diff options
Diffstat (limited to 'kernel/arch/blackfin/mm')
-rw-r--r-- | kernel/arch/blackfin/mm/Makefile | 5 | ||||
-rw-r--r-- | kernel/arch/blackfin/mm/blackfin_sram.h | 14 | ||||
-rw-r--r-- | kernel/arch/blackfin/mm/init.c | 122 | ||||
-rw-r--r-- | kernel/arch/blackfin/mm/isram-driver.c | 410 | ||||
-rw-r--r-- | kernel/arch/blackfin/mm/maccess.c | 97 | ||||
-rw-r--r-- | kernel/arch/blackfin/mm/sram-alloc.c | 897 |
6 files changed, 1545 insertions, 0 deletions
diff --git a/kernel/arch/blackfin/mm/Makefile b/kernel/arch/blackfin/mm/Makefile new file mode 100644 index 000000000..4c011b1f6 --- /dev/null +++ b/kernel/arch/blackfin/mm/Makefile @@ -0,0 +1,5 @@ +# +# arch/blackfin/mm/Makefile +# + +obj-y := sram-alloc.o isram-driver.o init.o maccess.o diff --git a/kernel/arch/blackfin/mm/blackfin_sram.h b/kernel/arch/blackfin/mm/blackfin_sram.h new file mode 100644 index 000000000..fb0b1599c --- /dev/null +++ b/kernel/arch/blackfin/mm/blackfin_sram.h @@ -0,0 +1,14 @@ +/* + * Local prototypes meant for internal use only + * + * Copyright 2006-2009 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +#ifndef __BLACKFIN_SRAM_H__ +#define __BLACKFIN_SRAM_H__ + +extern void *l1sram_alloc(size_t); + +#endif diff --git a/kernel/arch/blackfin/mm/init.c b/kernel/arch/blackfin/mm/init.c new file mode 100644 index 000000000..166842de3 --- /dev/null +++ b/kernel/arch/blackfin/mm/init.c @@ -0,0 +1,122 @@ +/* + * Copyright 2004-2009 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +#include <linux/gfp.h> +#include <linux/swap.h> +#include <linux/bootmem.h> +#include <linux/uaccess.h> +#include <linux/export.h> +#include <asm/bfin-global.h> +#include <asm/pda.h> +#include <asm/cplbinit.h> +#include <asm/early_printk.h> +#include "blackfin_sram.h" + +/* + * ZERO_PAGE is a special page that is used for zero-initialized data and COW. + * Let the bss do its zero-init magic so we don't have to do it ourselves. + */ +char empty_zero_page[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); +EXPORT_SYMBOL(empty_zero_page); + +#ifndef CONFIG_EXCEPTION_L1_SCRATCH +#if defined CONFIG_SYSCALL_TAB_L1 +__attribute__((l1_data)) +#endif +static unsigned long exception_stack[NR_CPUS][1024]; +#endif + +struct blackfin_pda cpu_pda[NR_CPUS]; +EXPORT_SYMBOL(cpu_pda); + +/* + * paging_init() continues the virtual memory environment setup which + * was begun by the code in arch/head.S. + * The parameters are pointers to where to stick the starting and ending + * addresses of available kernel virtual memory. + */ +void __init paging_init(void) +{ + /* + * make sure start_mem is page aligned, otherwise bootmem and + * page_alloc get different views of the world + */ + unsigned long end_mem = memory_end & PAGE_MASK; + + unsigned long zones_size[MAX_NR_ZONES] = { + [0] = 0, + [ZONE_DMA] = (end_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> PAGE_SHIFT, + [ZONE_NORMAL] = 0, +#ifdef CONFIG_HIGHMEM + [ZONE_HIGHMEM] = 0, +#endif + }; + + /* Set up SFC/DFC registers (user data space) */ + set_fs(KERNEL_DS); + + pr_debug("free_area_init -> start_mem is %#lx virtual_end is %#lx\n", + PAGE_ALIGN(memory_start), end_mem); + free_area_init_node(0, zones_size, + CONFIG_PHY_RAM_BASE_ADDRESS >> PAGE_SHIFT, NULL); +} + +asmlinkage void __init init_pda(void) +{ + unsigned int cpu = raw_smp_processor_id(); + + early_shadow_stamp(); + + /* Initialize the PDA fields holding references to other parts + of the memory. The content of such memory is still + undefined at the time of the call, we are only setting up + valid pointers to it. */ + memset(&cpu_pda[cpu], 0, sizeof(cpu_pda[cpu])); + +#ifdef CONFIG_EXCEPTION_L1_SCRATCH + cpu_pda[cpu].ex_stack = (unsigned long *)(L1_SCRATCH_START + \ + L1_SCRATCH_LENGTH); +#else + cpu_pda[cpu].ex_stack = exception_stack[cpu + 1]; +#endif + +#ifdef CONFIG_SMP + cpu_pda[cpu].imask = 0x1f; +#endif +} + +void __init mem_init(void) +{ + char buf[64]; + + high_memory = (void *)(memory_end & PAGE_MASK); + max_mapnr = MAP_NR(high_memory); + printk(KERN_DEBUG "Kernel managed physical pages: %lu\n", max_mapnr); + + /* This will put all low memory onto the freelists. */ + free_all_bootmem(); + + snprintf(buf, sizeof(buf) - 1, "%uK DMA", DMA_UNCACHED_REGION >> 10); + mem_init_print_info(buf); +} + +#ifdef CONFIG_BLK_DEV_INITRD +void __init free_initrd_mem(unsigned long start, unsigned long end) +{ +#ifndef CONFIG_MPU + free_reserved_area((void *)start, (void *)end, -1, "initrd"); +#endif +} +#endif + +void __init_refok free_initmem(void) +{ +#if defined CONFIG_RAMKERNEL && !defined CONFIG_MPU + free_initmem_default(-1); + if (memory_start == (unsigned long)(&__init_end)) + memory_start = (unsigned long)(&__init_begin); +#endif +} diff --git a/kernel/arch/blackfin/mm/isram-driver.c b/kernel/arch/blackfin/mm/isram-driver.c new file mode 100644 index 000000000..7e2e674ed --- /dev/null +++ b/kernel/arch/blackfin/mm/isram-driver.c @@ -0,0 +1,410 @@ +/* + * Instruction SRAM accessor functions for the Blackfin + * + * Copyright 2008 Analog Devices Inc. + * + * Licensed under the GPL-2 or later + */ + +#define pr_fmt(fmt) "isram: " fmt + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/sched.h> + +#include <asm/blackfin.h> +#include <asm/dma.h> + +/* + * IMPORTANT WARNING ABOUT THESE FUNCTIONS + * + * The emulator will not function correctly if a write command is left in + * ITEST_COMMAND or DTEST_COMMAND AND access to cache memory is needed by + * the emulator. To avoid such problems, ensure that both ITEST_COMMAND + * and DTEST_COMMAND are zero when exiting these functions. + */ + + +/* + * On the Blackfin, L1 instruction sram (which operates at core speeds) can not + * be accessed by a normal core load, so we need to go through a few hoops to + * read/write it. + * To try to make it easier - we export a memcpy interface, where either src or + * dest can be in this special L1 memory area. + * The low level read/write functions should not be exposed to the rest of the + * kernel, since they operate on 64-bit data, and need specific address alignment + */ + +static DEFINE_SPINLOCK(dtest_lock); + +/* Takes a void pointer */ +#define IADDR2DTEST(x) \ + ({ unsigned long __addr = (unsigned long)(x); \ + ((__addr & (1 << 11)) << (26 - 11)) | /* addr bit 11 (Way0/Way1) */ \ + (1 << 24) | /* instruction access = 1 */ \ + ((__addr & (1 << 15)) << (23 - 15)) | /* addr bit 15 (Data Bank) */ \ + ((__addr & (3 << 12)) << (16 - 12)) | /* addr bits 13:12 (Subbank) */ \ + (__addr & 0x47F8) | /* addr bits 14 & 10:3 */ \ + (1 << 2); /* data array = 1 */ \ + }) + +/* Takes a pointer, and returns the offset (in bits) which things should be shifted */ +#define ADDR2OFFSET(x) ((((unsigned long)(x)) & 0x7) * 8) + +/* Takes a pointer, determines if it is the last byte in the isram 64-bit data type */ +#define ADDR2LAST(x) ((((unsigned long)x) & 0x7) == 0x7) + +static void isram_write(const void *addr, uint64_t data) +{ + uint32_t cmd; + unsigned long flags; + + if (unlikely(addr >= (void *)(L1_CODE_START + L1_CODE_LENGTH))) + return; + + cmd = IADDR2DTEST(addr) | 2; /* write */ + + /* + * Writes to DTEST_DATA[0:1] need to be atomic with write to DTEST_COMMAND + * While in exception context - atomicity is guaranteed or double fault + */ + spin_lock_irqsave(&dtest_lock, flags); + + bfin_write_DTEST_DATA0(data & 0xFFFFFFFF); + bfin_write_DTEST_DATA1(data >> 32); + + /* use the builtin, since interrupts are already turned off */ + __builtin_bfin_csync(); + bfin_write_DTEST_COMMAND(cmd); + __builtin_bfin_csync(); + + bfin_write_DTEST_COMMAND(0); + __builtin_bfin_csync(); + + spin_unlock_irqrestore(&dtest_lock, flags); +} + +static uint64_t isram_read(const void *addr) +{ + uint32_t cmd; + unsigned long flags; + uint64_t ret; + + if (unlikely(addr > (void *)(L1_CODE_START + L1_CODE_LENGTH))) + return 0; + + cmd = IADDR2DTEST(addr) | 0; /* read */ + + /* + * Reads of DTEST_DATA[0:1] need to be atomic with write to DTEST_COMMAND + * While in exception context - atomicity is guaranteed or double fault + */ + spin_lock_irqsave(&dtest_lock, flags); + /* use the builtin, since interrupts are already turned off */ + __builtin_bfin_csync(); + bfin_write_DTEST_COMMAND(cmd); + __builtin_bfin_csync(); + ret = bfin_read_DTEST_DATA0() | ((uint64_t)bfin_read_DTEST_DATA1() << 32); + + bfin_write_DTEST_COMMAND(0); + __builtin_bfin_csync(); + spin_unlock_irqrestore(&dtest_lock, flags); + + return ret; +} + +static bool isram_check_addr(const void *addr, size_t n) +{ + if ((addr >= (void *)L1_CODE_START) && + (addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))) { + if (unlikely((addr + n) > (void *)(L1_CODE_START + L1_CODE_LENGTH))) { + show_stack(NULL, NULL); + pr_err("copy involving %p length (%zu) too long\n", addr, n); + } + return true; + } + return false; +} + +/* + * The isram_memcpy() function copies n bytes from memory area src to memory area dest. + * The isram_memcpy() function returns a pointer to dest. + * Either dest or src can be in L1 instruction sram. + */ +void *isram_memcpy(void *dest, const void *src, size_t n) +{ + uint64_t data_in = 0, data_out = 0; + size_t count; + bool dest_in_l1, src_in_l1, need_data, put_data; + unsigned char byte, *src_byte, *dest_byte; + + src_byte = (unsigned char *)src; + dest_byte = (unsigned char *)dest; + + dest_in_l1 = isram_check_addr(dest, n); + src_in_l1 = isram_check_addr(src, n); + + need_data = true; + put_data = true; + for (count = 0; count < n; count++) { + if (src_in_l1) { + if (need_data) { + data_in = isram_read(src + count); + need_data = false; + } + + if (ADDR2LAST(src + count)) + need_data = true; + + byte = (unsigned char)((data_in >> ADDR2OFFSET(src + count)) & 0xff); + + } else { + /* src is in L2 or L3 - so