diff options
Diffstat (limited to 'kernel/drivers/hwmon/abituguru.c')
-rw-r--r-- | kernel/drivers/hwmon/abituguru.c | 1650 |
1 files changed, 1650 insertions, 0 deletions
diff --git a/kernel/drivers/hwmon/abituguru.c b/kernel/drivers/hwmon/abituguru.c new file mode 100644 index 000000000..7a09c1615 --- /dev/null +++ b/kernel/drivers/hwmon/abituguru.c @@ -0,0 +1,1650 @@ +/* + * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ +/* + * This driver supports the sensor part of the first and second revision of + * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because + * of lack of specs the CPU/RAM voltage & frequency control is not supported! + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/mutex.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/platform_device.h> +#include <linux/hwmon.h> +#include <linux/hwmon-sysfs.h> +#include <linux/dmi.h> +#include <linux/io.h> + +/* Banks */ +#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ +#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ +#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ +#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ +/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ +#define ABIT_UGURU_MAX_BANK1_SENSORS 16 +/* + * Warning if you increase one of the 2 MAX defines below to 10 or higher you + * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! + */ +/* max nr of sensors in bank2, currently mb's with max 6 fans are known */ +#define ABIT_UGURU_MAX_BANK2_SENSORS 6 +/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ +#define ABIT_UGURU_MAX_PWMS 5 +/* uGuru sensor bank 1 flags */ /* Alarm if: */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ +/* uGuru sensor bank 2 flags */ /* Alarm if: */ +#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ +/* uGuru sensor bank common flags */ +#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ +#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ +/* uGuru fan PWM (speed control) flags */ +#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ +/* Values used for conversion */ +#define ABIT_UGURU_FAN_MAX 15300 /* RPM */ +/* Bank1 sensor types */ +#define ABIT_UGURU_IN_SENSOR 0 +#define ABIT_UGURU_TEMP_SENSOR 1 +#define ABIT_UGURU_NC 2 +/* + * In many cases we need to wait for the uGuru to reach a certain status, most + * of the time it will reach this status within 30 - 90 ISA reads, and thus we + * can best busy wait. This define gives the total amount of reads to try. + */ +#define ABIT_UGURU_WAIT_TIMEOUT 125 +/* + * However sometimes older versions of the uGuru seem to be distracted and they + * do not respond for a long time. To handle this we sleep before each of the + * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. + */ +#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 +/* + * Normally all expected status in abituguru_ready, are reported after the + * first read, but sometimes not and we need to poll. + */ +#define ABIT_UGURU_READY_TIMEOUT 5 +/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ +#define ABIT_UGURU_MAX_RETRIES 3 +#define ABIT_UGURU_RETRY_DELAY (HZ/5) +/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ +#define ABIT_UGURU_MAX_TIMEOUTS 2 +/* utility macros */ +#define ABIT_UGURU_NAME "abituguru" +#define ABIT_UGURU_DEBUG(level, format, arg...) \ + do { \ + if (level <= verbose) \ + pr_debug(format , ## arg); \ + } while (0) + +/* Macros to help calculate the sysfs_names array length */ +/* + * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, + * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 + */ +#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) +/* + * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, + * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 + */ +#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) +/* + * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, + * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 + */ +#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) +/* + * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, + * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 + */ +#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) +/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ +#define ABITUGURU_SYSFS_NAMES_LENGTH ( \ + ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ + ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ + ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) + +/* + * All the macros below are named identical to the oguru and oguru2 programs + * reverse engineered by Olle Sandberg, hence the names might not be 100% + * logical. I could come up with better names, but I prefer keeping the names + * identical so that this driver can be compared with his work more easily. + */ +/* Two i/o-ports are used by uGuru */ +#define ABIT_UGURU_BASE 0x00E0 +/* Used to tell uGuru what to read and to read the actual data */ +#define ABIT_UGURU_CMD 0x00 +/* Mostly used to check if uGuru is busy */ +#define ABIT_UGURU_DATA 0x04 +#define ABIT_UGURU_REGION_LENGTH 5 +/* uGuru status' */ +#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ +#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ +#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ +#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ + +/* Constants */ +/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ +static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; +/* + * Min / Max allowed values for sensor2 (fan) alarm threshold, these values + * correspond to 300-3000 RPM + */ +static const u8 abituguru_bank2_min_threshold = 5; +static const u8 abituguru_bank2_max_threshold = 50; +/* + * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 + * are temperature trip points. + */ +static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; +/* + * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a + * special case the minimum allowed pwm% setting for this is 30% (77) on + * some MB's this special case is handled in the code! + */ +static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; +static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; + + +/* Insmod parameters */ +static bool force; +module_param(force, bool, 0); +MODULE_PARM_DESC(force, "Set to one to force detection."); +static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; +module_param_array(bank1_types, int, NULL, 0); +MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" + " -1 autodetect\n" + " 0 volt sensor\n" + " 1 temp sensor\n" + " 2 not connected"); +static int fan_sensors; +module_param(fan_sensors, int, 0); +MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " + "(0 = autodetect)"); +static int pwms; +module_param(pwms, int, 0); +MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " + "(0 = autodetect)"); + +/* Default verbose is 2, since this driver is still in the testing phase */ +static int verbose = 2; +module_param(verbose, int, 0644); +MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" + " 0 normal output\n" + " 1 + verbose error reporting\n" + " 2 + sensors type probing info\n" + " 3 + retryable error reporting"); + + +/* + * For the Abit uGuru, we need to keep some data in memory. + * The structure is dynamically allocated, at the same time when a new + * abituguru device is allocated. + */ +struct abituguru_data { + struct device *hwmon_dev; /* hwmon registered device */ + struct mutex update_lock; /* protect access to data and uGuru */ + unsigned long last_updated; /* In jiffies */ + unsigned short addr; /* uguru base address */ + char uguru_ready; /* is the uguru in ready state? */ + unsigned char update_timeouts; /* + * number of update timeouts since last + * successful update + */ + + /* + * The sysfs attr and their names are generated automatically, for bank1 + * we cannot use a predefined array because we don't know beforehand + * of a sensor is a volt or a temp sensor, for bank2 and the pwms its + * easier todo things the same way. For in sensors we have 9 (temp 7) + * sysfs entries per sensor, for bank2 and pwms 6. + */ + struct sensor_device_attribute_2 sysfs_attr[ + ABIT_UGURU_MAX_BANK1_SENSORS * 9 + + ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; + /* Buffer to store the dynamically generated sysfs names */ + char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; + + /* Bank 1 data */ + /* number of and addresses of [0] in, [1] temp sensors */ + u8 bank1_sensors[2]; + u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; + u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; + /* + * This array holds 3 entries per sensor for the bank 1 sensor settings + * (flags, min, max for voltage / flags, warn, shutdown for temp). + */ + u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; + /* + * Maximum value for each sensor used for scaling in mV/millidegrees + * Celsius. + */ + int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; + + /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ + u8 bank2_sensors; /* actual number of bank2 sensors found */ + u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; + u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ + + /* Alarms 2 bytes for bank1, 1 byte for bank2 */ + u8 alarms[3]; + + /* Fan PWM (speed control) 5 bytes per PWM */ + u8 pwms; /* actual number of pwms found */ + u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; +}; + +static const char *never_happen = "This should never happen."; +static const char *report_this = + "Please report this to the abituguru maintainer (see MAINTAINERS)"; + +/* wait till the uguru is in the specified state */ +static int abituguru_wait(struct abituguru_data *data, u8 state) +{ + int timeout = ABIT_UGURU_WAIT_TIMEOUT; + + while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { + timeout--; + if (timeout == 0) + return -EBUSY; + /* + * sleep a bit before our last few tries, see the comment on + * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. + */ + if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) + msleep(0); + } + return 0; +} + +/* Put the uguru in ready for input state */ +static int abituguru_ready(struct abituguru_data *data) +{ + int timeout = ABIT_UGURU_READY_TIMEOUT; + + if (data->uguru_ready) + return 0; + + /* Reset? / Prepare for next read/write cycle */ + outb(0x00, data->addr + ABIT_UGURU_DATA); + + /* Wait till the uguru is ready */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { + ABIT_UGURU_DEBUG(1, + "timeout exceeded waiting for ready state\n"); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "CMD reg does not