diff options
Diffstat (limited to 'kernel/Documentation/networking')
22 files changed, 2051 insertions, 226 deletions
diff --git a/kernel/Documentation/networking/6lowpan.txt b/kernel/Documentation/networking/6lowpan.txt new file mode 100644 index 000000000..a7dc7e939 --- /dev/null +++ b/kernel/Documentation/networking/6lowpan.txt @@ -0,0 +1,50 @@ + +Netdev private dataroom for 6lowpan interfaces: + +All 6lowpan able net devices, means all interfaces with ARPHRD_6LOWPAN, +must have "struct lowpan_priv" placed at beginning of netdev_priv. + +The priv_size of each interface should be calculate by: + + dev->priv_size = LOWPAN_PRIV_SIZE(LL_6LOWPAN_PRIV_DATA); + +Where LL_PRIV_6LOWPAN_DATA is sizeof linklayer 6lowpan private data struct. +To access the LL_PRIV_6LOWPAN_DATA structure you can cast: + + lowpan_priv(dev)-priv; + +to your LL_6LOWPAN_PRIV_DATA structure. + +Before registering the lowpan netdev interface you must run: + + lowpan_netdev_setup(dev, LOWPAN_LLTYPE_FOOBAR); + +wheres LOWPAN_LLTYPE_FOOBAR is a define for your 6LoWPAN linklayer type of +enum lowpan_lltypes. + +Example to evaluate the private usually you can do: + +static inline sturct lowpan_priv_foobar * +lowpan_foobar_priv(struct net_device *dev) +{ + return (sturct lowpan_priv_foobar *)lowpan_priv(dev)->priv; +} + +switch (dev->type) { +case ARPHRD_6LOWPAN: + lowpan_priv = lowpan_priv(dev); + /* do great stuff which is ARPHRD_6LOWPAN related */ + switch (lowpan_priv->lltype) { + case LOWPAN_LLTYPE_FOOBAR: + /* do 802.15.4 6LoWPAN handling here */ + lowpan_foobar_priv(dev)->bar = foo; + break; + ... + } + break; +... +} + +In case of generic 6lowpan branch ("net/6lowpan") you can remove the check +on ARPHRD_6LOWPAN, because you can be sure that these function are called +by ARPHRD_6LOWPAN interfaces. diff --git a/kernel/Documentation/networking/bonding.txt b/kernel/Documentation/networking/bonding.txt index 83bf4986b..334b49ef0 100644 --- a/kernel/Documentation/networking/bonding.txt +++ b/kernel/Documentation/networking/bonding.txt @@ -51,6 +51,7 @@ Table of Contents 3.4 Configuring Bonding Manually via Sysfs 3.5 Configuration with Interfaces Support 3.6 Overriding Configuration for Special Cases +3.7 Configuring LACP for 802.3ad mode in a more secure way 4. Querying Bonding Configuration 4.1 Bonding Configuration @@ -178,6 +179,27 @@ active_slave active slave, or the empty string if there is no active slave or the current mode does not use an active slave. +ad_actor_sys_prio + + In an AD system, this specifies the system priority. The allowed range + is 1 - 65535. If the value is not specified, it takes 65535 as the + default value. + + This parameter has effect only in 802.3ad mode and is available through + SysFs interface. + +ad_actor_system + + In an AD system, this specifies the mac-address for the actor in + protocol packet exchanges (LACPDUs). The value cannot be NULL or + multicast. It is preferred to have the local-admin bit set for this + mac but driver does not enforce it. If the value is not given then + system defaults to using the masters' mac address as actors' system + address. + + This parameter has effect only in 802.3ad mode and is available through + SysFs interface. + ad_select Specifies the 802.3ad aggregation selection logic to use. The @@ -220,6 +242,21 @@ ad_select This option was added in bonding version 3.4.0. +ad_user_port_key + + In an AD system, the port-key has three parts as shown below - + + Bits Use + 00 Duplex + 01-05 Speed + 06-15 User-defined + + This defines the upper 10 bits of the port key. The values can be + from 0 - 1023. If not given, the system defaults to 0. + + This parameter has effect only in 802.3ad mode and is available through + SysFs interface. + all_slaves_active Specifies that duplicate frames (received on inactive ports) should be @@ -1622,6 +1659,53 @@ output port selection. This feature first appeared in bonding driver version 3.7.0 and support for output slave selection was limited to round-robin and active-backup modes. +3.7 Configuring LACP for 802.3ad mode in a more secure way +---------------------------------------------------------- + +When using 802.3ad bonding mode, the Actor (host) and Partner (switch) +exchange LACPDUs. These LACPDUs cannot be sniffed, because they are +destined to link local mac addresses (which switches/bridges are not +supposed to forward). However, most of the values are easily predictable +or are simply the machine's MAC address (which is trivially known to all +other hosts in the same L2). This implies that other machines