just dereference*/ + byte = src_byte[count]; + } + + if (dest_in_l1) { + if (put_data) { + data_out = isram_read(dest + count); + put_data = false; + } + + data_out &= ~((uint64_t)0xff << ADDR2OFFSET(dest + count)); + data_out |= ((uint64_t)byte << ADDR2OFFSET(dest + count)); + + if (ADDR2LAST(dest + count)) { + put_data = true; + isram_write(dest + count, data_out); + } + } else { + /* dest in L2 or L3 - so just dereference */ + dest_byte[count] = byte; + } + } + + /* make sure we dump the last byte if necessary */ + if (dest_in_l1 && !put_data) + isram_write(dest + count, data_out); + + return dest; +} +EXPORT_SYMBOL(isram_memcpy); + +#ifdef CONFIG_BFIN_ISRAM_SELF_TEST + +static int test_len = 0x20000; + +static __init void hex_dump(unsigned char *buf, int len) +{ + while (len--) + pr_cont("%02x", *buf++); +} + +static __init int isram_read_test(char *sdram, void *l1inst) +{ + int i, ret = 0; + uint64_t data1, data2; + + pr_info("INFO: running isram_read tests\n"); + + /* setup some different data to play with */ + for (i = 0; i < test_len; ++i) + sdram[i] = i % 255; + dma_memcpy(l1inst, sdram, test_len); + + /* make sure we can read the L1 inst */ + for (i = 0; i < test_len; i += sizeof(uint64_t)) { + data1 = isram_read(l1inst + i); + memcpy(&data2, sdram + i, sizeof(data2)); + if (data1 != data2) { + pr_err("FAIL: isram_read(%p) returned %#llx but wanted %#llx\n", + l1inst + i, data1, data2); + ++ret; + } + } + + return ret; +} + +static __init int isram_write_test(char *sdram, void *l1inst) +{ + int i, ret = 0; + uint64_t data1, data2; + + pr_info("INFO: running isram_write tests\n"); + + /* setup some different data to play with */ + memset(sdram, 0, test_len * 2); + dma_memcpy(l1inst, sdram, test_len); + for (i = 0; i < test_len; ++i) + sdram[i] = i % 255; + + /* make sure we can write the L1 inst */ + for (i = 0; i < test_len; i += sizeof(uint64_t)) { + memcpy(&data1, sdram + i, sizeof(data1)); + isram_write(l1inst + i, data1); + data2 = isram_read(l1inst + i); + if (data1 != data2) { + pr_err("FAIL: isram_write(%p, %#llx) != %#llx\n", + l1inst + i, data1, data2); + ++ret; + } + } + + dma_memcpy(sdram + test_len, l1inst, test_len); + if (memcmp(sdram, sdram + test_len, test_len)) { + pr_err("FAIL: isram_write() did not work properly\n"); + ++ret; + } + + return ret; +} + +static __init int +_isram_memcpy_test(char pattern, void *sdram, void *l1inst, const char *smemcpy, + void *(*fmemcpy)(void *, const void *, size_t)) +{ + memset(sdram, pattern, test_len); + fmemcpy(l1inst, sdram, test_len); + fmemcpy(sdram + test_len, l1inst, test_len); + if (memcmp(sdram, sdram + test_len, test_len)) { + pr_err("FAIL: %s(%p <=> %p, %#x) failed (data is %#x)\n", + smemcpy, l1inst, sdram, test_len, pattern); + return 1; + } + return 0; +} +#define _isram_memcpy_test(a, b, c, d) _isram_memcpy_test(a, b, c, #d, d) + +static __init int isram_memcpy_test(char *sdram, void *l1inst) +{ + int i, j, thisret, ret = 0; + + /* check broad isram_memcpy() */ + pr_info("INFO: running broad isram_memcpy tests\n"); + for (i = 0xf; i >= 0; --i) + ret += _isram_memcpy_test(i, sdram, l1inst, isram_memcpy); + + /* check read of small, unaligned, and hardware 64bit limits */ + pr_info("INFO: running isram_memcpy (read) tests\n"); + + /* setup some different data to play with */ + for (i = 0; i < test_len; ++i) + sdram[i] = i % 255; + dma_memcpy(l1inst, sdram, test_len); + + thisret = 0; + for (i = 0; i < test_len - 32; ++i) { + unsigned char cmp[32]; + for (j = 1; j <= 32; ++j) { + memset(cmp, 0, sizeof(cmp)); + isram_memcpy(cmp, l1inst + i, j); + if (memcmp(cmp, sdram + i, j)) { + pr_err("FAIL: %p:", l1inst + 1); + hex_dump(cmp, j); + pr_cont(" SDRAM:"); + hex_dump(sdram + i, j); + pr_cont("\n"); + if (++thisret > 20) { + pr_err("FAIL: skipping remaining series\n"); + i = test_len; + break; + } + } + } + } + ret += thisret; + + /* check write of small, unaligned, and hardware 64bit limits */ + pr_info("INFO: running isram_memcpy (write) tests\n"); + + memset(sdram + test_len, 0, test_len); + dma_memcpy(l1inst, sdram + test_len, test_len); + + thisret = 0; + for (i = 0; i < test_len - 32; ++i) { + unsigned char cmp[32]; + for (j = 1; j <= 32; ++j) { + isram_memcpy(l1inst + i, sdram + i, j); + dma_memcpy(cmp, l1inst + i, j); + if (memcmp(cmp, sdram + i, j)) { + pr_err("FAIL: %p:", l1inst + i); + hex_dump(cmp, j); + pr_cont(" SDRAM:"); + hex_dump(sdram + i, j); + pr_cont("\n"); + if (++thisret > 20) { + pr_err("FAIL: skipping remaining series\n"); + i = test_len; + break; + } + } + } + } + ret += thisret; + + return ret; +} + +static __init int isram_test_init(void) +{ + int ret; + char *sdram; + void *l1inst; + + /* Try to test as much of L1SRAM as possible */ + while (test_len) { + test_len >>= 1; + l1inst = l1_inst_sram_alloc(test_len); + if (l1inst) + break; + } + if (!l1inst) { + pr_warning("SKIP: could not allocate L1 inst\n"); + return 0; + } + pr_info("INFO: testing %#x bytes (%p - %p)\n", + test_len, l1inst, l1inst + test_len); + + sdram = kmalloc(test_len * 2, GFP_KERNEL); + if (!sdram) { + sram_free(l1inst); + pr_warning("SKIP: could not allocate sdram\n"); + return 0; + } + + /* sanity check initial L1 inst state */ + ret = 1; + pr_info("INFO: running initial dma_memcpy checks %p\n", sdram); + if (_isram_memcpy_test(0xa, sdram, l1inst, dma_memcpy)) + goto abort; + if (_isram_memcpy_test(0x5, sdram, l1inst, dma_memcpy)) + goto abort; + + ret = 0; + ret += isram_read_test(sdram, l1inst); + ret += isram_write_test(sdram, l1inst); + ret += isram_memcpy_test(sdram, l1inst); + + abort: + sram_free(l1inst); + kfree(sdram); + + if (ret) + return -EIO; + + pr_info("PASS: all tests worked !\n"); + return 0; +} +late_initcall(isram_test_init); + +static __exit void isram_test_exit(void) +{ + /* stub to allow unloading */ +} +module_exit(isram_test_exit); + +#endif diff --git a/kernel/arch/blackfin/mm/maccess.c b/kernel/arch/blackfin/mm/maccess.c new file mode 100644 index 000000000..e2532114c --- /dev/null +++ b/kernel/arch/blackfin/mm/maccess.c @@ -0,0 +1,97 @@ +/* + * safe read and write memory routines callable while atomic + * + * Copyright 2005-2008 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +#include <linux/uaccess.h> +#include <asm/dma.h> + +static int validate_memory_access_address(unsigned long addr, int size) +{ + if (size < 0 || addr == 0) + return -EFAULT; + return bfin_mem_access_type(addr, size); +} + +long probe_kernel_read(void *dst, const void *src, size_t size) +{ + unsigned long lsrc = (unsigned long)src; + int mem_type; + + mem_type = validate_memory_access_address(lsrc, size); + if (mem_type < 0) + return mem_type; + + if (lsrc >= SYSMMR_BASE) { + if (size == 2 && lsrc % 2 == 0) { + u16 mmr = bfin_read16(src); + memcpy(dst, &mmr, sizeof(mmr)); + return 0; + } else if (size == 4 && lsrc % 4 == 0) { + u32 mmr = bfin_read32(src); + memcpy(dst, &mmr, sizeof(mmr)); + return 0; + } + } else { + switch (mem_type) { + case BFIN_MEM_ACCESS_CORE: + case BFIN_MEM_ACCESS_CORE_ONLY: + return __probe_kernel_read(dst, src, size); + /* XXX: should support IDMA here with SMP */ + case BFIN_MEM_ACCESS_DMA: + if (dma_memcpy(dst, src, size)) + return 0; + break; + case BFIN_MEM_ACCESS_ITEST: + if (isram_memcpy(dst, src, size)) + return 0; + break; + } + } + + return -EFAULT; +} + +long probe_kernel_write(void *dst, const void *src, size_t size) +{ + unsigned long ldst = (unsigned long)dst; + int mem_type; + + mem_type = validate_memory_access_address(ldst, size); + if (mem_type < 0) + return mem_type; + + if (ldst >= SYSMMR_BASE) { + if (size == 2 && ldst % 2 == 0) { + u16 mmr; + memcpy(&mmr, src, sizeof(mmr)); + bfin_write16(dst, mmr); + return 0; + } else if (size == 4 && ldst % 4 == 0) { + u32 mmr; + memcpy(&mmr, src, sizeof(mmr)); + bfin_write32(dst, mmr); + return 0; + } + } else { + switch (mem_type) { + case BFIN_MEM_ACCESS_CORE: + case BFIN_MEM_ACCESS_CORE_ONLY: + return __probe_kernel_write(dst, src, size); + /* XXX: should support IDMA here with SMP */ + case BFIN_MEM_ACCESS_DMA: + if (dma_memcpy(dst, src, size)) + return 0; + break; + case BFIN_MEM_ACCESS_ITEST: + if (isram_memcpy(dst, src, size)) + return 0; + break; + } + } + + return -EFAULT; +} diff --git a/kernel/arch/blackfin/mm/sram-alloc.c b/kernel/arch/blackfin/mm/sram-alloc.c new file mode 100644 index 000000000..1f3b3ef3e --- /dev/null +++ b/kernel/arch/blackfin/mm/sram-alloc.c @@ -0,0 +1,897 @@ +/* + * SRAM allocator for Blackfin on-chip memory + * + * Copyright 2004-2009 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/miscdevice.h> +#include <linux/ioport.h> +#include <linux/fcntl.h> +#include <linux/init.h> +#include <linux/poll.h> +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/spinlock.h> +#include <linux/rtc.h> +#include <linux/slab.h> +#include <asm/blackfin.h> +#include <asm/mem_map.h> +#include "blackfin_sram.h" + +/* the data structure for L1 scratchpad and DATA SRAM */ +struct sram_piece { + void *paddr; + int size; + pid_t pid; + struct sram_piece *next; +}; + +static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock); +static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head); +static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head); + +#if L1_DATA_A_LENGTH != 0 +static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head); +static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head); +#endif + +#if L1_DATA_B_LENGTH != 0 +static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head); +static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head); +#endif + +#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH +static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock); +#endif + +#if