summaryrefslogtreecommitdiffstats
path: root/kernel/arch/mips/boot/compressed/dbg.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/arch/mips/boot/compressed/dbg.c')
-rw-r--r--kernel/arch/mips/boot/compressed/dbg.c36
1 files changed, 36 insertions, 0 deletions
diff --git a/kernel/arch/mips/boot/compressed/dbg.c b/kernel/arch/mips/boot/compressed/dbg.c
new file mode 100644
index 000000000..06c6a5bd1
--- /dev/null
+++ b/kernel/arch/mips/boot/compressed/dbg.c
@@ -0,0 +1,36 @@
+/*
+ * MIPS-specific debug support for pre-boot environment
+ *
+ * NOTE: putc() is board specific, if your board have a 16550 compatible uart,
+ * please select SYS_SUPPORTS_ZBOOT_UART16550 for your machine. othewise, you
+ * need to implement your own putc().
+ */
+#include <linux/compiler.h>
+#include <linux/types.h>
+
+void __weak putc(char c)
+{
+}
+
+void puts(const char *s)
+{
+ char c;
+ while ((c = *s++) != '\0') {
+ putc(c);
+ if (c == '\n')
+ putc('\r');
+ }
+}
+
+void puthex(unsigned long long val)
+{
+
+ unsigned char buf[10];
+ int i;
+ for (i = 7; i >= 0; i--) {
+ buf[i] = "0123456789ABCDEF"[val & 0x0F];
+ val >>= 4;
+ }
+ buf[8] = '\0';
+ puts(buf);
+}
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <string.h>
#include <stdio.h>
#include <rte_cycles.h>
#include <rte_version.h>

#include "prox_malloc.h"
#include "lconf.h"
#include "log.h"
#include "random.h"
#include "handle_impair.h"
#include "prefetch.h"
#include "prox_port_cfg.h"

#if RTE_VERSION < RTE_VERSION_NUM(1,8,0,0)
#define RTE_CACHE_LINE_SIZE CACHE_LINE_SIZE
#endif

#define DELAY_ACCURACY	11		// accuracy of 2048 cycles ~= 1 micro-second
#define DELAY_MAX_MASK	0x1FFFFF	// Maximum 2M * 2K cycles ~1 second

struct queue_elem {
	struct rte_mbuf *mbuf;
	uint64_t        tsc;
};

struct queue {
	struct queue_elem *queue_elem;
	unsigned queue_head;
	unsigned queue_tail;
};

struct task_impair {
	struct task_base base;
	struct queue_elem *queue;
	uint32_t random_delay_us;
	uint32_t delay_us;
	uint64_t delay_time;
	uint64_t delay_time_mask;
	unsigned queue_head;
	unsigned queue_tail;
	unsigned queue_mask;
	int tresh;
	unsigned int seed;
	struct random state;
	uint64_t last_idx;
	struct queue *buffer;
	uint32_t socket_id;
	uint32_t flags;
	uint8_t src_mac[6];
};

#define IMPAIR_NEED_UPDATE     1
#define IMPAIR_SET_MAC         2

static int handle_bulk_impair(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static int handle_bulk_impair_random(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static int handle_bulk_random_drop(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);

void task_impair_set_proba(struct task_base *tbase, float proba)
{
	struct task_impair *task = (struct task_impair *)tbase;
	task->tresh = ((uint64_t) RAND_MAX) * (uint32_t)(proba * 10000) / 1000000;
}

void task_impair_set_delay_us(struct task_base *tbase, uint32_t delay_us, uint32_t random_delay_us)
{
	struct task_impair *task = (struct task_impair *)tbase;
	task->flags |= IMPAIR_NEED_UPDATE;
	task->random_delay_us = random_delay_us;
	task->delay_us = delay_us;
}

static void task_impair_update(struct task_base *tbase)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint32_t queue_len = 0;
	size_t mem_size;
	if ((task->flags & IMPAIR_NEED_UPDATE) == 0)
		return;
	task->flags &= ~IMPAIR_NEED_UPDATE;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST] = {0};
	uint64_t now_idx = (now >> DELAY_ACCURACY) & DELAY_MAX_MASK;

