diff options
Diffstat (limited to 'kernel/arch/x86/mm/kmemcheck/kmemcheck.c')
-rw-r--r-- | kernel/arch/x86/mm/kmemcheck/kmemcheck.c | 659 |
1 files changed, 659 insertions, 0 deletions
diff --git a/kernel/arch/x86/mm/kmemcheck/kmemcheck.c b/kernel/arch/x86/mm/kmemcheck/kmemcheck.c new file mode 100644 index 000000000..b4f2e7e9e --- /dev/null +++ b/kernel/arch/x86/mm/kmemcheck/kmemcheck.c @@ -0,0 +1,659 @@ +/** + * kmemcheck - a heavyweight memory checker for the linux kernel + * Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no> + * (With a lot of help from Ingo Molnar and Pekka Enberg.) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License (version 2) as + * published by the Free Software Foundation. + */ + +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/kallsyms.h> +#include <linux/kernel.h> +#include <linux/kmemcheck.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/page-flags.h> +#include <linux/percpu.h> +#include <linux/ptrace.h> +#include <linux/string.h> +#include <linux/types.h> + +#include <asm/cacheflush.h> +#include <asm/kmemcheck.h> +#include <asm/pgtable.h> +#include <asm/tlbflush.h> + +#include "error.h" +#include "opcode.h" +#include "pte.h" +#include "selftest.h" +#include "shadow.h" + + +#ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT +# define KMEMCHECK_ENABLED 0 +#endif + +#ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT +# define KMEMCHECK_ENABLED 1 +#endif + +#ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT +# define KMEMCHECK_ENABLED 2 +#endif + +int kmemcheck_enabled = KMEMCHECK_ENABLED; + +int __init kmemcheck_init(void) +{ +#ifdef CONFIG_SMP + /* + * Limit SMP to use a single CPU. We rely on the fact that this code + * runs before SMP is set up. + */ + if (setup_max_cpus > 1) { + printk(KERN_INFO + "kmemcheck: Limiting number of CPUs to 1.\n"); + setup_max_cpus = 1; + } +#endif + + if (!kmemcheck_selftest()) { + printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n"); + kmemcheck_enabled = 0; + return -EINVAL; + } + + printk(KERN_INFO "kmemcheck: Initialized\n"); + return 0; +} + +early_initcall(kmemcheck_init); + +/* + * We need to parse the kmemcheck= option before any memory is allocated. + */ +static int __init param_kmemcheck(char *str) +{ + int val; + int ret; + + if (!str) + return -EINVAL; + + ret = kstrtoint(str, 0, &val); + if (ret) + return ret; + kmemcheck_enabled = val; + return 0; +} + +early_param("kmemcheck", param_kmemcheck); + +int kmemcheck_show_addr(unsigned long address) +{ + pte_t *pte; + + pte = kmemcheck_pte_lookup(address); + if (!pte) + return 0; + + set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); + __flush_tlb_one(address); + return 1; +} + +int kmemcheck_hide_addr(unsigned long address) +{ + pte_t *pte; + + pte = kmemcheck_pte_lookup(address); + if (!pte) + return 0; + + set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); + __flush_tlb_one(address); + return 1; +} + +struct kmemcheck_context { + bool busy; + int balance; + + /* + * There can be at most two memory operands to an instruction, but + * each address can cross a page boundary -- so we may need up to + * four addresses that must be hidden/revealed for each fault. + */ + unsigned long addr[4]; + unsigned long n_addrs; + unsigned long flags; + + /* Data size of the instruction that caused a fault. */ + unsigned int size; +}; + +static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context); + +bool kmemcheck_active(struct pt_regs *regs) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + + return data->balance > 0; +} + +/* Save an address that needs to be shown/hidden */ +static void kmemcheck_save_addr(unsigned long addr) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + + BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr)); + data->addr[data->n_addrs++] = addr; +} + +static