diff options
Diffstat (limited to 'kernel/crypto/vmac.c')
-rw-r--r-- | kernel/crypto/vmac.c | 716 |
1 files changed, 716 insertions, 0 deletions
diff --git a/kernel/crypto/vmac.c b/kernel/crypto/vmac.c new file mode 100644 index 000000000..df76a816c --- /dev/null +++ b/kernel/crypto/vmac.c @@ -0,0 +1,716 @@ +/* + * Modified to interface to the Linux kernel + * Copyright (c) 2009, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + */ + +/* -------------------------------------------------------------------------- + * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. + * This implementation is herby placed in the public domain. + * The authors offers no warranty. Use at your own risk. + * Please send bug reports to the authors. + * Last modified: 17 APR 08, 1700 PDT + * ----------------------------------------------------------------------- */ + +#include <linux/init.h> +#include <linux/types.h> +#include <linux/crypto.h> +#include <linux/module.h> +#include <linux/scatterlist.h> +#include <asm/byteorder.h> +#include <crypto/scatterwalk.h> +#include <crypto/vmac.h> +#include <crypto/internal/hash.h> + +/* + * Constants and masks + */ +#define UINT64_C(x) x##ULL +static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ +static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ +static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ +static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ +static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ + +#define pe64_to_cpup le64_to_cpup /* Prefer little endian */ + +#ifdef __LITTLE_ENDIAN +#define INDEX_HIGH 1 +#define INDEX_LOW 0 +#else +#define INDEX_HIGH 0 +#define INDEX_LOW 1 +#endif + +/* + * The following routines are used in this implementation. They are + * written via macros to simulate zero-overhead call-by-reference. + * + * MUL64: 64x64->128-bit multiplication + * PMUL64: assumes top bits cleared on inputs + * ADD128: 128x128->128-bit addition + */ + +#define ADD128(rh, rl, ih, il) \ + do { \ + u64 _il = (il); \ + (rl) += (_il); \ + if ((rl) < (_il)) \ + (rh)++; \ + (rh) += (ih); \ + } while (0) + +#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) + +#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ + do { \ + u64 _i1 = (i1), _i2 = (i2); \ + u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ + rh = MUL32(_i1>>32, _i2>>32); \ + rl = MUL32(_i1, _i2); \ + ADD128(rh, rl, (m >> 32), (m << 32)); \ + } while (0) + +#define MUL64(rh, rl, i1, i2) \ + do { \ + u64 _i1 = (i1), _i2 = (i2); \ + u64 m1 = MUL32(_i1, _i2>>32); \ + u64 m2 = MUL32(_i1>>32, _i2); \ + rh = MUL32(_i1>>32, _i2>>32); \ + rl = MUL32(_i1, _i2); \ + ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ + ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ + } while (0) + +/* + * For highest performance the L1 NH and L2 polynomial hashes should be + * carefully implemented to take advantage of one's target architecture. + * Here these two hash functions are defined multiple time; once for + * 64-bit architectures, once for 32-bit SSE2 architectures, and once + * for the rest (32-bit) architectures. + * For each, nh_16 *must* be defined (works on multiples of 16 bytes). + * Optionally, nh_vmac_nhbytes can be defined (for multiples of + * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two + * NH computations at once). + */ + +#ifdef CONFIG_64BIT + +#define nh_16(mp, kp, nw, rh, rl) \ + do { \ + int i; u64 th, tl; \ + rh = rl = 0; \ + for (i = 0; i < nw; i += 2) { \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh, rl, th, tl); \ + } \ + } while (0) + +#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ + do { \ + int i; u64 th, tl; \ + rh1 = rl1 = rh = rl = 0; \ + for (i = 0; i < nw; i += 2) { \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ + ADD128(rh1, rl1, th, tl); \ + } \ + } while (0) + +#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ +#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ + do { \ + int i; u64 th, tl; \ + rh = rl = 0; \ + for (i = 0; i < nw; i += 8) { \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ + pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ + pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ + pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ + ADD128(rh, rl, th, tl); \ + } \ + } while (0) + +#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ + do { \ + int i; u64 th, tl; \ + rh1 = rl1 = rh = rl = 0; \ + for (i = 0; i < nw; i += 8) { \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ + pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ + ADD128(rh1, rl1, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ + pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ + pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ + ADD128(rh1, rl1, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ + pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ + pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ + ADD128(rh1, rl1, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ + pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ + ADD128(rh, rl, th, tl); \ + MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ + pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ + ADD128(rh1, rl1, th, tl); \ + } \ + } while (0) +#endif + +#define poly_step(ah, al, kh, kl, mh, ml) \ + do { \ + u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ + /* compute ab*cd, put bd into result registers */ \ + PMUL64(t3h, t3l, al, kh); \ + PMUL64(t2h, t2l, ah, kl); \ + PMUL64(t1h, t1l, ah, 2*kh); \ + PMUL64(ah, al, al, kl); \ + /* add 2 * ac to result */ \ + ADD128(ah, al, t1h, t1l); \ + /* add together ad + bc */ \ + ADD128(t2h, t2l, t3h, t3l); \ + /* now (ah,al), (t2l,2*t2h) need summing */ \ + /* first add the high registers, carrying into t2h */ \ + ADD128(t2h, ah, z, t2l); \ + /* double t2h and add top bit of ah */ \ + t2h = 2 * t2h + (ah >> 63); \ + ah &= m63; \ + /* now add the low registers */ \ + ADD128(ah, al, mh, ml); \ + ADD128(ah, al, z, t2h); \ + } while (0) + +#else /* ! CONFIG_64BIT */ + +#ifndef nh_16 +#define nh_16(mp, kp, nw, rh, rl) \ + do { \ + u64 t1, t2, m1, m2, t; \ + int i; \ + rh = rl = t = 0; \ + for (i = 0; i < nw; i += 2) { \ + t1 = pe64_to_cpup(mp+i) + kp[i]; \ + t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ + m2 = MUL32(t1 >> 32, t2); \ + m1 = MUL32(t1, t2 >> 32); \ + ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ + MUL32(t1, t2)); \ + rh += (u64)(u32)(m1 >> 32) \ + + (u32)(m2 >> 32); \ + t += (u64)(u32)m1 + (u32)m2; \ + } \ + ADD128(rh, rl, (t >> 32), (t << 32)); \ + } while (0) +#endif + +static void poly_step_func(u64 *ahi, u64 *alo, + const u64 *kh, const u64 *kl, + const u64 *mh, const u64 *ml) +{ +#define a0 (*(((u32 *)alo)+INDEX_LOW)) +#define a1 (*(((u32 *)alo)+INDEX_HIGH)) +#define a2 (*(((u32 *)ahi)+INDEX_LOW)) +#define a3 (*(((u32 *)ahi)+INDEX_HIGH)) +#define k0 (*(((u32 *)kl)+INDEX_LOW)) +#define k1 (*(((u32 *)kl)+INDEX_HIGH)) +#define k2 (*(((u32 *)kh)+INDEX_LOW)) +#define k3 (*(((u32 *)kh)+INDEX_HIGH)) + + u64 p, q, t; + u32 t2; + + p = MUL32(a3, k3); + p += p; + p += *(u64 *)mh; + p += MUL32(a0, k2); + p += MUL32(a1, k1); + p += MUL32(a2, k0); + t = (u32)(p); + p >>= 32; + p += MUL32(a0, k3); + p += MUL32(a1, k2); + p += MUL32(a2, k1); + p += MUL32(a3, k0); + t |= ((u64)((u32)p & 0x7fffffff)) << 32; + p >>= 31; + p += (u64)(((u32 *)ml)[INDEX_LOW]); + p += MUL32(a0, k0); + q = MUL32(a1, k3); + q += MUL32(a2, k2); + q += MUL32(a3, k1); + q += q; + p += q; + t2 = (u32)(p); + p >>= 32; + p += (u64)(((u32 *)ml)[INDEX_HIGH]); + p += MUL32(a0, k1); + p += MUL32(a1, k0); + q = MUL32(a2, k3); + q += MUL32(a3, k2); + q += q; + p += q; + *(u64 *)(alo) = (p << 32) | t2; + p >>= 32; + *(u64 *)(ahi) = p + t; + +#undef a0 +#undef a1 +#undef a2 +#undef a3 +#undef k0 +#undef k1 +#undef k2 +#undef k3 +} + +#define poly_step(ah, al, kh, kl, mh, ml) \ + poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) + +#endif /* end of specialized NH and poly definitions */ + +/* At least nh_16 is defined. Defined others as needed here */ +#ifndef nh_16_2 +#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ + do { \ + nh_16(mp, kp, nw, rh, rl); \ + nh_16(mp, ((kp)+2), nw, rh2, rl2); \ + } while (0) +#endif +#ifndef nh_vmac_nhbytes +#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ + nh_16(mp, kp, nw, rh, rl) +#endif +#ifndef nh_vmac_nhbytes_2 +#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ + do { \ + nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ + nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ + } while (0) +#endif + +static void vhash_abort(struct vmac_ctx *ctx) +{ + ctx->polytmp[0] = ctx->polykey[0] ; + ctx->polytmp[1] = ctx->polykey[1] ; + ctx->first_block_processed = 0; +} + +static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) +{ + u64 rh, rl, t, z = 0; + + /* fully reduce (p1,p2)+(len,0) mod p127 */ + t = p1 >> 63; + p1 &= m63; + ADD128(p1, p2, len, t); + /* At this point, (p1,p2) is at most 2^127+(len<<64) */ + t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); + ADD128(p1, p2, z, t); + p1 &= m63; + + /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ + t = p1 + (p2 >> 32); + t += (t >> 32); + t += (u32)t > 0xfffffffeu; + p1 += (t >> 32); + p2 += (p1 << 32); + + /* compute (p1+k1)%p64 and (p2+k2)%p64 */ + p1 += k1; + p1 += (0 - (p1 < k1)) & 257; + p2 += k2; + p2 += (0 - (p2 < k2)) & 257; + + /* compute (p1+k1)*(p2+k2)%p64 */ + MUL64(rh, rl, p1, p2); + t = rh >> 56; + ADD128(t, rl, z, rh); + rh <<= 8; + ADD128(t, rl, z, rh); + t += t << 8; + rl += t; + rl += (0 - (rl < t)) & 257; + rl += (0 - (rl > p64-1)) & 257; + return rl; +} + +static void vhash_update(const unsigned char *m, + unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ + struct vmac_ctx *ctx) +{ + u64 rh, rl, *mptr; + const u64 *kptr = (u64 *)ctx->nhkey; + int i; + u64 ch, cl; + u64 pkh = ctx->polykey[0]; + u64 pkl = ctx->polykey[1]; + + if (!mbytes) + return; + + BUG_ON(mbytes % VMAC_NHBYTES); + + mptr = (u64 *)m; + i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ + + ch = ctx->polytmp[0]; + cl = ctx->polytmp[1]; + + if (!ctx->first_block_processed) { + ctx->first_block_processed = 1; + nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); + rh &= m62; + ADD128(ch, cl, rh, rl); + mptr += (VMAC_NHBYTES/sizeof(u64)); + i--; + } + + while (i--) { + nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); + rh &= m62; + poly_step(ch, cl, pkh, pkl, rh, rl); + mptr += (VMAC_NHBYTES/sizeof(u64)); + } + + ctx->polytmp[0] = ch; + ctx->polytmp[1] = cl; +} + +static u64 vhash(unsigned char m[], unsigned int mbytes, + u64 *tagl, struct vmac_ctx *ctx) +{ + u64 rh, rl, *mptr; + const u64 *kptr = (u64 *)ctx->nhkey; + int i, remaining; + u64 ch, cl; + u64 pkh = ctx->polykey[0]; + u64 pkl = ctx->polykey[1]; + + mptr = (u64 *)m; + i = mbytes / VMAC_NHBYTES; + remaining = mbytes % VMAC_NHBYTES; + + if (ctx->first_block_processed) { + ch = ctx->polytmp[0]; + cl = ctx->polytmp[1]; + } else if (i) { + nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); + ch &= m62; + ADD128(ch, cl, pkh, pkl); + mptr += (VMAC_NHBYTES/sizeof(u64)); + i--; + } else if (remaining) { + nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); + ch &= m62; + ADD128(ch, cl, pkh, pkl); + mptr += (VMAC_NHBYTES/sizeof(u64)); + goto do_l3; + } else {/* Empty String */ + ch = pkh; cl = pkl; + goto do_l3; + } + + while (i--) { + nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); + rh &= m62; + poly_step(ch, cl, pkh, pkl, rh, rl); + mptr += (VMAC_NHBYTES/sizeof(u64)); + } + if (remaining) { + nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); + rh &= m62; + poly_step(ch, cl, pkh, pkl, rh, rl); + } + +do_l3: + vhash_abort(ctx); + remaining *= 8; + return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); +} + +static u64 vmac(unsigned char m[], unsigned int mbytes, + const unsigned char n[16], u64 *tagl, + struct vmac_ctx_t *ctx) +{ + u64 *in_n, *out_p; + u64 p, h; + int i; + + in_n = ctx->__vmac_ctx.cached_nonce; + out_p = ctx->__vmac_ctx.cached_aes; + + i = n[15] & 1; + if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { + in_n[0] = *(u64 *)(n); + in_n[1] = *(u64 *)(n+8); + ((unsigned char *)in_n)[15] &= 0xFE; + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out_p, (unsigned char *)in_n); + + ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); + } + p = be64_to_cpup(out_p + i); + h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); + return le64_to_cpu(p + h); +} + +static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) +{ + u64 in[2] = {0}, out[2]; + unsigned i; + int err = 0; + + err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); + if (err) + return err; + + /* Fill nh key */ + ((unsigned char *)in)[0] = 0x80; + for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); + ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); + ((unsigned char *)in)[15] += 1; + } + + /* Fill poly key */ + ((unsigned char *)in)[0] = 0xC0; + in[1] = 0; + for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.polytmp[i] = + ctx->__vmac_ctx.polykey[i] = + be64_to_cpup(out) & mpoly; + ctx->__vmac_ctx.polytmp[i+1] = + ctx->__vmac_ctx.polykey[i+1] = + be64_to_cpup(out+1) & mpoly; + ((unsigned char *)in)[15] += 1; + } + + /* Fill ip key */ + ((unsigned char *)in)[0] = 0xE0; + in[1] = 0; + for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { + do { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); + ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); + ((unsigned char *)in)[15] += 1; + } while (ctx->__vmac_ctx.l3key[i] >= p64 + || ctx->__vmac_ctx.l3key[i+1] >= p64); + } + + /* Invalidate nonce/aes cache and reset other elements */ + ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ + ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ + ctx->__vmac_ctx.first_block_processed = 0; + + return err; +} + +static int vmac_setkey(struct crypto_shash *parent, + const u8 *key, unsigned int keylen) +{ + struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); + + if (keylen != VMAC_KEY_LEN) { + crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + return vmac_set_key((u8 *)key, ctx); +} + +static int vmac_init(struct shash_desc *pdesc) +{ + return 0; +} + +static int vmac_update(struct shash_desc *pdesc, const u8 *p, + unsigned int len) +{ + struct crypto_shash *parent = pdesc->tfm; + struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); + int expand; + int min; + + expand = VMAC_NHBYTES - ctx->partial_size > 0 ? + VMAC_NHBYTES - ctx->partial_size : 0; + + min = len < expand ? len : expand; + + memcpy(ctx->partial + ctx->partial_size, p, min); + ctx->partial_size += min; + + if (len < expand) + return 0; + + vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx); + ctx->partial_size = 0; + + len -= expand; + p += expand; + + if (len % VMAC_NHBYTES) { + memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), + len % VMAC_NHBYTES); + ctx->partial_size = len % VMAC_NHBYTES; + } + + vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); + + return 0; +} + +static int vmac_final(struct shash_desc *pdesc, u8 *out) +{ + struct crypto_shash *parent = pdesc->tfm; + struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); + vmac_t mac; + u8 nonce[16] = {}; + + /* vmac() ends up accessing outside the array bounds that + * we specify. In appears to access up to the next 2-word + * boundary. We'll just be uber cautious and zero the + * unwritten bytes in the buffer. + */ + if (ctx->partial_size) { + memset(ctx->partial + ctx->partial_size, 0, + VMAC_NHBYTES - ctx->partial_size); + } + mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); + memcpy(out, &mac, sizeof(vmac_t)); + memzero_explicit(&mac, sizeof(vmac_t)); + memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); + ctx->partial_size = 0; + return 0; +} + +static int vmac_init_tfm(struct crypto_tfm *tfm) +{ + struct crypto_cipher *cipher; + struct crypto_instance *inst = (void *)tfm->__crt_alg; + struct crypto_spawn *spawn = crypto_instance_ctx(inst); + struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); + + cipher = crypto_spawn_cipher(spawn); + if (IS_ERR(cipher)) + return PTR_ERR(cipher); + + ctx->child = cipher; + return 0; +} + +static void vmac_exit_tfm(struct crypto_tfm *tfm) +{ + struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); + crypto_free_cipher(ctx->child); +} + +static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) +{ + struct shash_instance *inst; + struct crypto_alg *alg; + int err; + + err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); + if (err) + return err; + + alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, + CRYPTO_ALG_TYPE_MASK); + if (IS_ERR(alg)) + return PTR_ERR(alg); + + inst = shash_alloc_instance("vmac", alg); + err = PTR_ERR(inst); + if (IS_ERR(inst)) + goto out_put_alg; + + err = crypto_init_spawn(shash_instance_ctx(inst), alg, + shash_crypto_instance(inst), + CRYPTO_ALG_TYPE_MASK); + if (err) + goto out_free_inst; + + inst->alg.base.cra_priority = alg->cra_priority; + inst->alg.base.cra_blocksize = alg->cra_blocksize; + inst->alg.base.cra_alignmask = alg->cra_alignmask; + + inst->alg.digestsize = sizeof(vmac_t); + inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); + inst->alg.base.cra_init = vmac_init_tfm; + inst->alg.base.cra_exit = vmac_exit_tfm; + + inst->alg.init = vmac_init; + inst->alg.update = vmac_update; + inst->alg.final = vmac_final; + inst->alg.setkey = vmac_setkey; + + err = shash_register_instance(tmpl, inst); + if (err) { +out_free_inst: + shash_free_instance(shash_crypto_instance(inst)); + } + +out_put_alg: + crypto_mod_put(alg); + return err; +} + +static struct crypto_template vmac_tmpl = { + .name = "vmac", + .create = vmac_create, + .free = shash_free_instance, + .module = THIS_MODULE, +}; + +static int __init vmac_module_init(void) +{ + return crypto_register_template(&vmac_tmpl); +} + +static void __exit vmac_module_exit(void) +{ + crypto_unregister_template(&vmac_tmpl); +} + +module_init(vmac_module_init); +module_exit(vmac_module_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("VMAC hash algorithm"); +MODULE_ALIAS_CRYPTO("vmac"); |