diff options
Diffstat (limited to 'kernel/arch/sparc/kernel/ioport.c')
-rw-r--r-- | kernel/arch/sparc/kernel/ioport.c | 714 |
1 files changed, 714 insertions, 0 deletions
diff --git a/kernel/arch/sparc/kernel/ioport.c b/kernel/arch/sparc/kernel/ioport.c new file mode 100644 index 000000000..28fed53b1 --- /dev/null +++ b/kernel/arch/sparc/kernel/ioport.c @@ -0,0 +1,714 @@ +/* + * ioport.c: Simple io mapping allocator. + * + * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) + * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) + * + * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. + * + * 2000/01/29 + * <rth> zait: as long as pci_alloc_consistent produces something addressable, + * things are ok. + * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a + * pointer into the big page mapping + * <rth> zait: so what? + * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) + * <zaitcev> Hmm + * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). + * So far so good. + * <zaitcev> Now, driver calls pci_free_consistent(with result of + * remap_it_my_way()). + * <zaitcev> How do you find the address to pass to free_pages()? + * <rth> zait: walk the page tables? It's only two or three level after all. + * <rth> zait: you have to walk them anyway to remove the mapping. + * <zaitcev> Hmm + * <zaitcev> Sounds reasonable + */ + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/ioport.h> +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/pci.h> /* struct pci_dev */ +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/scatterlist.h> +#include <linux/of_device.h> + +#include <asm/io.h> +#include <asm/vaddrs.h> +#include <asm/oplib.h> +#include <asm/prom.h> +#include <asm/page.h> +#include <asm/pgalloc.h> +#include <asm/dma.h> +#include <asm/iommu.h> +#include <asm/io-unit.h> +#include <asm/leon.h> + +const struct sparc32_dma_ops *sparc32_dma_ops; + +/* This function must make sure that caches and memory are coherent after DMA + * On LEON systems without cache snooping it flushes the entire D-CACHE. + */ +static inline void dma_make_coherent(unsigned long pa, unsigned long len) +{ + if (sparc_cpu_model == sparc_leon) { + if (!sparc_leon3_snooping_enabled()) + leon_flush_dcache_all(); + } +} + +static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); +static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, + unsigned long size, char *name); +static void _sparc_free_io(struct resource *res); + +static void register_proc_sparc_ioport(void); + +/* This points to the next to use virtual memory for DVMA mappings */ +static struct resource _sparc_dvma = { + .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 +}; +/* This points to the start of I/O mappings, cluable from outside. */ +/*ext*/ struct resource sparc_iomap = { + .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 +}; + +/* + * Our mini-allocator... + * Boy this is gross! We need it because we must map I/O for + * timers and interrupt controller before the kmalloc is available. + */ + +#define XNMLN 15 +#define XNRES 10 /* SS-10 uses 8 */ + +struct xresource { + struct resource xres; /* Must be first */ + int xflag; /* 1 == used */ + char xname[XNMLN+1]; +}; + +static struct xresource xresv[XNRES]; + +static struct xresource *xres_alloc(void) { + struct xresource *xrp; + int n; + + xrp = xresv; + for (n = 0; n < XNRES; n++) { + if (xrp->xflag == 0) { + xrp->xflag = 1; + return xrp; + } + xrp++; + } + return NULL; +} + +static void xres_free(struct xresource *xrp) { + xrp->xflag = 0; +} + +/* + * These are typically used in PCI drivers + * which are trying to be cross-platform. + * + * Bus type is always zero on IIep. + */ +void __iomem *ioremap(unsigned long offset, unsigned long size) +{ + char name[14]; + + sprintf(name, "phys_%08x", (u32)offset); + return _sparc_alloc_io(0, offset, size, name); +} +EXPORT_SYMBOL(ioremap); + +/* + * Comlimentary to ioremap(). + */ +void iounmap(volatile void __iomem *virtual) +{ + unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; + struct resource *res; + + /* + * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. + * This probably warrants some sort of hashing. + */ + if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { + printk("free_io/iounmap: cannot free %lx\n", vaddr); + return; + } + _sparc_free_io(res); + + if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { + xres_free((struct xresource *)res); + } else { + kfree(res); + } +} +EXPORT_SYMBOL(iounmap); + +void __iomem *of_ioremap(struct resource *res, unsigned long offset, + unsigned long size, char *name) +{ + return _sparc_alloc_io(res->flags & 0xF, + res->start + offset, + size, name); +} +EXPORT_SYMBOL(of_ioremap); + +void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) +{ + iounmap(base); +} +EXPORT_SYMBOL(of_iounmap); + +/* + * Meat of mapping + */ +static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, + unsigned long size, char *name) +{ + static int printed_full; + struct xresource *xres; + struct resource *res; + char *tack; + int tlen; + void __iomem *va; /* P3 diag */ + + if (name == NULL) name = "???"; + + if ((xres = xres_alloc()) != NULL) { + tack = xres->xname; + res = &xres->xres; + } else { + if (!printed_full) { + printk("ioremap: done with statics, switching to malloc\n"); + printed_full = 1; + } + tlen = strlen(name); + tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); + if (tack == NULL) return NULL; + memset(tack, 0, sizeof(struct resource)); + res = (struct resource *) tack; + tack += sizeof (struct resource); + } + + strlcpy(tack, name, XNMLN+1); + res->name = tack; + + va = _sparc_ioremap(res, busno, phys, size); + /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ + return va; +} + +/* + */ +static void __iomem * +_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) +{ + unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); + + if (allocate_resource(&sparc_iomap, res, + (offset + sz + PAGE_SIZE-1) & PAGE_MASK, + sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { + /* Usually we cannot see printks in this case. */ + prom_printf("alloc_io_res(%s): cannot occupy\n", + (res->name != NULL)? res->name: "???"); + prom_halt(); + } + + pa &= PAGE_MASK; + srmmu_mapiorange(bus, pa, res->start, resource_size(res)); + + return (void __iomem *)(unsigned long)(res->start + offset); +} + +/* + * Comlimentary to _sparc_ioremap(). + */ +static void _sparc_free_io(struct resource *res) +{ + unsigned long plen; + + plen = resource_size(res); + BUG_ON((plen & (PAGE_SIZE-1)) != 0); + srmmu_unmapiorange(res->start, plen); + release_resource(res); +} + +#ifdef CONFIG_SBUS + +void sbus_set_sbus64(struct device *dev, int x) +{ + printk("sbus_set_sbus64: unsupported\n"); +} +EXPORT_SYMBOL(sbus_set_sbus64); + +/* + * Allocate a chunk of memory suitable for DMA. + * Typically devices use them for control blocks. + * CPU may access them without any explicit flushing. + */ +static void *sbus_alloc_coherent(struct device *dev, size_t len, + dma_addr_t *dma_addrp, gfp_t gfp, + struct dma_attrs *attrs) +{ + struct platform_device *op = to_platform_device(dev); + unsigned long len_total = PAGE_ALIGN(len); + unsigned long va; + struct resource *res; + int order; + + /* XXX why are some lengths signed, others unsigned? */ + if (len <= 0) { + return NULL; + } + /* XXX So what is maxphys for us and how do drivers know it? */ + if (len > 256*1024) { /* __get_free_pages() limit */ + return NULL; + } + + order = get_order(len_total); + va = __get_free_pages(gfp, order); + if (va == 0) + goto err_nopages; + + if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) + goto err_nomem; + + if (allocate_resource(&_sparc_dvma, res, len_total, + _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { + printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); + goto err_nova; + } + + // XXX The sbus_map_dma_area does this for us below, see comments. + // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); + /* + * XXX That's where sdev would be used. Currently we load + * all iommu tables with the same translations. + */ + if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) + goto err_noiommu; + + res->name = op->dev.of_node->name; + + return (void *)(unsigned long)res->start; + +err_noiommu: + release_resource(res); +err_nova: + kfree(res); +err_nomem: + free_pages(va, order); +err_nopages: + return NULL; +} + +static void sbus_free_coherent(struct device *dev, size_t n, void *p, + dma_addr_t ba, struct dma_attrs *attrs) +{ + struct resource *res; + struct page *pgv; + + if ((res = lookup_resource(&_sparc_dvma, + (unsigned long)p)) == NULL) { + printk("sbus_free_consistent: cannot free %p\n", p); + return; + } + + if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { + printk("sbus_free_consistent: unaligned va %p\n", p); + return; + } + + n = PAGE_ALIGN(n); + if (resource_size(res) != n) { + printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", + (long)resource_size(res), n); + return; + } + + release_resource(res); + kfree(res); + + pgv = virt_to_page(p); + sbus_unmap_dma_area(dev, ba, n); + + __free_pages(pgv, get_order(n)); +} + +/* + * Map a chunk of memory so that devices can see it. + * CPU view of this memory may be inconsistent with + * a device view and explicit flushing is necessary. + */ +static dma_addr_t