unsigned int kmemcheck_show_all(void) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + unsigned int i; + unsigned int n; + + n = 0; + for (i = 0; i < data->n_addrs; ++i) + n += kmemcheck_show_addr(data->addr[i]); + + return n; +} + +static unsigned int kmemcheck_hide_all(void) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + unsigned int i; + unsigned int n; + + n = 0; + for (i = 0; i < data->n_addrs; ++i) + n += kmemcheck_hide_addr(data->addr[i]); + + return n; +} + +/* + * Called from the #PF handler. + */ +void kmemcheck_show(struct pt_regs *regs) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + + BUG_ON(!irqs_disabled()); + + if (unlikely(data->balance != 0)) { + kmemcheck_show_all(); + kmemcheck_error_save_bug(regs); + data->balance = 0; + return; + } + + /* + * None of the addresses actually belonged to kmemcheck. Note that + * this is not an error. + */ + if (kmemcheck_show_all() == 0) + return; + + ++data->balance; + + /* + * The IF needs to be cleared as well, so that the faulting + * instruction can run "uninterrupted". Otherwise, we might take + * an interrupt and start executing that before we've had a chance + * to hide the page again. + * + * NOTE: In the rare case of multiple faults, we must not override + * the original flags: + */ + if (!(regs->flags & X86_EFLAGS_TF)) + data->flags = regs->flags; + + regs->flags |= X86_EFLAGS_TF; + regs->flags &= ~X86_EFLAGS_IF; +} + +/* + * Called from the #DB handler. + */ +void kmemcheck_hide(struct pt_regs *regs) +{ + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + int n; + + BUG_ON(!irqs_disabled()); + + if (unlikely(data->balance != 1)) { + kmemcheck_show_all(); + kmemcheck_error_save_bug(regs); + data->n_addrs = 0; + data->balance = 0; + + if (!(data->flags & X86_EFLAGS_TF)) + regs->flags &= ~X86_EFLAGS_TF; + if (data->flags & X86_EFLAGS_IF) + regs->flags |= X86_EFLAGS_IF; + return; + } + + if (kmemcheck_enabled) + n = kmemcheck_hide_all(); + else + n = kmemcheck_show_all(); + + if (n == 0) + return; + + --data->balance; + + data->n_addrs = 0; + + if (!(data->flags & X86_EFLAGS_TF)) + regs->flags &= ~X86_EFLAGS_TF; + if (data->flags & X86_EFLAGS_IF) + regs->flags |= X86_EFLAGS_IF; +} + +void kmemcheck_show_pages(struct page *p, unsigned int n) +{ + unsigned int i; + + for (i = 0; i < n; ++i) { + unsigned long address; + pte_t *pte; + unsigned int level; + + address = (unsigned long) page_address(&p[i]); + pte = lookup_address(address, &level); + BUG_ON(!pte); + BUG_ON(level != PG_LEVEL_4K); + + set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); + set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN)); + __flush_tlb_one(address); + } +} + +bool kmemcheck_page_is_tracked(struct page *p) +{ + /* This will also check the "hidden" flag of the PTE. */ + return kmemcheck_pte_lookup((unsigned long) page_address(p)); +} + +void kmemcheck_hide_pages(struct page *p, unsigned int n) +{ + unsigned int i; + + for (i = 0; i < n; ++i) { + unsigned long address; + pte_t *pte; + unsigned int level; + + address = (unsigned long) page_address(&p[i]); + pte = lookup_address(address, &level); + BUG_ON(!pte); + BUG_ON(level != PG_LEVEL_4K); + + set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); + set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN)); + __flush_tlb_one(address); + } +} + +/* Access may NOT cross page boundary */ +static void kmemcheck_read_strict(struct pt_regs *regs, + unsigned long addr, unsigned int size) +{ + void *shadow; + enum kmemcheck_shadow status; + + shadow = kmemcheck_shadow_lookup(addr); + if (!shadow) + return; + + kmemcheck_save_addr(addr); + status = kmemcheck_shadow_test(shadow, size); + if (status == KMEMCHECK_SHADOW_INITIALIZED) + return; + + if (kmemcheck_enabled) + kmemcheck_error_save(status, addr, size, regs); + + if (kmemcheck_enabled == 2) + kmemcheck_enabled = 0; + + /* Don't warn about it again. */ + kmemcheck_shadow_set(shadow, size); +} + +bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size) +{ + enum kmemcheck_shadow status; + void *shadow; + + shadow = kmemcheck_shadow_lookup(addr); + if (!shadow) + return true; + + status = kmemcheck_shadow_test_all(shadow, size); + + return status == KMEMCHECK_SHADOW_INITIALIZED; +} + +/* Access may cross page boundary */ +static void kmemcheck_read(struct pt_regs *regs, + unsigned long addr, unsigned int size) +{ + unsigned long page = addr & PAGE_MASK; + unsigned long next_addr = addr + size - 1; + unsigned long next_page = next_addr & PAGE_MASK; + + if (likely(page == next_page)) { + kmemcheck_read_strict(regs, addr, size); + return; + } + + /* + * What we do is basically to split the access across the + * two pages and handle each part separately. Yes, this means + * that we may now see reads that are 3 + 5 bytes, for + * example (and if both are uninitialized, there will be two + * reports), but it makes the code a lot simpler. + */ + kmemcheck_read_strict(regs, addr, next_page - addr); + kmemcheck_read_strict(regs, next_page, next_addr - next_page); +} + +static void kmemcheck_write_strict(struct pt_regs *regs, + unsigned long addr, unsigned int size) +{ + void *shadow; + + shadow = kmemcheck_shadow_lookup(addr); + if (!shadow) + return; + + kmemcheck_save_addr(addr); + kmemcheck_shadow_set(shadow, size); +} + +static void kmemcheck_write(struct pt_regs *regs, + unsigned long addr, unsigned int size) +{ + unsigned long page = addr & PAGE_MASK; + unsigned long next_addr = addr + size - 1; + unsigned long next_page = next_addr & PAGE_MASK; + + if (likely(page == next_page)) { + kmemcheck_write_strict(regs, addr, size); + return; + } + + /* See comment in kmemcheck_read(). */ + kmemcheck_write_strict(regs, addr, next_page - addr); + kmemcheck_write_strict(regs, next_page, next_addr - next_page); +} + +/* + * Copying is hard. We have two addresses, each of which may be split across + * a page (and each page will have different shadow addresses). + */ +static void kmemcheck_copy(struct pt_regs *regs, + unsigned long src_addr, unsigned long dst_addr, unsigned int size) +{ + uint8_t shadow[8]; + enum kmemcheck_shadow status; + + unsigned long page; + unsigned long next_addr; + unsigned long next_page; + + uint8_t *x; + unsigned int i; + unsigned int n; + + BUG_ON(size > sizeof(shadow)); + + page = src_addr & PAGE_MASK; + next_addr = src_addr + size - 1; + next_page = next_addr & PAGE_MASK; + + if (likely(page == next_page)) { + /* Same page */ + x = kmemcheck_shadow_lookup(src_addr); + if (x) { + kmemcheck_save_addr(src_addr); + for (i = 0; i < size; ++i) + shadow[i] = x[i]; + } else { + for (i = 0; i < size; ++i) + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + } else { + n = next_page - src_addr; + BUG_ON(n > sizeof(shadow)); + + /* First page */ + x = kmemcheck_shadow_lookup(src_addr); + if (x) { + kmemcheck_save_addr(src_addr); + for (i = 0; i < n; ++i) + shadow[i] = x[i]; + } else { + /* Not tracked */ + for (i = 0; i < n; ++i) + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + + /* Second page */ + x = kmemcheck_shadow_lookup(next_page); + if (x) { + kmemcheck_save_addr(next_page); + for (i = n; i < size; ++i) + shadow[i] = x[i - n]; + } else { + /* Not tracked */ + for (i = n; i < size; ++i) + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + } + + page = dst_addr & PAGE_MASK; + next_addr = dst_addr + size - 1; + next_page = next_addr & PAGE_MASK; + + if (likely(page == next_page)) { + /* Same page */ + x = kmemcheck_shadow_lookup(dst_addr); + if (x) { + kmemcheck_save_addr(dst_addr); + for (i = 0; i < size; ++i) { + x[i] = shadow[i]; + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + } + } else { + n = next_page - dst_addr; + BUG_ON(n > sizeof(shadow)); + + /* First page */ + x = kmemcheck_shadow_lookup(dst_addr); + if (x) { + kmemcheck_save_addr(dst_addr); + for (i = 0; i < n; ++i) { + x[i] = shadow[i]; + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + } + + /* Second page */ + x = kmemcheck_shadow_lookup(next_page); + if (x) { + kmemcheck_save_addr(next_page); + for (i = n; i < size; ++i) { + x[i - n] = shadow[i]; + shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; + } + } + } + + status = kmemcheck_shadow_test(shadow, size); + if (status == KMEMCHECK_SHADOW_INITIALIZED) + return; + + if (kmemcheck_enabled) + kmemcheck_error_save(status, src_addr, size, regs); + + if (kmemcheck_enabled == 2) + kmemcheck_enabled = 0; +} + +enum kmemcheck_method { + KMEMCHECK_READ, + KMEMCHECK_WRITE, +}; + +static void kmemcheck_access(struct pt_regs *regs, + unsigned long fallback_address, enum kmemcheck_method fallback_method) +{ + const uint8_t *insn; + const uint8_t *insn_primary; + unsigned int size; + + struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); + + /* Recursive fault -- ouch. */ + if (data->busy) { + kmemcheck_show_addr(fallback_address); + kmemcheck_error_save_bug(regs); + return; + } + + data->busy = true; + + insn = (const uint8_t *) regs->ip; + insn_primary = kmemcheck_opcode_get_primary(insn); + + kmemcheck_opcode_decode(insn, &size); + + switch (insn_primary[0]) { +#ifdef CONFIG_KMEMCHECK_BITOPS_OK + /* AND, OR, XOR */ + /* + * Unfortunately, these instructions have to be excluded from + * our regular checking since they access only some (and not + * all) bits. This clears out "bogus" bitfield-access warnings. + */ + case 0x80: + case 0x81: + case 0x82: + case 0x83: + switch ((insn_primary[1] >> 3) & 7) { + /* OR */ + case 1: + /* AND */ + case 4: + /* XOR */ + case 6: + kmemcheck_write(regs, fallback_address, size); + goto out; + + /* ADD */ + case 0: + /* ADC */ + case 2: + /* SBB */ + case 3: + /* SUB */ + case 5: + /* CMP */ + case 7: + break; + } + break; +#endif + + /* MOVS, MOVSB, MOVSW, MOVSD */ + case 0xa4: + case 0xa5: + /* + * These instructions are special because they take two + * addresses, but we only get one page fault. + */ + kmemcheck_copy(regs, regs->si, regs->di, size); + goto out; + + /* CMPS, CMPSB, CMPSW, CMPSD */ + case 0xa6: + case 0xa7: + kmemcheck_read(regs, regs->si, size); + kmemcheck_read(regs, regs->di, size); + goto out; + } + + /* + * If the opcode isn't special in any way, we use the data from the + * page fault handler to determine the address and type of memory + * access. + */ + switch (fallback_method) { + case KMEMCHECK_READ: + kmemcheck_read(regs, fallback_address, size); + goto out; + case KMEMCHECK_WRITE: + kmemcheck_write(regs, fallback_address, size); + goto out; + } + +out: + data->busy = false; +} + +bool kmemcheck_fault(struct pt_regs *regs, unsigned long address, + unsigned long error_code) +{ + pte_t *pte; + + /* + * XXX: Is it safe to assume that memory accesses from virtual 86 + * mode or non-kernel code segments will _never_ access kernel + * memory (e.g. tracked pages)? For now, we need this to avoid + * invoking kmemcheck for PnP BIOS calls. + */ + if (regs->flags & X86_VM_MASK) + return false; + if (regs->cs != __KERNEL_CS) + return false; + + pte = kmemcheck_pte_lookup(address); + if (!pte) + return false; + + WARN_ON_ONCE(in_nmi()); + + if (error_code & 2) + kmemcheck_access(regs, address, KMEMCHECK_WRITE); + else + kmemcheck_access(regs, address, KMEMCHECK_READ); + + kmemcheck_show(regs); + return true; +} + +bool kmemcheck_trap(struct pt_regs *regs) +{ + if (!kmemcheck_active(regs)) + return false; + + /* We're done. */ + kmemcheck_hide(regs); + return true; +} |