hold 0xAC after ready command\n"); + return -EIO; + } + msleep(0); + } + + /* + * After this the ABIT_UGURU_DATA port should contain + * ABIT_UGURU_STATUS_INPUT + */ + timeout = ABIT_UGURU_READY_TIMEOUT; + while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "state != more input after ready command\n"); + return -EIO; + } + msleep(0); + } + + data->uguru_ready = 1; + return 0; +} + +/* + * Send the bank and then sensor address to the uGuru for the next read/write + * cycle. This function gets called as the first part of a read/write by + * abituguru_read and abituguru_write. This function should never be + * called by any other function. + */ +static int abituguru_send_address(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, int retries) +{ + /* + * assume the caller does error handling itself if it has not requested + * any retries, and thus be quiet. + */ + int report_errors = retries; + + for (;;) { + /* + * Make sure the uguru is ready and then send the bank address, + * after this the uguru is no longer "ready". + */ + if (abituguru_ready(data) != 0) + return -EIO; + outb(bank_addr, data->addr + ABIT_UGURU_DATA); + data->uguru_ready = 0; + + /* + * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again + * and send the sensor addr + */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { + if (retries) { + ABIT_UGURU_DEBUG(3, "timeout exceeded " + "waiting for more input state, %d " + "tries remaining\n", retries); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(ABIT_UGURU_RETRY_DELAY); + retries--; + continue; + } + if (report_errors) + ABIT_UGURU_DEBUG(1, "timeout exceeded " + "waiting for more input state " + "(bank: %d)\n", (int)bank_addr); + return -EBUSY; + } + outb(sensor_addr, data->addr + ABIT_UGURU_CMD); + return 0; + } +} + +/* + * Read count bytes from sensor sensor_addr in bank bank_addr and store the + * result in buf, retry the send address part of the read retries times. + */ +static int abituguru_read(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, retries); + if (i) + return i; + + /* And read the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(retries ? 1 : 3, + "timeout exceeded waiting for " + "read state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + buf[i] = inb(data->addr + ABIT_UGURU_CMD); + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* + * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send + * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. + */ +static int abituguru_write(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count) +{ + /* + * We use the ready timeout as we have to wait for 0xAC just like the + * ready function + */ + int i, timeout = ABIT_UGURU_READY_TIMEOUT; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, + ABIT_UGURU_MAX_RETRIES); + if (i) + return i; + + /* And write the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "write state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + outb(buf[i], data->addr + ABIT_UGURU_CMD); + } + + /* + * Now we need to wait till the chip is ready to be read again, + * so that we can read 0xAC as confirmation that our write has + * succeeded. + */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " + "after write (bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " + "write (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + return -EIO; + } + msleep(0); + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* + * Detect sensor type. Temp and Volt sensors are enabled with + * different masks and will ignore enable masks not meant for them. + * This enables us to test what kind of sensor we're dealing with. + * By setting the alarm thresholds so that we will always get an + * alarm for sensor type X and then enabling the sensor as sensor type + * X, if we then get an alarm it is a sensor of type X. + */ +static int +abituguru_detect_bank1_sensor_type(struct abituguru_data *data, + u8 sensor_addr) +{ + u8 val, test_flag, buf[3]; + int i, ret = -ENODEV; /* error is the most common used retval :| */ + + /* If overriden by the user return the user selected type */ + if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && + bank1_types[sensor_addr] <= ABIT_UGURU_NC) { + ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " + "%d because of \"bank1_types\" module param\n", + bank1_types[sensor_addr], (int)sensor_addr); + return bank1_types[sensor_addr]; + } + + /* First read the sensor and the current settings */ + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, + 1, ABIT_UGURU_MAX_RETRIES) != 1) + return -ENODEV; + + /* Test val is sane / usable for sensor type detection. */ + if ((val < 10u) || (val > 250u)) { + pr_warn("bank1-sensor: %d reading (%d) too close to limits, " + "unable to determine sensor type, skipping sensor\n", + (int)sensor_addr, (int)val); + /* + * assume no sensor is there for sensors for which we can't + * determine the sensor type because their reading is too close + * to their limits, this usually means no sensor is there. + */ + return ABIT_UGURU_NC; + } + + ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); + /* + * Volt sensor test, enable volt low alarm, set min value ridiculously + * high, or vica versa if the reading is very high. If its a volt + * sensor this should always