sbus_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t len, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + void *va = page_address(page) + offset; + + /* XXX why are some lengths signed, others unsigned? */ + if (len <= 0) { + return 0; + } + /* XXX So what is maxphys for us and how do drivers know it? */ + if (len > 256*1024) { /* __get_free_pages() limit */ + return 0; + } + return mmu_get_scsi_one(dev, va, len); +} + +static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, + enum dma_data_direction dir, struct dma_attrs *attrs) +{ + mmu_release_scsi_one(dev, ba, n); +} + +static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, + enum dma_data_direction dir, struct dma_attrs *attrs) +{ + mmu_get_scsi_sgl(dev, sg, n); + return n; +} + +static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, + enum dma_data_direction dir, struct dma_attrs *attrs) +{ + mmu_release_scsi_sgl(dev, sg, n); +} + +static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, + int n, enum dma_data_direction dir) +{ + BUG(); +} + +static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, + int n, enum dma_data_direction dir) +{ + BUG(); +} + +static struct dma_map_ops sbus_dma_ops = { + .alloc = sbus_alloc_coherent, + .free = sbus_free_coherent, + .map_page = sbus_map_page, + .unmap_page = sbus_unmap_page, + .map_sg = sbus_map_sg, + .unmap_sg = sbus_unmap_sg, + .sync_sg_for_cpu = sbus_sync_sg_for_cpu, + .sync_sg_for_device = sbus_sync_sg_for_device, +}; + +static int __init sparc_register_ioport(void) +{ + register_proc_sparc_ioport(); + + return 0; +} + +arch_initcall(sparc_register_ioport); + +#endif /* CONFIG_SBUS */ + + +/* Allocate and map kernel buffer using consistent mode DMA for a device. + * hwdev should be valid struct pci_dev pointer for PCI devices. + */ +static void *pci32_alloc_coherent(struct device *dev, size_t len, + dma_addr_t *pba, gfp_t gfp, + struct dma_attrs *attrs) +{ + unsigned long len_total = PAGE_ALIGN(len); + void *va; + struct resource *res; + int order; + + if (len == 0) { + return NULL; + } + if (len > 256*1024) { /* __get_free_pages() limit */ + return NULL; + } + + order = get_order(len_total); + va = (void *) __get_free_pages(gfp, order); + if (va == NULL) { + printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); + goto err_nopages; + } + + if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { + printk("pci_alloc_consistent: no core\n"); + goto err_nomem; + } + + if (allocate_resource(&_sparc_dvma, res, len_total, + _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { + printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); + goto err_nova; + } + srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); + + *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ + return (void *) res->start; + +err_nova: + kfree(res); +err_nomem: + free_pages((unsigned long)va, order); +err_nopages: + return NULL; +} + +/* Free and unmap a consistent DMA buffer. + * cpu_addr is what was returned from pci_alloc_consistent, + * size must be the same as what as passed into pci_alloc_consistent, + * and likewise dma_addr must be the same as what *dma_addrp was set to. + * + * References to the memory and mappings associated with cpu_addr/dma_addr + * past this call are illegal. + */ +static void pci32_free_coherent(struct device *dev, size_t n, void *p, + dma_addr_t ba, struct dma_attrs *attrs) +{ + struct resource *res; + + if ((res = lookup_resource(&_sparc_dvma, + (unsigned long)p)) == NULL) { + printk("pci_free_consistent: cannot free %p\n", p); + return; + } + + if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { + printk("pci_free_consistent: unaligned va %p\n", p); + return; + } + + n = PAGE_ALIGN(n); + if (resource_size(res) != n) { + printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", + (long)resource_size(res), (long)n); + return; + } + + dma_make_coherent(ba, n); + srmmu_unmapiorange((unsigned long)p, n); + + release_resource(res); + kfree(res); + free_pages((unsigned long)phys_to_virt(ba), get_order(n)); +} + +/* + * Same as pci_map_single, but with pages. + */ +static dma_addr_t pci32_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + /* IIep is write-through, not flushing. */ + return page_to_phys(page) + offset; +} + +static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, + enum dma_data_direction dir, struct dma_attrs *attrs) +{ + if (dir != PCI_DMA_TODEVICE) + dma_make_coherent(ba, PAGE_ALIGN(size)); +} + +/* Map a set of buffers described by scatterlist in streaming + * mode for DMA. This is the scather-gather version of the + * above pci_map_single interface. Here the scatter gather list + * elements are each tagged with the appropriate