in the L2 +domain can spoof LACPDU packets from other hosts to the switch and potentially +cause mayhem by joining (from the point of view of the switch) another +machine's aggregate, thus receiving a portion of that hosts incoming +traffic and / or spoofing traffic from that machine themselves (potentially +even successfully terminating some portion of flows). Though this is not +a likely scenario, one could avoid this possibility by simply configuring +few bonding parameters: + + (a) ad_actor_system : You can set a random mac-address that can be used for + these LACPDU exchanges. The value can not be either NULL or Multicast. + Also it's preferable to set the local-admin bit. Following shell code + generates a random mac-address as described above. + + # sys_mac_addr=$(printf '%02x:%02x:%02x:%02x:%02x:%02x' \ + $(( (RANDOM & 0xFE) | 0x02 )) \ + $(( RANDOM & 0xFF )) \ + $(( RANDOM & 0xFF )) \ + $(( RANDOM & 0xFF )) \ + $(( RANDOM & 0xFF )) \ + $(( RANDOM & 0xFF ))) + # echo $sys_mac_addr > /sys/class/net/bond0/bonding/ad_actor_system + + (b) ad_actor_sys_prio : Randomize the system priority. The default value + is 65535, but system can take the value from 1 - 65535. Following shell + code generates random priority and sets it. + + # sys_prio=$(( 1 + RANDOM + RANDOM )) + # echo $sys_prio > /sys/class/net/bond0/bonding/ad_actor_sys_prio + + (c) ad_user_port_key : Use the user portion of the port-key. The default + keeps this empty. These are the upper 10 bits of the port-key and value + ranges from 0 - 1023. Following shell code generates these 10 bits and + sets it. + + # usr_port_key=$(( RANDOM & 0x3FF )) + # echo $usr_port_key > /sys/class/net/bond0/bonding/ad_user_port_key + + 4 Querying Bonding Configuration ================================= diff --git a/kernel/Documentation/networking/can.txt b/kernel/Documentation/networking/can.txt index 5abad1e92..05fd83bb3 100644 --- a/kernel/Documentation/networking/can.txt +++ b/kernel/Documentation/networking/can.txt @@ -268,6 +268,9 @@ solution for a couple of reasons: struct can_frame { canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */ __u8 can_dlc; /* frame payload length in byte (0 .. 8) */ + __u8 __pad; /* padding */ + __u8 __res0; /* reserved / padding */ + __u8 __res1; /* reserved / padding */ __u8 data[8] __attribute__((aligned(8))); }; @@ -507,7 +510,7 @@ solution for a couple of reasons: 4.1.2 RAW socket option CAN_RAW_ERR_FILTER - As described in chapter 3.4 the CAN interface driver can generate so + As described in chapter 3.3 the CAN interface driver can generate so called Error Message Frames that can optionally be passed to the user application in the same way as other CAN frames. The possible errors are divided into different error classes that may be filtered @@ -678,7 +681,7 @@ solution for a couple of reasons: addr.can_family = AF_CAN; addr.can_ifindex = ifr.ifr_ifindex; - connect(s, (struct sockaddr *)&addr, sizeof(addr)) + connect(s, (struct sockaddr *)&addr, sizeof(addr)); (..) @@ -1015,25 +1018,34 @@ solution for a couple of reasons: $ ip link set can0 type can help Usage: ip link set DEVICE type can - [ bitrate BITRATE [ sample-point SAMPLE-POINT] ] | - [ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1 - phase-seg2 PHASE-SEG2 [ sjw SJW ] ] - - [ loopback { on | off } ] - [ listen-only { on | off } ] - [ triple-sampling { on | off } ] - - [ restart-ms TIME-MS ] - [ restart ] - - Where: BITRATE := { 1..1000000 } - SAMPLE-POINT := { 0.000..0.999 } - TQ := { NUMBER } - PROP-SEG := { 1..8 } - PHASE-SEG1 := { 1..8 } - PHASE-SEG2 := { 1..8 } - SJW := { 1..4 } - RESTART-MS := { 0 | NUMBER } + [ bitrate BITRATE [ sample-point SAMPLE-POINT] ] | + [ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1 + phase-seg2 PHASE-SEG2 [ sjw SJW ] ] + + [ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] | + [ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1 + dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ] + + [ loopback { on | off } ] + [ listen-only { on | off } ] + [ triple-sampling { on | off } ] + [ one-shot { on | off } ] + [ berr-reporting { on | off } ] + [ fd { on | off } ] + [ fd-non-iso { on | off } ] + [ presume-ack { on | off } ] + + [ restart-ms TIME-MS ] + [ restart ] + + Where: BITRATE := { 1..1000000 } + SAMPLE-POINT := { 0.000..0.999 } + TQ := { NUMBER } + PROP-SEG := { 1..8 } + PHASE-SEG1 := { 1..8 } + PHASE-SEG2 := { 1..8 } + SJW := { 1..4 } + RESTART-MS := { 0 | NUMBER } - Display CAN device details and statistics: @@ -1149,7 +1161,7 @@ solution for a couple of reasons: $ ip link set canX type can restart Note that a restart will also create a CAN error message frame (see - also chapter 3.4). + also chapter 3.3). 