	if (task->random_delay_us) {
		tbase->handle_bulk = handle_bulk_impair_random;
		task->delay_time = usec_to_tsc(task->random_delay_us);
		task->delay_time_mask = rte_align32pow2(task->delay_time) - 1;
		queue_len = rte_align32pow2((1250L * task->random_delay_us) / 84 / (DELAY_MAX_MASK + 1));
	} else if (task->delay_us == 0) {
		tbase->handle_bulk = handle_bulk_random_drop;
		task->delay_time = 0;
	} else {
		tbase->handle_bulk = handle_bulk_impair;
		task->delay_time = usec_to_tsc(task->delay_us);
		queue_len = rte_align32pow2(1250 * task->delay_us / 84);
	}
	if (task->queue) {
		struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
		while (task->queue_tail != task->queue_head) {
			now = rte_rdtsc();
			uint16_t idx = 0;
			while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
				if (task->queue[task->queue_tail].tsc <= now) {
					out[idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
					new_mbufs[idx++] = task->queue[task->queue_tail].mbuf;
					task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
				}
				else {
					break;
				}
			}
			if (idx)
				task->base.tx_pkt(&task->base, new_mbufs, idx, out);
		}
		prox_free(task->queue);
		task->queue = NULL;
	}
	if (task->buffer) {
		struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
		while (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK)) {
			now = rte_rdtsc();
			uint16_t pkt_idx = 0;
			while ((pkt_idx < MAX_PKT_BURST) && (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK))) {
				struct queue *queue = &task->buffer[task->last_idx];
				while ((pkt_idx < MAX_PKT_BURST) && (queue->queue_tail != queue->queue_head)) {
					out[pkt_idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
					new_mbufs[pkt_idx++] = queue->queue_elem[queue->queue_tail].mbuf;
					queue->queue_tail = (queue->queue_tail + 1) & task->queue_mask;
				}
				task->last_idx = (task->last_idx + 1) & DELAY_MAX_MASK;
			}

			if (pkt_idx)
				task->base.tx_pkt(&task->base, new_mbufs, pkt_idx, out);
		}
		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			if (task->buffer[i].queue_elem)
				prox_free(task->buffer[i].queue_elem);
		}
		prox_free(task->buffer);
		task->buffer = NULL;
	}

	if (queue_len < MAX_PKT_BURST)
		queue_len= MAX_PKT_BURST;
	task->queue_mask = queue_len - 1;
	if (task->queue_mask < MAX_PKT_BURST - 1)
		task->queue_mask = MAX_PKT_BURST - 1;
	mem_size = (task->queue_mask + 1) * sizeof(task->queue[0]);

	if (task->delay_us) {
		task->queue_head = 0;
		task->queue_tail = 0;
		task->queue = prox_zmalloc(mem_size, task->socket_id);
		if (task->queue == NULL) {
			plog_err("Not enough memory to allocate queue\n");
			task->queue_mask = 0;
		}
	} else if (task->random_delay_us) {
		size_t size = (DELAY_MAX_MASK + 1) * sizeof(struct queue);
		plog_info("Allocating %zd bytes\n", size);
		task->buffer = prox_zmalloc(size, task->socket_id);
		PROX_PANIC(task->buffer == NULL, "Not enough memory to allocate buffer\n");
		plog_info("Allocating %d x %zd bytes\n", DELAY_MAX_MASK + 1, mem_size);

		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			task->buffer[i].queue_elem = prox_zmalloc(mem_size, task->socket_id);
			PROX_PANIC(task->buffer[i].queue_elem == NULL, "Not enough memory to allocate buffer elems\n");
		}
	}
	random_init_seed(&task->state);
}

static int handle_bulk_random_drop(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint8_t out[MAX_PKT_BURST];
	struct ether_hdr * hdr[MAX_PKT_BURST];
	int ret = 0;
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}
	if (task->flags & IMPAIR_SET_MAC) {
		for (uint16_t i = 0; i < n_pkts; ++i) {
			ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
			out[i] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
		}
	} else {
		for (uint16_t i = 0; i < n_pkts; ++i) {
			out[i] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
		}
	}
	ret = task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
	task_impair_update(tbase);
	return ret;
}

static int handle_bulk_impair(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST] = {0};
	uint16_t enqueue_failed;
	uint16_t i;
	int ret = 0;
	struct ether_hdr * hdr[MAX_PKT_BURST];
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}

	int nb_empty_slots = (task->queue_tail - task->queue_head + task->queue_mask) & task->queue_mask;
	if (likely(nb_empty_slots >= n_pkts)) {
		/* We know n_pkts fits, no need to check for every packet */
		for (i = 0; i < n_pkts; ++i) {
			if (task->flags & IMPAIR_SET_MAC)
				ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
			task->queue[task->queue_head].tsc = now + task->delay_time;
			task->queue[task->queue_head].mbuf = mbufs[i];
			task->queue_head = (task->queue_head + 1) & task->queue_mask;
		}
	} else {
		for (i = 0; i < n_pkts; ++i) {
			if (((task->queue_head + 1) & task->queue_mask) != task->queue_tail) {
				if (task->flags & IMPAIR_SET_MAC)
					ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
				task->queue[task->queue_head].tsc = now + task->delay_time;
				task->queue[task->queue_head].mbuf = mbufs[i];
				task->queue_head = (task->queue_head + 1) & task->queue_mask;
			}
			else {
				/* Rest does not fit, need to drop those packets. */
				enqueue_failed = i;
				for (;i < n_pkts; ++i) {
					out[i] = OUT_DISCARD;
				}
				ret+= task->base.tx_pkt(&task->base, mbufs + enqueue_failed,
					  	n_pkts - enqueue_failed, out + enqueue_failed);
				break;
			}
		}
	}

	struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
	uint16_t idx = 0;

	if (task->tresh != RAND_MAX) {
		while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
			if (task->queue[task->queue_tail].tsc <= now) {
				out[idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
				new_mbufs[idx] = task->queue[task->queue_tail].mbuf;
				PREFETCH0(new_mbufs[idx]);
				PREFETCH0(&new_mbufs[idx]->cacheline1);
				idx++;
				task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
			}
			else {
				break;
			}
		}
	} else {
		while (idx < MAX_PKT_BURST && task->queue_tail != task->queue_head) {
			if (task->queue[task->queue_tail].tsc <= now) {
				out[idx] = 0;
				new_mbufs[idx] = task->queue[task->queue_tail].mbuf;
				PREFETCH0(new_mbufs[idx]);
				PREFETCH0(&new_mbufs[idx]->cacheline1);
				idx++;
				task->queue_tail = (task->queue_tail + 1) & task->queue_mask;
			}
			else {
				break;
			}
		}
	}

	if (idx)
		ret+= task->base.tx_pkt(&task->base, new_mbufs, idx, out);
	task_impair_update(tbase);
	return ret;
}

/*
 * We want to avoid using division and mod for performance reasons.
 * We also want to support up to one second delay, and express it in tsc
 * So the delay in tsc needs up to 32 bits (supposing procesor freq is less than 4GHz).
 * If the max_delay is smaller, we make sure we use less bits.
 * Note that we lose the MSB of the xorshift - 64 bits could hold
 * two or three delays in TSC - but would probably make implementation more complex
 * and not huge gain expected. Maybe room for optimization.
 * Using this implementation, we might have to run random more than once for a delay
 * but in average this should occur less than 50% of the time.
*/

static inline uint64_t random_delay(struct random *state, uint64_t max_delay, uint64_t max_delay_mask)
{
	uint64_t val;
	while(1) {
		val = random_next(state);
		if ((val & max_delay_mask) < max_delay)
			return (val & max_delay_mask);
	}
}

static int handle_bulk_impair_random(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint64_t now = rte_rdtsc();
	uint8_t out[MAX_PKT_BURST];
	uint16_t enqueue_failed;
	uint16_t i;
	int ret = 0;
	uint64_t packet_time, idx;
	uint64_t now_idx = (now >> DELAY_ACCURACY) & DELAY_MAX_MASK;
	struct ether_hdr * hdr[MAX_PKT_BURST];
	for (uint16_t i = 0; i < n_pkts; ++i) {
		PREFETCH0(mbufs[i]);
	}
	for (uint16_t i = 0; i < n_pkts; ++i) {
		hdr[i] = rte_pktmbuf_mtod(mbufs[i], struct ether_hdr *);
		PREFETCH0(hdr[i]);
	}

	for (i = 0; i < n_pkts; ++i) {
		packet_time = now + random_delay(&task->state, task->delay_time, task->delay_time_mask);
		idx = (packet_time >> DELAY_ACCURACY) & DELAY_MAX_MASK;
		while (idx != ((now_idx - 1) & DELAY_MAX_MASK)) {
			struct queue *queue = &task->buffer[idx];
			if (((queue->queue_head + 1) & task->queue_mask) != queue->queue_tail) {
				if (task->flags & IMPAIR_SET_MAC)
					ether_addr_copy((struct ether_addr *)&task->src_mac[0], &hdr[i]->s_addr);
				queue->queue_elem[queue->queue_head].mbuf = mbufs[i];
				queue->queue_head = (queue->queue_head + 1) & task->queue_mask;
				break;
			} else {
				idx = (idx + 1) & DELAY_MAX_MASK;
			}
		}
		if (idx == ((now_idx - 1) & DELAY_MAX_MASK)) {
			/* Rest does not fit, need to drop packet. Note that further packets might fit as might want to be sent earlier */
			out[0] = OUT_DISCARD;
			ret+= task->base.tx_pkt(&task->base, mbufs + i, 1, out);
			plog_warn("Unexpectdly dropping packets\n");
		}
	}

	struct rte_mbuf *new_mbufs[MAX_PKT_BURST];
	uint16_t pkt_idx = 0;