give us an alarm. + */ + if (val <= 240u) { + buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; + buf[1] = 245; + buf[2] = 250; + test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; + } else { + buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; + buf[1] = 5; + buf[2] = 10; + test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; + } + + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + /* + * Now we need 20 ms to give the uguru time to read the sensors + * and raise a voltage alarm + */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/50); + /* Check for alarm and check the alarm is a volt low alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + if (buf[0] & test_flag) { + ABIT_UGURU_DEBUG(2, " found volt sensor\n"); + ret = ABIT_UGURU_IN_SENSOR; + goto abituguru_detect_bank1_sensor_type_exit; + } else + ABIT_UGURU_DEBUG(2, " alarm raised during volt " + "sensor test, but volt range flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " + "test\n"); + + /* + * Temp sensor test, enable sensor as a temp sensor, set beep value + * ridiculously low (but not too low, otherwise uguru ignores it). + * If its a temp sensor this should always give us an alarm. + */ + buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; + buf[1] = 5; + buf[2] = 10; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + /* + * Now we need 50 ms to give the uguru time to read the sensors + * and raise a temp alarm + */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/20); + /* Check for alarm and check the alarm is a temp high alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_detect_bank1_sensor_type_exit; + if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { + ABIT_UGURU_DEBUG(2, " found temp sensor\n"); + ret = ABIT_UGURU_TEMP_SENSOR; + goto abituguru_detect_bank1_sensor_type_exit; + } else + ABIT_UGURU_DEBUG(2, " alarm raised during temp " + "sensor test, but temp high flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " + "test\n"); + + ret = ABIT_UGURU_NC; +abituguru_detect_bank1_sensor_type_exit: + /* + * Restore original settings, failing here is really BAD, it has been + * reported that some BIOS-es hang when entering the uGuru menu with + * invalid settings present in the uGuru, so we try this 3 times. + */ + for (i = 0; i < 3; i++) + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + sensor_addr, data->bank1_settings[sensor_addr], + 3) == 3) + break; + if (i == 3) { + pr_err("Fatal error could not restore original settings. %s %s\n", + never_happen, report_this); + return -ENODEV; + } + return ret; +} + +/* + * These functions try to find out how many sensors there are in bank2 and how + * many pwms there are. The purpose of this is to make sure that we don't give + * the user the possibility to change settings for non-existent sensors / pwm. + * The uGuru will happily read / write whatever memory happens to be after the + * memory storing the PWM settings when reading/writing to a PWM which is not + * there. Notice even if we detect a PWM which doesn't exist we normally won't + * write to it, unless the user tries to change the settings. + * + * Although the uGuru allows reading (settings) from non existing bank2 + * sensors, my version of the uGuru does seem to stop writing to them, the + * write function above aborts in this case with: + * "CMD reg does not hold 0xAC after write" + * + * Notice these 2 tests are non destructive iow read-only tests, otherwise + * they would defeat their purpose. Although for the bank2_sensors detection a + * read/write test would be feasible because of the reaction above, I've + * however opted to stay on the safe side. + */ +static void +abituguru_detect_no_bank2_sensors(struct abituguru_data *data) +{ + int i; + + if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { + data->bank2_sensors = fan_sensors; + ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " + "\"fan_sensors\" module param\n", + (int)data->bank2_sensors); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + /* + * 0x89 are the known used bits: + * -0x80 enable shutdown + * -0x08 enable beep + * -0x01 enable alarm + * All other bits should be 0, but on some motherboards + * 0x40 (bit 6) is also high for some of the fans?? + */ + if (data->bank2_settings[i][0] & ~0xC9) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: settings[0] = %02X\n", + i, (unsigned int)data->bank2_settings[i][0]); + break; + } + + /* check if the threshold is within the allowed range */ + if (data->bank2_settings[i][1] < + abituguru_bank2_min_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "below the minimum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_min_threshold); + break; + } + if (data->bank2_settings[i][1] > + abituguru_bank2_max_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "above the maximum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_max_threshold); + break; + } + } + + data->bank2_sensors = i; + ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", + (int)data->bank2_sensors); +} + +static void +abituguru_detect_no_pwms(struct abituguru_data *data) +{ + int i, j; + + if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { + data->pwms = pwms; + ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " + "\"pwms\" module