dma address + * and length. They are obtained via sg_dma_{address,length}(SG). + * + * NOTE: An implementation may be able to use a smaller number of + * DMA address/length pairs than there are SG table elements. + * (for example via virtual mapping capabilities) + * The routine returns the number of addr/length pairs actually + * used, at most nents. + * + * Device ownership issues as mentioned above for pci_map_single are + * the same here. + */ +static int pci32_map_sg(struct device *device, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + struct scatterlist *sg; + int n; + + /* IIep is write-through, not flushing. */ + for_each_sg(sgl, sg, nents, n) { + sg->dma_address = sg_phys(sg); + sg->dma_length = sg->length; + } + return nents; +} + +/* Unmap a set of streaming mode DMA translations. + * Again, cpu read rules concerning calls here are the same as for + * pci_unmap_single() above. + */ +static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + struct scatterlist *sg; + int n; + + if (dir != PCI_DMA_TODEVICE) { + for_each_sg(sgl, sg, nents, n) { + dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); + } + } +} + +/* Make physical memory consistent for a single + * streaming mode DMA translation before or after a transfer. + * + * If you perform a pci_map_single() but wish to interrogate the + * buffer using the cpu, yet do not wish to teardown the PCI dma + * mapping, you must call this function before doing so. At the + * next point you give the PCI dma address back to the card, you + * must first perform a pci_dma_sync_for_device, and then the + * device again owns the buffer. + */ +static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, + size_t size, enum dma_data_direction dir) +{ + if (dir != PCI_DMA_TODEVICE) { + dma_make_coherent(ba, PAGE_ALIGN(size)); + } +} + +static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, + size_t size, enum dma_data_direction dir) +{ + if (dir != PCI_DMA_TODEVICE) { + dma_make_coherent(ba, PAGE_ALIGN(size)); + } +} + +/* Make physical memory consistent for a set of streaming + * mode DMA translations after a transfer. + * + * The same as pci_dma_sync_single_* but for a scatter-gather list, + * same rules and usage. + */ +static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int n; + + if (dir != PCI_DMA_TODEVICE) { + for_each_sg(sgl, sg, nents, n) { + dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); + } + } +} + +static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, + int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int n; + + if (dir != PCI_DMA_TODEVICE) { + for_each_sg(sgl, sg, nents, n) { + dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); + } + } +} + +struct dma_map_ops pci32_dma_ops = { + .alloc = pci32_alloc_coherent, + .free = pci32_free_coherent, + .map_page = pci32_map_page, + .unmap_page = pci32_unmap_page, + .map_sg = pci32_map_sg, + .unmap_sg = pci32_unmap_sg, + .sync_single_for_cpu = pci32_sync_single_for_cpu, + .sync_single_for_device = pci32_sync_single_for_device, + .sync_sg_for_cpu = pci32_sync_sg_for_cpu, + .sync_sg_for_device = pci32_sync_sg_for_device, +}; +EXPORT_SYMBOL(pci32_dma_ops); + +/* leon re-uses pci32_dma_ops */ +struct dma_map_ops *leon_dma_ops = &pci32_dma_ops; +EXPORT_SYMBOL(leon_dma_ops); + +struct dma_map_ops *dma_ops = &sbus_dma_ops; +EXPORT_SYMBOL(dma_ops); + + +/* + * Return whether the given PCI device DMA address mask can be + * supported properly. For example, if your device can only drive the + * low 24-bits during PCI bus mastering, then you would pass + * 0x00ffffff as the mask to this function. + */ +int dma_supported(struct device *dev, u64 mask) +{ + if (dev_is_pci(dev)) + return 1; + + return 0; +} +EXPORT_SYMBOL(dma_supported); + +#ifdef CONFIG_PROC_FS + +static int sparc_io_proc_show(struct seq_file *m, void *v) +{ + struct resource *root = m->private, *r; + const char *nm; + + for (r = root->child; r != NULL; r = r->sibling) { + if ((nm = r->name) == NULL) nm = "???"; + seq_printf(m, "%016llx-%016llx: %s\n", + (unsigned long long)r->start, + (unsigned long long)r->end, nm); + } + + return 0; +} + +static int sparc_io_proc_open(struct inode *inode, struct file *file) +{ + return single_open(file, sparc_io_proc_show, PDE_DATA(inode)); +} + +static const struct file_operations sparc_io_proc_fops = { + .owner = THIS_MODULE, + .open = sparc_io_proc_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; +#endif /* CONFIG_PROC_FS */ + +static void register_proc_sparc_ioport(void) +{ +#ifdef CONFIG_PROC_FS + proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); + proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); +#endif +} |