	while ((pkt_idx < MAX_PKT_BURST) && (task->last_idx != ((now_idx - 1) & DELAY_MAX_MASK))) {
		struct queue *queue = &task->buffer[task->last_idx];
		while ((pkt_idx < MAX_PKT_BURST) && (queue->queue_tail != queue->queue_head)) {
			out[pkt_idx] = rand_r(&task->seed) <= task->tresh? 0 : OUT_DISCARD;
			new_mbufs[pkt_idx] = queue->queue_elem[queue->queue_tail].mbuf;
			PREFETCH0(new_mbufs[pkt_idx]);
			PREFETCH0(&new_mbufs[pkt_idx]->cacheline1);
			pkt_idx++;
			queue->queue_tail = (queue->queue_tail + 1) & task->queue_mask;
		}
		task->last_idx = (task->last_idx + 1) & DELAY_MAX_MASK;
	}

	if (pkt_idx)
		ret+= task->base.tx_pkt(&task->base, new_mbufs, pkt_idx, out);
	task_impair_update(tbase);
	return ret;
}

static void init_task(struct task_base *tbase, struct task_args *targ)
{
	struct task_impair *task = (struct task_impair *)tbase;
	uint32_t queue_len = 0;
	size_t mem_size;
	unsigned socket_id;
	uint64_t delay_us = 0;

	task->seed = rte_rdtsc();
	if (targ->probability == 0)
		targ->probability = 1000000;

	task->tresh = ((uint64_t) RAND_MAX) * targ->probability / 1000000;

	if ((targ->delay_us == 0) && (targ->random_delay_us == 0)) {
		tbase->handle_bulk = handle_bulk_random_drop;
		task->delay_time = 0;
	} else if (targ->random_delay_us) {
		tbase->handle_bulk = handle_bulk_impair_random;
		task->delay_time = usec_to_tsc(targ->random_delay_us);
		task->delay_time_mask = rte_align32pow2(task->delay_time) - 1;
		delay_us = targ->random_delay_us;
		queue_len = rte_align32pow2((1250L * delay_us) / 84 / (DELAY_MAX_MASK + 1));
	} else {
		task->delay_time = usec_to_tsc(targ->delay_us);
		delay_us = targ->delay_us;
		queue_len = rte_align32pow2(1250 * delay_us / 84);
	}
	/* Assume Line-rate is maximum transmit speed.
   	   TODO: take link speed if tx is port.
	*/
	if (queue_len < MAX_PKT_BURST)
		queue_len= MAX_PKT_BURST;
	task->queue_mask = queue_len - 1;
	if (task->queue_mask < MAX_PKT_BURST - 1)
		task->queue_mask = MAX_PKT_BURST - 1;

	mem_size = (task->queue_mask + 1) * sizeof(task->queue[0]);
	socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	task->socket_id = rte_lcore_to_socket_id(targ->lconf->id);

	if (targ->delay_us) {
		task->queue = prox_zmalloc(mem_size, socket_id);
		PROX_PANIC(task->queue == NULL, "Not enough memory to allocate queue\n");
		task->queue_head = 0;
		task->queue_tail = 0;
	} else if (targ->random_delay_us) {
		size_t size = (DELAY_MAX_MASK + 1) * sizeof(struct queue);
		plog_info("Allocating %zd bytes\n", size);
		task->buffer = prox_zmalloc(size, socket_id);
		PROX_PANIC(task->buffer == NULL, "Not enough memory to allocate buffer\n");
		plog_info("Allocating %d x %zd bytes\n", DELAY_MAX_MASK + 1, mem_size);

		for (int i = 0; i < DELAY_MAX_MASK + 1; i++) {
			task->buffer[i].queue_elem = prox_zmalloc(mem_size, socket_id);
			PROX_PANIC(task->buffer[i].queue_elem == NULL, "Not enough memory to allocate buffer elems\n");
		}
	}
	random_init_seed(&task->state);
	if (targ->nb_txports) {
		memcpy(&task->src_mac[0], &prox_port_cfg[tbase->tx_params_hw.tx_port_queue[0].port].eth_addr, sizeof(struct ether_addr));
		task->flags = IMPAIR_SET_MAC;
	} else {
		task->flags = 0;
	}
}

static struct task_init tinit = {
	.mode_str = "impair",
	.init = init_task,
	.handle = handle_bulk_impair,
	.flag_features = TASK_FEATURE_TXQ_FLAGS_NOOFFLOADS | TASK_FEATURE_ZERO_RX,
	.size = sizeof(struct task_impair)
};

__attribute__((constructor)) static void ctor(void)
{
	reg_task(&tinit);
}