6.6 CAN FD (flexible data rate) driver support @@ -1175,7 +1187,55 @@ solution for a couple of reasons: The CAN device MTU can be retrieved e.g. with a SIOCGIFMTU ioctl() syscall. N.B. CAN FD capable devices can also handle and send legacy CAN frames. - FIXME: Add details about the CAN FD controller configuration when available. + When configuring CAN FD capable CAN controllers an additional 'data' bitrate + has to be set. This bitrate for the data phase of the CAN FD frame has to be + at least the bitrate which was configured for the arbitration phase. This + second bitrate is specified analogue to the first bitrate but the bitrate + setting keywords for the 'data' bitrate start with 'd' e.g. dbitrate, + dsample-point, dsjw or dtq and similar settings. When a data bitrate is set + within the configuration process the controller option "fd on" can be + specified to enable the CAN FD mode in the CAN controller. This controller + option also switches the device MTU to 72 (CANFD_MTU). + + The first CAN FD specification presented as whitepaper at the International + CAN Conference 2012 needed to be improved for data integrity reasons. + Therefore two CAN FD implementations have to be distinguished today: + + - ISO compliant: The ISO 11898-1:2015 CAN FD implementation (default) + - non-ISO compliant: The CAN FD implementation following the 2012 whitepaper + + Finally there are three types of CAN FD controllers: + + 1. ISO compliant (fixed) + 2. non-ISO compliant (fixed, like the M_CAN IP core v3.0.1 in m_can.c) + 3. ISO/non-ISO CAN FD controllers (switchable, like the PEAK PCAN-USB FD) + + The current ISO/non-ISO mode is announced by the CAN controller driver via + netlink and displayed by the 'ip' tool (controller option FD-NON-ISO). + The ISO/non-ISO-mode can be altered by setting 'fd-non-iso {on|off}' for + switchable CAN FD controllers only. + + Example configuring 500 kbit/s arbitration bitrate and 4 Mbit/s data bitrate: + + $ ip link set can0 up type can bitrate 500000 sample-point 0.75 \ + dbitrate 4000000 dsample-point 0.8 fd on + $ ip -details link show can0 + 5: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UNKNOWN \ + mode DEFAULT group default qlen 10 + link/can promiscuity 0 + can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0 + bitrate 500000 sample-point 0.750 + tq 50 prop-seg 14 phase-seg1 15 phase-seg2 10 sjw 1 + pcan_usb_pro_fd: tseg1 1..64 tseg2 1..16 sjw 1..16 brp 1..1024 \ + brp-inc 1 + dbitrate 4000000 dsample-point 0.800 + dtq 12 dprop-seg 7 dphase-seg1 8 dphase-seg2 4 dsjw 1 + pcan_usb_pro_fd: dtseg1 1..16 dtseg2 1..8 dsjw 1..4 dbrp 1..1024 \ + dbrp-inc 1 + clock 80000000 + + Example when 'fd-non-iso on' is added on this switchable CAN FD adapter: + can <FD,FD-NON-ISO> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0 6.7 Supported CAN hardware diff --git a/kernel/Documentation/networking/dctcp.txt b/kernel/Documentation/networking/dctcp.txt index 0d5dfbc89..13a857753 100644 --- a/kernel/Documentation/networking/dctcp.txt +++ b/kernel/Documentation/networking/dctcp.txt @@ -8,6 +8,7 @@ the data center network to provide multi-bit feedback to the end hosts. To enable it on end hosts: sysctl -w net.ipv4.tcp_congestion_control=dctcp + sysctl -w net.ipv4.tcp_ecn_fallback=0 (optional) All switches in the data center network running DCTCP must support ECN marking and be configured for marking when reaching defined switch buffer diff --git a/kernel/Documentation/networking/dsa/bcm_sf2.txt b/kernel/Documentation/networking/dsa/bcm_sf2.txt new file mode 100644 index 000000000..d999d0c1c --- /dev/null +++ b/kernel/Documentation/networking/dsa/bcm_sf2.txt @@ -0,0 +1,114 @@ +Broadcom Starfighter 2 Ethernet switch driver +============================================= + +Broadcom's Starfighter 2 Ethernet switch hardware block is commonly found and +deployed in the following products: + +- xDSL gateways such as BCM63138 +- streaming/multimedia Set Top Box such as BCM7445 +- Cable Modem/residential gateways such as BCM7145/BCM3390 + +The switch is typically deployed in a configuration involving between 5 to 13 +ports, offering a range of built-in and customizable interfaces: + +- single integrated Gigabit PHY +- quad integrated Gigabit PHY +- quad external Gigabit PHY w/ MDIO multiplexer +- integrated MoCA PHY +- several external MII/RevMII/GMII/RGMII interfaces + +The switch also supports specific congestion control