diff options
Diffstat (limited to 'kernel/Documentation/vm/slub.txt')
-rw-r--r-- | kernel/Documentation/vm/slub.txt | 283 |
1 files changed, 283 insertions, 0 deletions
diff --git a/kernel/Documentation/vm/slub.txt b/kernel/Documentation/vm/slub.txt new file mode 100644 index 000000000..b0c6d1bbb --- /dev/null +++ b/kernel/Documentation/vm/slub.txt @@ -0,0 +1,283 @@ +Short users guide for SLUB +-------------------------- + +The basic philosophy of SLUB is very different from SLAB. SLAB +requires rebuilding the kernel to activate debug options for all +slab caches. SLUB always includes full debugging but it is off by default. +SLUB can enable debugging only for selected slabs in order to avoid +an impact on overall system performance which may make a bug more +difficult to find. + +In order to switch debugging on one can add a option "slub_debug" +to the kernel command line. That will enable full debugging for +all slabs. + +Typically one would then use the "slabinfo" command to get statistical +data and perform operation on the slabs. By default slabinfo only lists +slabs that have data in them. See "slabinfo -h" for more options when +running the command. slabinfo can be compiled with + +gcc -o slabinfo tools/vm/slabinfo.c + +Some of the modes of operation of slabinfo require that slub debugging +be enabled on the command line. F.e. no tracking information will be +available without debugging on and validation can only partially +be performed if debugging was not switched on. + +Some more sophisticated uses of slub_debug: +------------------------------------------- + +Parameters may be given to slub_debug. If none is specified then full +debugging is enabled. Format: + +slub_debug=<Debug-Options> Enable options for all slabs +slub_debug=<Debug-Options>,<slab name> + Enable options only for select slabs + +Possible debug options are + F Sanity checks on (enables SLAB_DEBUG_FREE. Sorry + SLAB legacy issues) + Z Red zoning + P Poisoning (object and padding) + U User tracking (free and alloc) + T Trace (please only use on single slabs) + A Toggle failslab filter mark for the cache + O Switch debugging off for caches that would have + caused higher minimum slab orders + - Switch all debugging off (useful if the kernel is + configured with CONFIG_SLUB_DEBUG_ON) + +F.e. in order to boot just with sanity checks and red zoning one would specify: + + slub_debug=FZ + +Trying to find an issue in the dentry cache? Try + + slub_debug=,dentry + +to only enable debugging on the dentry cache. + +Red zoning and tracking may realign the slab. We can just apply sanity checks +to the dentry cache with + + slub_debug=F,dentry + +Debugging options may require the minimum possible slab order to increase as +a result of storing the metadata (for example, caches with PAGE_SIZE object +sizes). This has a higher liklihood of resulting in slab allocation errors +in low memory situations or if there's high fragmentation of memory. To +switch off debugging for such caches by default, use + + slub_debug=O + +In case you forgot to enable debugging on the kernel command line: It is +possible to enable debugging manually when the kernel is up. Look at the +contents of: + +/sys/kernel/slab/<slab name>/ + +Look at the writable files. Writing 1 to them will enable the +corresponding debug option. All options can be set on a slab that does +not contain objects. If the slab already contains objects then sanity checks +and tracing may only be enabled. The other options may cause the realignment +of objects. + +Careful with tracing: It may spew out lots of information and never stop if +used on the wrong slab. + +Slab merging +------------ + +If no debug options are specified then SLUB may merge similar slabs together +in order to reduce overhead and increase cache hotness of objects. +slabinfo -a displays which slabs were merged together. + +Slab validation +--------------- + +SLUB can validate all object if the kernel was booted with slub_debug. In +order to do so you must have the slabinfo tool. Then you can do + +slabinfo -v + +which will test all objects. Output will be generated to the syslog. + +This also works in a more limited way if boot was without slab debug. +In that case slabinfo -v simply tests all reachable objects. Usually +these are in the cpu slabs and the partial slabs. Full slabs are not +tracked by SLUB in a non debug situation. + +Getting more performance +------------------------ + +To some degree SLUB's performance is limited by the need to take the +list_lock once in a while to deal with partial slabs. That overhead is +governed by the order of the allocation for each slab. The allocations +can be influenced by kernel parameters: + +slub_min_objects=x (default 4) +slub_min_order=x (default 0) +slub_max_order=x (default 3 (PAGE_ALLOC_COSTLY_ORDER)) + +slub_min_objects allows to specify how many objects must at least fit +into one slab in order for the allocation order to be acceptable. +In general slub will be able to perform this number of allocations +on a slab without consulting centralized resources (list_lock) where +contention may occur. + +slub_min_order specifies a minim order of slabs. A similar effect like +slub_min_objects. + +slub_max_order specified the order at which slub_min_objects should no +longer be checked. This is useful to avoid SLUB trying to generate +super large order pages to fit slub_min_objects of a slab cache with +large object sizes into one high order page. Setting command line +parameter debug_guardpage_minorder=N (N > 