param\n", (int)data->pwms); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + /* + * 0x80 is the enable bit and the low + * nibble is which temp sensor to use, + * the other bits should be 0 + */ + if (data->pwm_settings[i][0] & ~0x8F) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: settings[0] = %02X\n", + i, (unsigned int)data->pwm_settings[i][0]); + break; + } + + /* + * the low nibble must correspond to one of the temp sensors + * we've found + */ + for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; + j++) { + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == + (data->pwm_settings[i][0] & 0x0F)) + break; + } + if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: %d is not a valid temp " + "sensor address\n", i, + data->pwm_settings[i][0] & 0x0F); + break; + } + + /* check if all other settings are within the allowed range */ + for (j = 1; j < 5; j++) { + u8 min; + /* special case pwm1 min pwm% */ + if ((i == 0) && ((j == 1) || (j == 2))) + min = 77; + else + min = abituguru_pwm_min[j]; + if (data->pwm_settings[i][j] < min) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is below the minimum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)min); + goto abituguru_detect_no_pwms_exit; + } + if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is above the maximum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)abituguru_pwm_max[j]); + goto abituguru_detect_no_pwms_exit; + } + } + + /* check that min temp < max temp and min pwm < max pwm */ + if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min pwm (%d) >= " + "max pwm (%d)\n", i, + (int)data->pwm_settings[i][1], + (int)data->pwm_settings[i][2]); + break; + } + if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min temp (%d) >= " + "max temp (%d)\n", i, + (int)data->pwm_settings[i][3], + (int)data->pwm_settings[i][4]); + break; + } + } + +abituguru_detect_no_pwms_exit: + data->pwms = i; + ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); +} + +/* + * Following are the sysfs callback functions. These functions expect: + * sensor_device_attribute_2->index: sensor address/offset in the bank + * sensor_device_attribute_2->nr: register offset, bitmask or NA. + */ +static struct abituguru_data *abituguru_update_device(struct device *dev); + +static ssize_t show_bank1_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank1_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank1_settings[attr->index][attr->nr] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank2_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t show_bank2_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank2_settings[attr->index][attr->nr] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t store_bank1_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + unsigned long val; + ssize_t ret; + + ret = kstrtoul(buf, 10, &val); + if (ret) + return ret; + + ret = count; + val = (val * 255 + data->bank1_max_value[attr->index] / 2) / + data->bank1_max_value[attr->index]; + if (val > 255) + return -EINVAL; + + mutex_lock(&data->update_lock); + if (data->bank1_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank1_settings[attr->index][attr->nr]; + data->bank1_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + attr->index, data->bank1_settings[attr->index], + 3) <= attr->nr) { + data->bank1_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + unsigned long val; + ssize_t ret; + + ret = kstrtoul(buf, 10, &val); + if (ret) + return ret; + + ret = count; + val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; + + /* this check can be done before taking the lock */ + if (val < abituguru_bank2_min_threshold || + val > abituguru_bank2_max_threshold) + return -EINVAL; + + mutex_lock(&data->update_lock); + if (data->bank2_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank2_settings[attr->index][attr->nr]; + data->bank2_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, + attr->index, data->bank2_settings[attr->index], + 2) <= attr->nr) { + data->bank2_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_bank1_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + /* + * See if the alarm bit for this sensor is set, and if the + * alarm matches the type of alarm we're looking for (for volt + * it can be either low or high). The type is stored in a few + * readonly bits in the settings part of the relevant sensor. + * The bitmask of the type is passed to us in attr->nr. + */ + if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && + (data->bank1_settings[attr->index][0] & attr->nr)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + if (data->alarms[2] & (0x01 << attr->index)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank1_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank1_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank2_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t store_bank1_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + ssize_t ret; + u8 orig_val; + unsigned long mask; + + ret = kstrtoul(buf, 10, &mask); + if (ret) + return ret; + + ret = count; + mutex_lock(&data->update_lock); + orig_val = data->bank1_settings[attr->index][0]; + + if (mask) + data->bank1_settings[attr->index][0] |= attr->nr; + else + data->bank1_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank1_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, + data->bank1_settings[attr->index], 3) < 1)) { + data->bank1_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + ssize_t ret; + u8 orig_val; + unsigned long mask; + + ret = kstrtoul(buf, 10, &mask); + if (ret) + return ret; + + ret = count; + mutex_lock(&data->update_lock); + orig_val = data->bank2_settings[attr->index][0]; + + if (mask) + data->bank2_settings[attr->index][0] |= attr->nr; + else + data->bank2_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank2_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, + data->bank2_settings[attr->index], 2) < 1)) { + data->bank2_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +/* Fan PWM (speed control) */ +static ssize_t show_pwm_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * + abituguru_pwm_settings_multiplier[attr->nr]); +} + +static ssize_t store_pwm_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 min; + unsigned long val; + ssize_t ret; + + ret = kstrtoul(buf, 10, &val); + if (ret) + return ret; + + ret = count; + val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / + abituguru_pwm_settings_multiplier[attr->nr]; + + /* special case pwm1 min pwm% */ + if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) + min = 77; + else + min = abituguru_pwm_min[attr->nr]; + + /* this check can be done before taking the lock */ + if (val < min || val > abituguru_pwm_max[attr->nr]) + return -EINVAL; + + mutex_lock(&data->update_lock); + /* this check needs to be done after taking the lock */ + if ((attr->nr & 1) && + (val >= data->pwm_settings[attr->index][attr->nr + 1])) + ret = -EINVAL; + else if (!(attr->nr & 1) && + (val <= data->pwm_settings[attr->index][attr->nr - 1])) + ret = -EINVAL; + else if (data->pwm_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->pwm_settings[attr->index][attr->nr]; + data->pwm_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) <= attr->nr) { + data->pwm_settings[attr->index][attr->nr] = + orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_sensor(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int i; + /* + * We need to walk to the temp sensor addresses to find what + * the userspace id of the configured temp sensor is. + */ + for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == + (data->pwm_settings[attr->index][0] & 0x0F)) + return sprintf(buf, "%d\n", i+1); + + return -ENXIO; +} + +static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + ssize_t ret; + unsigned long val; + u8 orig_val; + u8 address; + + ret = kstrtoul(buf, 10, &val); + if (ret) + return ret; + + if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) + return -EINVAL; + + val -= 1; + ret = count; + mutex_lock(&data->update_lock); + orig_val = data->pwm_settings[attr->index][0]; + address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; + data->pwm_settings[attr->index][0] &= 0xF0; + data->pwm_settings[attr->index][0] |= address; + if (data->pwm_settings[attr->index][0] != orig_val) { + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, + data->pwm_settings[attr->index], 5) < 1) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_enable(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int res = 0; + if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) + res = 2; + return sprintf(buf, "%d\n", res); +} + +static ssize_t store_pwm_enable(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 orig_val; + ssize_t ret; + unsigned long user_val; + + ret = kstrtoul(buf, 10, &user_val); + if (ret) + return ret; + + ret = count; + mutex_lock(&data->update_lock); + orig_val = data->pwm_settings[attr->index][0]; + switch (user_val) { + case 0: + data->pwm_settings[attr->index][0] &= + ~ABIT_UGURU_FAN_PWM_ENABLE; + break; + case 2: + data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; + break; + default: + ret = -EINVAL; + } + if ((data->pwm_settings[attr->index][0] != orig_val) && + (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) < 1)) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_name(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + return sprintf(buf, "%s\n", ABIT_UGURU_NAME); +} + +/* Sysfs attr templates, the real entries are generated automatically. */ +static const +struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { + { + SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), + SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), + }, { + SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), + } +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { + SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, + store_bank2_setting, 1, 0), + SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { + SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, + store_pwm_enable, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, + store_pwm_sensor, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, + store_pwm_setting, 1, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, + store_pwm_setting, 2, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, + store_pwm_setting, 3, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, + store_pwm_setting, 4, 0), +}; + +static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { + SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), +}; + +static int abituguru_probe(struct platform_device *pdev) +{ + struct abituguru_data *data; + int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; + char *sysfs_filename; + + /* + * El weirdo probe order, to keep the sysfs order identical to the + * BIOS and window-appliction listing order. + */ + const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { + 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, + 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; + + data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; + mutex_init(&data->update_lock); + platform_set_drvdata(pdev, data); + + /* See if the uGuru is ready */ + if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) + data->uguru_ready = 1; + + /* + * Completely read the uGuru this has 2 purposes: + * - testread / see if one really is there. + * - make an in memory copy of all the uguru settings for future use. + */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_probe_error; + + for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) + goto abituguru_probe_error; + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, + data->bank1_settings[i], 3, + ABIT_UGURU_MAX_RETRIES) != 3) + goto abituguru_probe_error; + } + /* + * Note: We don't know how many bank2 sensors / pwms there really are, + * but in order to "detect" this we need to read the maximum amount + * anyways. If we read sensors/pwms not there we'll just read crap + * this can't hurt. We need the detection because we don't want + * unwanted writes, which will hurt! + */ + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) + goto abituguru_probe_error; + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, + data->bank2_settings[i], 2, + ABIT_UGURU_MAX_RETRIES) != 2) + goto abituguru_probe_error; + } + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, + data->pwm_settings[i], 5, + ABIT_UGURU_MAX_RETRIES) != 5) + goto abituguru_probe_error; + } + data->last_updated = jiffies; + + /* Detect sensor types and fill the sysfs attr for bank1 */ + sysfs_attr_i = 0; + sysfs_filename = data->sysfs_names; + sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; + for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { + res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); + if (res < 0) + goto abituguru_probe_error; + if (res == ABIT_UGURU_NC) + continue; + + /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ + for (j = 0; j < (res ? 7 : 9); j++) { + used = snprintf(sysfs_filename, sysfs_names_free, + abituguru_sysfs_bank1_templ[res][j].dev_attr. + attr.name, data->bank1_sensors[res] + res) + + 1; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_bank1_templ[res][j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; + sysfs_filename += used; + sysfs_names_free -= used; + sysfs_attr_i++; + } + data->bank1_max_value[probe_order[i]] = + abituguru_bank1_max_value[res]; + data->bank1_address[res][data->bank1_sensors[res]] = + probe_order[i]; + data->bank1_sensors[res]++; + } + /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ + abituguru_detect_no_bank2_sensors(data); + for (i = 0; i < data->bank2_sensors; i++) { + for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { + used = snprintf(sysfs_filename, sysfs_names_free, + abituguru_sysfs_fan_templ[j].dev_attr.attr.name, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_fan_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_filename += used; + sysfs_names_free -= used; + sysfs_attr_i++; + } + } + /* Detect number of sensors and fill the sysfs attr for pwms */ + abituguru_detect_no_pwms(data); + for (i = 0; i < data->pwms; i++) { + for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { + used = snprintf(sysfs_filename, sysfs_names_free, + abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_pwm_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_filename += used; + sysfs_names_free -= used; + sysfs_attr_i++; + } + } + /* Fail safe check, this should never happen! */ + if (sysfs_names_free < 0) { + pr_err("Fatal error ran out of space for sysfs attr names. %s %s", + never_happen, report_this); + res = -ENAMETOOLONG; + goto abituguru_probe_error; + } + pr_info("found Abit uGuru\n"); + + /* Register sysfs hooks */ + for (i = 0; i < sysfs_attr_i; i++) { + res = device_create_file(&pdev->dev, + &data->sysfs_attr[i].dev_attr); + if (res) + goto abituguru_probe_error; + } + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { + res = device_create_file(&pdev->dev, + &abituguru_sysfs_attr[i].dev_attr); + if (res) + goto abituguru_probe_error; + } + + data->hwmon_dev = hwmon_device_register(&pdev->dev); + if (!IS_ERR(data->hwmon_dev)) + return 0; /* success */ + + res = PTR_ERR(data->hwmon_dev); +abituguru_probe_error: + for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) + device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) + device_remove_file(&pdev->dev, + &abituguru_sysfs_attr[i].dev_attr); + return res; +} + +static int abituguru_remove(struct platform_device *pdev) +{ + int i; + struct abituguru_data *data = platform_get_drvdata(pdev); + + hwmon_device_unregister(data->hwmon_dev); + for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) + device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) + device_remove_file(&pdev->dev, + &abituguru_sysfs_attr[i].dev_attr); + + return 