features which allow MoCA +fail-over not to lose packets during a MoCA role re-election, as well as out of +band back-pressure to the host CPU network interface when downstream interfaces +are connected at a lower speed. + +The switch hardware block is typically interfaced using MMIO accesses and +contains a bunch of sub-blocks/registers: + +* SWITCH_CORE: common switch registers +* SWITCH_REG: external interfaces switch register +* SWITCH_MDIO: external MDIO bus controller (there is another one in SWITCH_CORE, + which is used for indirect PHY accesses) +* SWITCH_INDIR_RW: 64-bits wide register helper block +* SWITCH_INTRL2_0/1: Level-2 interrupt controllers +* SWITCH_ACB: Admission control block +* SWITCH_FCB: Fail-over control block + +Implementation details +====================== + +The driver is located in drivers/net/dsa/bcm_sf2.c and is implemented as a DSA +driver; see Documentation/networking/dsa/dsa.txt for details on the subsytem +and what it provides. + +The SF2 switch is configured to enable a Broadcom specific 4-bytes switch tag +which gets inserted by the switch for every packet forwarded to the CPU +interface, conversely, the CPU network interface should insert a similar tag for +packets entering the CPU port. The tag format is described in +net/dsa/tag_brcm.c. + +Overall, the SF2 driver is a fairly regular DSA driver; there are a few +specifics covered below. + +Device Tree probing +------------------- + +The DSA platform device driver is probed using a specific compatible string +provided in net/dsa/dsa.c. The reason for that is because the DSA subsystem gets +registered as a platform device driver currently. DSA will provide the needed +device_node pointers which are then accessible by the switch driver setup +function to setup resources such as register ranges and interrupts. This +currently works very well because none of the of_* functions utilized by the +driver require a struct device to be bound to a struct device_node, but things +may change in the future. + +MDIO indirect accesses +---------------------- + +Due to a limitation in how Broadcom switches have been designed, external +Broadcom switches connected to a SF2 require the use of the DSA slave MDIO bus +in order to properly configure them. By default, the SF2 pseudo-PHY address, and +an external switch pseudo-PHY address will both be snooping for incoming MDIO +transactions, since they are at the same address (30), resulting in some kind of +"double" programming. Using DSA, and setting ds->phys_mii_mask accordingly, we +selectively divert reads and writes towards external Broadcom switches +pseudo-PHY addresses. Newer revisions of the SF2 hardware have introduced a +configurable pseudo-PHY address which circumvents the initial design limitation. + +Multimedia over CoAxial (MoCA) interfaces +----------------------------------------- + +MoCA interfaces are fairly specific and require the use of a firmware blob which +gets loaded onto the MoCA processor(s) for packet processing. The switch +hardware contains logic which will assert/de-assert link states accordingly for +the MoCA interface whenever the MoCA coaxial cable gets disconnected or the +firmware gets reloaded. The SF2 driver relies on such events to properly set its +MoCA interface carrier state and properly report this to the networking stack. + +The MoCA interfaces are supported using the PHY library's fixed PHY/emulated PHY +device and the switch driver registers a fixed_link_update callback for such +PHYs which reflects the link state obtained from the interrupt handler. + + +Power Management +---------------- + +Whenever possible, the SF2 driver tries to minimize the overall switch power +consumption by applying a combination of: + +- turning off internal buffers/memories +- disabling packet processing logic +- putting integrated PHYs in IDDQ/low-power +- reducing the switch core clock based on the active port count +- enabling and advertising EEE +- turning off RGMII data processing logic when the link goes down + +Wake-on-LAN +----------- + +Wake-on-LAN is currently implemented by utilizing the host processor Ethernet +MAC controller wake-on logic. Whenever Wake-on-LAN is requested, an intersection +between the user request and the supported host Ethernet interface WoL +capabilities is done and the intersection result gets configured. During +system-wide suspend/resume, only ports not participating in Wake-on-LAN are +disabled. diff --git a/kernel/Documentation/networking/dsa/dsa.txt b/kernel/Documentation/networking/dsa/dsa.txt new file