0), forces setting +slub_max_order to 0, what cause minimum possible order of slabs +allocation. + +SLUB Debug output +----------------- + +Here is a sample of slub debug output: + +==================================================================== +BUG kmalloc-8: Redzone overwritten +-------------------------------------------------------------------- + +INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc +INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58 +INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58 +INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554 + +Bytes b4 0xc90f6d10: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ + Object 0xc90f6d20: 31 30 31 39 2e 30 30 35 1019.005 + Redzone 0xc90f6d28: 00 cc cc cc . + Padding 0xc90f6d50: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ + + [<c010523d>] dump_trace+0x63/0x1eb + [<c01053df>] show_trace_log_lvl+0x1a/0x2f + [<c010601d>] show_trace+0x12/0x14 + [<c0106035>] dump_stack+0x16/0x18 + [<c017e0fa>] object_err+0x143/0x14b + [<c017e2cc>] check_object+0x66/0x234 + [<c017eb43>] __slab_free+0x239/0x384 + [<c017f446>] kfree+0xa6/0xc6 + [<c02e2335>] get_modalias+0xb9/0xf5 + [<c02e23b7>] dmi_dev_uevent+0x27/0x3c + [<c027866a>] dev_uevent+0x1ad/0x1da + [<c0205024>] kobject_uevent_env+0x20a/0x45b + [<c020527f>] kobject_uevent+0xa/0xf + [<c02779f1>] store_uevent+0x4f/0x58 + [<c027758e>] dev_attr_store+0x29/0x2f + [<c01bec4f>] sysfs_write_file+0x16e/0x19c + [<c0183ba7>] vfs_write+0xd1/0x15a + [<c01841d7>] sys_write+0x3d/0x72 + [<c0104112>] sysenter_past_esp+0x5f/0x99 + [<b7f7b410>] 0xb7f7b410 + ======================= + +FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc + +If SLUB encounters a corrupted object (full detection requires the kernel +to be booted with slub_debug) then the following output will be dumped +into the syslog: + +1. Description of the problem encountered + +This will be a message in the system log starting with + +=============================================== +BUG <slab cache affected>: <What went wrong> +----------------------------------------------- + +INFO: <corruption start>-<corruption_end> <more info> +INFO: Slab <address> <slab information> +INFO: Object <address> <object information> +INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by + cpu> pid=<pid of the process> +INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu> + pid=<pid of the process> + +(Object allocation / free information is only available if SLAB_STORE_USER is +set for the slab. slub_debug sets that option) + +2. The object contents if an object was involved. + +Various types of lines can follow the BUG SLUB line: + +Bytes b4 <address> : <bytes> + Shows a few bytes before the object where the problem was detected. + Can be useful if the corruption does not stop with the start of the + object. + +Object <address> : <bytes> + The bytes of the object. If the object is inactive then the bytes + typically contain poison values. Any non-poison value shows a + corruption by a write after free. + +Redzone <address> : <bytes> + The Redzone following the object. The Redzone is used to detect + writes after the object. All bytes should always have the same + value. If there is any deviation then it is due to a write after + the object boundary. + + (Redzone information is only available if SLAB_RED_ZONE is set. + slub_debug sets that option) + +Padding <address> : <bytes> + Unused data to fill up the space in order to get the next object + properly aligned. In the debug case we make sure that there are + at least 4 bytes of padding. This allows the detection of writes + before the object. + +3. A stackdump + +The stackdump describes the location where the error was detected. The cause +of the corruption is may be more likely found by looking at the function that +allocated or freed the object. + +4. Report on how the problem was dealt with in order to ensure the continued +operation of the system. + +These are messages in the system log beginning with + +FIX <slab cache affected>: <corrective action taken> + +In the above sample SLUB found that the Redzone of an active object has +been overwritten. Here a string of 8 characters was written into a slab that +has the length of 8 characters. However, a 8 character string needs a +terminating 0. That zero has overwritten the first byte of the Redzone field. +After reporting the details of the issue encountered the FIX SLUB message +tells us that SLUB has restored the Redzone to its proper value and then +system operations continue. + +Emergency operations: +--------------------- + +Minimal debugging (sanity checks alone) can be enabled by booting with + + slub_debug=F + +This will be generally be enough to enable the resiliency features of slub +which will keep the system running even if a bad kernel component will +keep corrupting objects. This may be important for production systems. +Performance will be impacted by the sanity checks and there will be a +continual stream of error messages to the syslog but no additional memory +will be used (unlike full debugging). + +No guarantees. The kernel component still needs to be fixed. Performance +may be optimized further by locating the slab that experiences corruption +and enabling debugging only for that cache + +I.e. + + slub_debug=F,dentry + +If the corruption occurs by writing after the end of the object then it +may be advisable to enable a Redzone to avoid corrupting the beginning +of other objects. + + slub_debug=FZ,dentry + +Christoph Lameter, May 30, 2007 |