct pci_dev *pdev)
+{
+ u32 reg;
+
+ pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
+ /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
+ return (reg & 0x600) == 0x200;
+}
+
+#define MEI_CFG_FW_NM \
+ .quirk_probe = mei_me_fw_type_nm
+
+static bool mei_me_fw_type_sps(struct pci_dev *pdev)
+{
+ u32 reg;
+ /* Read ME FW Status check for SPS Firmware */
+ pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
+ /* if bits [19:16] = 15, running SPS Firmware */
+ return (reg & 0xf0000) == 0xf0000;
+}
+
+#define MEI_CFG_FW_SPS \
+ .quirk_probe = mei_me_fw_type_sps
+
+
+#define MEI_CFG_LEGACY_HFS \
+ .fw_status.count = 0
+
+#define MEI_CFG_ICH_HFS \
+ .fw_status.count = 1, \
+ .fw_status.status[0] = PCI_CFG_HFS_1
+
+#define MEI_CFG_PCH_HFS \
+ .fw_status.count = 2, \
+ .fw_status.status[0] = PCI_CFG_HFS_1, \
+ .fw_status.status[1] = PCI_CFG_HFS_2
+
+#define MEI_CFG_PCH8_HFS \
+ .fw_status.count = 6, \
+ .fw_status.status[0] = PCI_CFG_HFS_1, \
+ .fw_status.status[1] = PCI_CFG_HFS_2, \
+ .fw_status.status[2] = PCI_CFG_HFS_3, \
+ .fw_status.status[3] = PCI_CFG_HFS_4, \
+ .fw_status.status[4] = PCI_CFG_HFS_5, \
+ .fw_status.status[5] = PCI_CFG_HFS_6
+
+/* ICH Legacy devices */
+const struct mei_cfg mei_me_legacy_cfg = {
+ MEI_CFG_LEGACY_HFS,
+};
+
+/* ICH devices */
+const struct mei_cfg mei_me_ich_cfg = {
+ MEI_CFG_ICH_HFS,
+};
+
+/* PCH devices */
+const struct mei_cfg mei_me_pch_cfg = {
+ MEI_CFG_PCH_HFS,
+};
+
+
+/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
+const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
+ MEI_CFG_PCH_HFS,
+ MEI_CFG_FW_NM,
+};
+
+/* PCH8 Lynx Point and newer devices */
+const struct mei_cfg mei_me_pch8_cfg = {
+ MEI_CFG_PCH8_HFS,
+};
+
+/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
+const struct mei_cfg mei_me_pch8_sps_cfg = {
+ MEI_CFG_PCH8_HFS,
+ MEI_CFG_FW_SPS,
+};
+
+/**
+ * mei_me_dev_init - allocates and initializes the mei device structure
+ *
+ * @pdev: The pci device structure
+ * @cfg: per device generation config
+ *
+ * Return: The mei_device_device pointer on success, NULL on failure.
+ */
+struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
+ const struct mei_cfg *cfg)
+{
+ struct mei_device *dev;
+ struct mei_me_hw *hw;
+
+ dev = kzalloc(sizeof(struct mei_device) +
+ sizeof(struct mei_me_hw), GFP_KERNEL);
+ if (!dev)
+ return NULL;
+ hw = to_me_hw(dev);
+
+ mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
+ hw->cfg = cfg;
+ return dev;
+}
+