0; +} + +static struct abituguru_data *abituguru_update_device(struct device *dev) +{ + int i, err; + struct abituguru_data *data = dev_get_drvdata(dev); + /* fake a complete successful read if no update necessary. */ + char success = 1; + + mutex_lock(&data->update_lock); + if (time_after(jiffies, data->last_updated + HZ)) { + success = 0; + err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, 0); + if (err != 3) + goto LEAVE_UPDATE; + for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { + err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, + i, &data->bank1_value[i], 1, 0); + if (err != 1) + goto LEAVE_UPDATE; + err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + i, data->bank1_settings[i], 3, 0); + if (err != 3) + goto LEAVE_UPDATE; + } + for (i = 0; i < data->bank2_sensors; i++) { + err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, 0); + if (err != 1) + goto LEAVE_UPDATE; + } + /* success! */ + success = 1; + data->update_timeouts = 0; +LEAVE_UPDATE: + /* handle timeout condition */ + if (!success && (err == -EBUSY || err >= 0)) { + /* No overflow please */ + if (data->update_timeouts < 255u) + data->update_timeouts++; + if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { + ABIT_UGURU_DEBUG(3, "timeout exceeded, will " + "try again next update\n"); + /* Just a timeout, fake a successful read */ + success = 1; + } else + ABIT_UGURU_DEBUG(1, "timeout exceeded %d " + "times waiting for more input state\n", + (int)data->update_timeouts); + } + /* On success set last_updated */ + if (success) + data->last_updated = jiffies; + } + mutex_unlock(&data->update_lock); + + if (success) + return data; + else + return NULL; +} + +#ifdef CONFIG_PM_SLEEP +static int abituguru_suspend(struct device *dev) +{ + struct abituguru_data *data = dev_get_drvdata(dev); + /* + * make sure all communications with the uguru are done and no new + * ones are started + */ + mutex_lock(&data->update_lock); + return 0; +} + +static int abituguru_resume(struct device *dev) +{ + struct abituguru_data *data = dev_get_drvdata(dev); + /* See if the uGuru is still ready */ + if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) + data->uguru_ready = 0; + mutex_unlock(&data->update_lock); + return 0; +} + +static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); +#define ABIT_UGURU_PM (&abituguru_pm) +#else +#define ABIT_UGURU_PM NULL +#endif /* CONFIG_PM */ + +static struct platform_driver abituguru_driver = { + .driver = { + .name = ABIT_UGURU_NAME, + .pm = ABIT_UGURU_PM, + }, + .probe = abituguru_probe, + .remove = abituguru_remove, +}; + +static int __init abituguru_detect(void) +{ + /* + * See if there is an uguru there. After a reboot uGuru will hold 0x00 + * at DATA and 0xAC, when this driver has already been loaded once + * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either + * scenario but some will hold 0x00. + * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 + * after reading CMD first, so CMD must be read first! + */ + u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); + u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); + if (((data_val == 0x00) || (data_val == 0x08)) && + ((cmd_val == 0x00) || (cmd_val == 0xAC))) + return ABIT_UGURU_BASE; + + ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " + "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); + + if (force) { + pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); + return ABIT_UGURU_BASE; + } + + /* No uGuru found */ + return -ENODEV; +} + +static struct platform_device *abituguru_pdev; + +static int __init abituguru_init(void) +{ + int address, err; + struct resource res = { .flags = IORESOURCE_IO }; + const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); + + /* safety check, refuse to load on non Abit motherboards */ + if (!force && (!board_vendor || + strcmp(board_vendor, "http://www.abit.com.tw/"))) + return -ENODEV; + + address = abituguru_detect(); + if (address < 0) + return address; + + err = platform_driver_register(&abituguru_driver); + if (err) + goto exit; + + abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); + if (!abituguru_pdev) { + pr_err("Device allocation failed\n"); + err = -ENOMEM; + goto exit_driver_unregister; + } + + res.start = address; + res.end = address + ABIT_UGURU_REGION_LENGTH - 1; + res.name = ABIT_UGURU_NAME; + + err = platform_device_add_resources(abituguru_pdev, &res, 1); + if (err) { + pr_err("Device resource addition failed (%d)\n", err); + goto exit_device_put; + } + + err = platform_device_add(abituguru_pdev); + if (err) { + pr_err("Device addition failed (%d)\n", err); + goto exit_device_put; + } + + return 0; + +exit_device_put: + platform_device_put(abituguru_pdev); +exit_driver_unregister: + platform_driver_unregister(&abituguru_driver); +exit: + return err; +} + +static void __exit abituguru_exit(void) +{ + platform_device_unregister(abituguru_pdev); + platform_driver_unregister(&abituguru_driver); +} + +MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); +MODULE_DESCRIPTION("Abit uGuru Sensor device"); +MODULE_LICENSE("GPL"); + +module_init(abituguru_init); +module_exit(abituguru_exit); |