L1_CODE_LENGTH != 0 +static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock); +static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head); +static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head); +#endif + +#if L2_LENGTH != 0 +static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp; +static struct sram_piece free_l2_sram_head, used_l2_sram_head; +#endif + +static struct kmem_cache *sram_piece_cache; + +/* L1 Scratchpad SRAM initialization function */ +static void __init l1sram_init(void) +{ + unsigned int cpu; + unsigned long reserve; + +#ifdef CONFIG_SMP + reserve = 0; +#else + reserve = sizeof(struct l1_scratch_task_info); +#endif + + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { + per_cpu(free_l1_ssram_head, cpu).next = + kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); + if (!per_cpu(free_l1_ssram_head, cpu).next) { + printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n"); + return; + } + + per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve; + per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve; + per_cpu(free_l1_ssram_head, cpu).next->pid = 0; + per_cpu(free_l1_ssram_head, cpu).next->next = NULL; + + per_cpu(used_l1_ssram_head, cpu).next = NULL; + + /* mutex initialize */ + spin_lock_init(&per_cpu(l1sram_lock, cpu)); + printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n", + L1_SCRATCH_LENGTH >> 10); + } +} + +static void __init l1_data_sram_init(void) +{ +#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0 + unsigned int cpu; +#endif +#if L1_DATA_A_LENGTH != 0 + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { + per_cpu(free_l1_data_A_sram_head, cpu).next = + kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); + if (!per_cpu(free_l1_data_A_sram_head, cpu).next) { + printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n"); + return; + } + + per_cpu(free_l1_data_A_sram_head, cpu).next->paddr = + (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1); + per_cpu(free_l1_data_A_sram_head, cpu).next->size = + L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1); + per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0; + per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL; + + per_cpu(used_l1_data_A_sram_head, cpu).next = NULL; + + printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n", + L1_DATA_A_LENGTH >> 10, + per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10); + } +#endif +#if L1_DATA_B_LENGTH != 0 + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { + per_cpu(free_l1_data_B_sram_head, cpu).next = + kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); + if (!per_cpu(free_l1_data_B_sram_head, cpu).next) { + printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n"); + return; + } + + per_cpu(free_l1_data_B_sram_head, cpu).next->paddr = + (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1); + per_cpu(free_l1_data_B_sram_head, cpu).next->size = + L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1); + per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0; + per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL; + + per_cpu(used_l1_data_B_sram_head, cpu).next = NULL; + + printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n", + L1_DATA_B_LENGTH >> 10, + per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10); + /* mutex initialize */ + } +#endif + +#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0 + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) + spin_lock_init(&per_cpu(l1_data_sram_lock, cpu)); +#endif +} + +static void __init l1_inst_sram_init(void) +{ +#if L1_CODE_LENGTH != 0 + unsigned int cpu; + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { + per_cpu(free_l1_inst_sram_head, cpu).next = + kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); + if (!per_cpu(free_l1_inst_sram_head, cpu).next) { + printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n"); + return; + } + + per_cpu(free_l1_inst_sram_head, cpu).next->paddr = + (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1); + per_cpu(free_l1_inst_sram_head, cpu).next->size = + L1_CODE_LENGTH - (_etext_l1 - _stext_l1); + per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0; + per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL; + + per_cpu(used_l1_inst_sram_head, cpu).next = NULL; + + printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n", + L1_CODE_LENGTH >> 10, + per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10); + + /* mutex initialize */ + spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu)); + } +#endif +} + +#ifdef __ADSPBF60x__ +static irqreturn_t l2_ecc_err(int irq, void *dev_id) +{ + int status; + + printk(KERN_ERR "L2 ecc error happened\n"); + status = bfin_read32(L2CTL0_STAT); + if (status & 0x1) + printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n", + bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0)); + if (status & 0x2) + printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n", + bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1)); + + status = status >> 8; + if (status) + printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n", + status, bfin_read32(L2CTL0_ERRADDR0 + status)); + + panic("L2 Ecc error"); + return IRQ_HANDLED; +} +#endif + +static void __init l2_sram_init(void) +{ +#if L2_LENGTH != 0 + +#ifdef __ADSPBF60x__ + int ret; + + ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err", + NULL); + if (unlikely(ret < 0)) { + printk(KERN_INFO "Fail to request l2 ecc error interrupt"); + return; + } +#endif + + free_l2_sram_head.next = + kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); + if (!free_l2_sram_head.next) { + printk(KERN_INFO "Fail to initialize L2 SRAM.\n"); + return; + } + + free_l2_sram_head.next->paddr = + (void *)L2_START + (_ebss_l2 - _stext_l2); + free_l2_sram_head.next->size = + L2_LENGTH - (_ebss_l2 - _stext_l2); + free_l2_sram_head.next->pid = 0; + free_l2_sram_head.next->next = NULL; + + used_l2_sram_head.next = NULL; + + printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n", + L2_LENGTH >> 10, + free_l2_sram_head.next->size >> 10); + + /* mutex initialize */ + spin_lock_init(&l2_sram_lock); +#endif +} + +static int __init bfin_sram_init(void) +{ + sram_piece_cache = kmem_cache_create("sram_piece_cache", + sizeof(struct sram_piece), + 0, SLAB_PANIC, NULL); + + l1sram_init(); + l1_data_sram_init(); + l1_inst_sram_init(); + l2_sram_init(); + + return 0; +} +pure_initcall(bfin_sram_init); + +/* SRAM allocate function */ +static void *_sram_alloc(size_t size, struct sram_piece *pfree_head, + struct sram_piece *pused_head) +{ + struct sram_piece *pslot, *plast, *pavail; + + if (size <= 0 || !pfree_head || !pused_head) + return NULL; + + /* Align the size */ + size = (size + 3) & ~3; + + pslot = pfree_head->next; + plast = pfree_head; + + /* search an available piece slot */ + while (pslot != NULL && size > pslot->size) { + plast = pslot; + pslot = pslot->next; + } + + if (!pslot) + return NULL; + + if (pslot->size == size) { + plast->next = pslot->next; + pavail = pslot; + } else { + /* use atomic so our L1 allocator can be used atomically */ + pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC); + + if (!pavail) + return NULL; + + pavail->paddr = pslot->paddr; + pavail->size = size; + pslot->paddr += size; + pslot->size -= size; + } + + pavail->pid = current->pid; + + pslot = pused_head->next; + plast = pused_head; + + /* insert new piece into used piece list !!! */ + while (pslot != NULL && pavail->paddr < pslot->paddr) { + plast = pslot; + pslot = pslot->next; + } + + pavail->next = pslot; + plast->next = pavail; + + return pavail->paddr; +} + +/* Allocate the largest available block. */ +static void *_sram_alloc_max(struct sram_piece *pfree_head, + struct sram_piece *pused_head, + unsigned long *psize) +{ + struct sram_piece *pslot, *pmax; + + if (!pfree_head || !pused_head) + return NULL; + + pmax = pslot = pfree_head->next; + + /* search an available piece slot */ + while (pslot != NULL) { + if (pslot->size > pmax->size) + pmax = pslot; + pslot = pslot->next; + } + + if (!pmax) + return NULL; + + *psize = pmax->size; + + return _sram_alloc(*psize, pfree_head, pused_head); +} + +/* SRAM free function */ +static int _sram_free(const void *addr, + struct sram_piece *pfree_head, + struct sram_piece *pused_head) +{ + struct sram_piece *pslot, *plast, *pavail; + + if (!pfree_head || !pused_head) + return -1; + + /* search the relevant memory slot */ + pslot = pused_head->next; + plast = pused_head; + + /* search an available piece slot */ + while (pslot != NULL && pslot->paddr != addr) { + plast = pslot; + pslot = pslot->next; + } + + if (!pslot) + return -1; + + plast->next = pslot->next; + pavail = pslot; + pavail->pid = 0; + + /* insert free pieces back to the free list */ + pslot = pfree_head->next; + plast = pfree_head; + + while (pslot != NULL && addr > pslot->paddr) { + plast = pslot; + pslot = pslot->next; + } + + if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) { + plast->size += pavail->size; + kmem_cache_free(sram_piece_cache, pavail); + } else { + pavail->next = plast->next; + plast->next = pavail; + plast = pavail; + } + + if (pslot && plast->paddr + plast->size == pslot->paddr) { + plast->size += pslot->size; + plast->next = pslot->next; + kmem_cache_free(sram_piece_cache, pslot); + } + + return 0; +} + +int sram_free(const void *addr) +{ + +#if L1_CODE_LENGTH != 0 + if (addr >= (void *)get_l1_code_start() + && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH)) + return l1_inst_sram_free(addr); + else +#endif +#if L1_DATA_A_LENGTH != 0 + if (addr >= (void *)get_l1_data_a_start() + && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH)) + return l1_data_A_sram_free(addr); + else +#endif +#if L1_DATA_B_LENGTH != 0 + if (addr >= (void *)get_l1_data_b_start() + && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH)) + return l1_data_B_sram_free(addr); + else +#endif +#if L2_LENGTH != 0 + if (addr >= (void *)L2_START + && addr < (void *)(L2_START + L2_LENGTH)) + return l2_sram_free(addr); + else +#endif + return -1; +} +EXPORT_SYMBOL(sram_free); + +void *l1_data_A_sram_alloc(size_t size) +{ +#if L1_DATA_A_LENGTH != 0 + unsigned long flags; + void *addr; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); + + addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu), + &per_cpu(used_l1_data_A_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); + + pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n", + (long unsigned int)addr, size); + + return addr; +#else + return NULL; +#endif +} +EXPORT_SYMBOL(l1_data_A_sram_alloc); + +int l1_data_A_sram_free(const void *addr) +{ +#if L1_DATA_A_LENGTH != 0 + unsigned long flags; + int ret; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); + + ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu), + &per_cpu(used_l1_data_A_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); + + return ret; +#else + return -1; +#endif +} +EXPORT_SYMBOL(l1_data_A_sram_free); + +void *l1_data_B_sram_alloc(size_t size) +{ +#if L1_DATA_B_LENGTH != 0 + unsigned long flags; + void *addr; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); + + addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu), + &per_cpu(used_l1_data_B_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); + + pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n", + (long unsigned int)addr, size); + + return addr; +#else + return NULL; +#endif +} +EXPORT_SYMBOL(l1_data_B_sram_alloc); + +int l1_data_B_sram_free(const void *addr) +{ +#if L1_DATA_B_LENGTH != 0 + unsigned long flags; + int ret; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); + + ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu), + &per_cpu(used_l1_data_B_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); + + return ret; +#else + return -1; +#endif +} +EXPORT_SYMBOL(l1_data_B_sram_free); + +void *l1_data_sram_alloc(size_t size) +{ + void *addr = l1_data_A_sram_alloc(size); + + if (!addr) + addr = l1_data_B_sram_alloc(size); + + return addr; +} +EXPORT_SYMBOL(l1_data_sram_alloc); + +void *l1_data_sram_zalloc(size_t size) +{ + void *addr = l1_data_sram_alloc(size); + + if (addr) + memset(addr, 0x00, size); + + return addr; +} +EXPORT_SYMBOL(l1_data_sram_zalloc); + +int l1_data_sram_free(const void *addr) +{ + int ret; + ret = l1_data_A_sram_free(addr); + if (ret == -1) + ret = l1_data_B_sram_free(addr); + return ret; +} +EXPORT_SYMBOL(l1_data_sram_free); + +void *l1_inst_sram_alloc(size_t size) +{ +#if L1_CODE_LENGTH != 0 + unsigned long flags; + void *addr; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags); + + addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu), + &per_cpu(used_l1_inst_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags); + + pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n", + (long unsigned int)addr, size); + + return addr; +#else + return NULL; +#endif +} +EXPORT_SYMBOL(l1_inst_sram_alloc); + +int l1_inst_sram_free(const void *addr) +{ +#if L1_CODE_LENGTH != 0 + unsigned long flags; + int ret; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags); + + ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu), + &per_cpu(used_l1_inst_sram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags); + + return ret; +#else + return -1; +#endif +} +EXPORT_SYMBOL(l1_inst_sram_free); + +/* L1 Scratchpad memory allocate function */ +void *l1sram_alloc(size_t size) +{ + unsigned long flags; + void *addr; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); + + addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu), + &per_cpu(used_l1_ssram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); + + return addr; +} + +/* L1 Scratchpad memory allocate function */ +void *l1sram_alloc_max(size_t *psize) +{ + unsigned long flags; + void *addr; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); + + addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu), + &per_cpu(used_l1_ssram_head, cpu), psize); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); + + return addr; +} + +/* L1 Scratchpad memory free function */ +int l1sram_free(const void *addr) +{ + unsigned long flags; + int ret; + unsigned int cpu; + + cpu = smp_processor_id(); + /* add mutex operation */ + spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); + + ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu), + &per_cpu(used_l1_ssram_head, cpu)); + + /* add mutex operation */ + spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); + + return ret; +} + +void *l2_sram_alloc(size_t size) +{ +#if L2_LENGTH != 0 + unsigned long flags; + void *addr; + + /* add mutex operation */ + spin_lock_irqsave(&l2_sram_lock, flags); + + addr = _sram_alloc(size, &free_l2_sram_head, + &used_l2_sram_head); + + /* add mutex operation */ + spin_unlock_irqrestore(&l2_sram_lock, flags); + + pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n", + (long unsigned int)addr, size); + + return addr; +#else + return NULL; +#endif +} +EXPORT_SYMBOL(l2_sram_alloc); + +void *l2_sram_zalloc(size_t size) +{ + void *addr = l2_sram_alloc(size); + + if (addr) + memset(addr, 0x00, size); + + return addr; +} +EXPORT_SYMBOL(l2_sram_zalloc); + +int l2_sram_free(const void *addr) +{ +#if L2_LENGTH != 0 + unsigned long flags; + int ret; + + /* add mutex operation */ + spin_lock_irqsave(&l2_sram_lock, flags); + + ret = _sram_free(addr, &free_l2_sram_head, + &used_l2_sram_head); + + /* add mutex operation */ + spin_unlock_irqrestore(&l2_sram_lock, flags); + + return ret; +#else + return -1; +#endif +} +EXPORT_SYMBOL(l2_sram_free); + +int sram_free_with_lsl(const void *addr) +{ + struct sram_list_struct *lsl, **tmp; + struct mm_struct *mm = current->mm; + int ret = -1; + + for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next) + if ((*tmp)->addr == addr) { + lsl = *tmp; + ret = sram_free(addr); + *tmp = lsl->next; + kfree(lsl); + break; + } + + return ret; +} +EXPORT_SYMBOL(sram_free_with_lsl); + +/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are + * tracked. These are designed for userspace so that when a process exits, + * we can safely reap their resources. + */ +void *sram_alloc_with_lsl(size_t size, unsigned long flags) +{ + void *addr = NULL; + struct sram_list_struct *lsl = NULL; + struct mm_struct *mm = current->mm; + + lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL); + if (!lsl) + return NULL; + + if (flags & L1_INST_SRAM) + addr = l1_inst_sram_alloc(size); + + if (addr == NULL && (flags & L1_DATA_A_SRAM)) + addr = l1_data_A_sram_alloc(size); + + if (addr == NULL && (flags & L1_DATA_B_SRAM)) + addr = l1_data_B_sram_alloc(size); + + if (addr == NULL && (flags & L2_SRAM)) + addr = l2_sram_alloc(size); + + if (addr == NULL) { + kfree(lsl); + return NULL; + } + lsl->addr = addr; + lsl->length = size; + lsl->next = mm->context.sram_list; + mm->context.sram_list = lsl; + return addr; +} +EXPORT_SYMBOL(sram_alloc_with_lsl); + +#ifdef CONFIG_PROC_FS +/* Once we get a real allocator, we'll throw all of this away. + * Until then, we need some sort of visibility into the L1 alloc. + */ +/* Need to keep line of output the same. Currently, that is 44 bytes + * (including newline). + */ +static int _sram_proc_show(struct seq_file *m, const char *desc, + struct sram_piece *pfree_head, + struct sram_piece *pused_head) +{ + struct sram_piece *pslot; + + if (!pfree_head || !pused_head) + return -1; + + seq_printf(m, "--- SRAM %-14s Size PID State \n", desc); + + /* search the relevant memory slot */ + pslot = pused_head->next; + + while (pslot != NULL) { + seq_printf(m, "%p-%p %10i %5i %-10s\n", + pslot->paddr, pslot->paddr + pslot->size, + pslot->size, pslot->pid, "ALLOCATED"); + + pslot = pslot->next; + } + + pslot = pfree_head->next; + + while (pslot != NULL) { + seq_printf(m, "%p-%p %10i %5i %-10s\n", + pslot->paddr, pslot->paddr + pslot->size, + pslot->size, pslot->pid, "FREE"); + + pslot = pslot->next; + } + + return 0; +} +static int sram_proc_show(struct seq_file *m, void *v) +{ + unsigned int cpu; + + for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { + if (_sram_proc_show(m, "Scratchpad", + &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu))) + goto not_done; +#if L1_DATA_A_LENGTH != 0 + if (_sram_proc_show(m, "L1 Data A", + &per_cpu(free_l1_data_A_sram_head, cpu), + &per_cpu(used_l1_data_A_sram_head, cpu))) + goto not_done; +#endif +#if L1_DATA_B_LENGTH != 0 + if (_sram_proc_show(m, "L1 Data B", + &per_cpu(free_l1_data_B_sram_head, cpu), + &per_cpu(used_l1_data_B_sram_head, cpu))) + goto not_done; +#endif +#if L1_CODE_LENGTH != 0 + if (_sram_proc_show(m, "L1 Instruction", + &per_cpu(free_l1_inst_sram_head, cpu), + &per_cpu(used_l1_inst_sram_head, cpu))) + goto not_done; +#endif + } +#if L2_LENGTH != 0 + if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head)) + goto not_done; +#endif + not_done: + return 0; +} + +static int sram_proc_open(struct inode *inode, struct file *file) +{ + return single_open(file, sram_proc_show, NULL); +} + +static const struct file_operations sram_proc_ops = { + .open = sram_proc_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init sram_proc_init(void) +{ + struct proc_dir_entry *ptr; + + ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops); + if (!ptr) { + printk(KERN_WARNING "unable to create /proc/sram\n"); + return -1; + } + return 0; +} +late_initcall(sram_proc_init); +#endif |