mode 100644 index 000000000..aa9c1f931 --- /dev/null +++ b/kernel/Documentation/networking/dsa/dsa.txt @@ -0,0 +1,615 @@ +Distributed Switch Architecture +=============================== + +Introduction +============ + +This document describes the Distributed Switch Architecture (DSA) subsystem +design principles, limitations, interactions with other subsystems, and how to +develop drivers for this subsystem as well as a TODO for developers interested +in joining the effort. + +Design principles +================= + +The Distributed Switch Architecture is a subsystem which was primarily designed +to support Marvell Ethernet switches (MV88E6xxx, a.k.a Linkstreet product line) +using Linux, but has since evolved to support other vendors as well. + +The original philosophy behind this design was to be able to use unmodified +Linux tools such as bridge, iproute2, ifconfig to work transparently whether +they configured/queried a switch port network device or a regular network +device. + +An Ethernet switch is typically comprised of multiple front-panel ports, and one +or more CPU or management port. The DSA subsystem currently relies on the +presence of a management port connected to an Ethernet controller capable of +receiving Ethernet frames from the switch. This is a very common setup for all +kinds of Ethernet switches found in Small Home and Office products: routers, +gateways, or even top-of-the rack switches. This host Ethernet controller will +be later referred to as "master" and "cpu" in DSA terminology and code. + +The D in DSA stands for Distributed, because the subsystem has been designed +with the ability to configure and manage cascaded switches on top of each other +using upstream and downstream Ethernet links between switches. These specific +ports are referred to as "dsa" ports in DSA terminology and code. A collection +of multiple switches connected to each other is called a "switch tree". + +For each front-panel port, DSA will create specialized network devices which are +used as controlling and data-flowing endpoints for use by the Linux networking +stack. These specialized network interfaces are referred to as "slave" network +interfaces in DSA terminology and code. + +The ideal case for using DSA is when an Ethernet switch supports a "switch tag" +which is a hardware feature making the switch insert a specific tag for each +Ethernet frames it received to/from specific ports to help the management +interface figure out: + +- what port is this frame coming from +- what was the reason why this frame got forwarded +- how to send CPU originated traffic to specific ports + +The subsystem does support switches not capable of inserting/stripping tags, but +the features might be slightly limited in that case (traffic separation relies +on Port-based VLAN IDs). + +Note that DSA does not currently create network interfaces for the "cpu" and +"dsa" ports because: + +- the "cpu" port is the Ethernet switch facing side of the management + controller, and as such, would create a duplication of feature, since you + would get two interfaces for the same conduit: master netdev, and "cpu" netdev + +- the "dsa" port(s) are just conduits between two or more switches, and as such + cannot really be used as proper network interfaces either, only the + downstream, or the top-most upstream interface makes sense with that model + +Switch tagging protocols +------------------------ + +DSA currently supports 4 different tagging protocols, and a tag-less mode as +well. The different protocols are implemented in: + +net/dsa/tag_trailer.c: Marvell's 4 trailer tag mode (legacy) +net/dsa/tag_dsa.c: Marvell's original DSA tag +net/dsa/tag_edsa.c: Marvell's enhanced DSA tag +net/dsa/tag_brcm.c: Broadcom's 4 bytes tag + +The exact format of the tag protocol is vendor specific, but in general, they +all contain something which: + +- identifies which port the Ethernet frame came from/should be sent to +- provides a reason why this frame was forwarded to the management interface + +Master network devices +---------------------- + +Master network devices are regular, unmodified Linux network device drivers for +the CPU/management Ethernet interface. Such a driver might occasionally need to +know whether DSA is enabled (e.g.: to enable/disable specific offload features), +but the DSA subsystem has been proven to work with industry standard drivers: +e1000e, mv643xx_eth etc. without having to introduce modifications to these +drivers. Such network devices are also often referred to as conduit network +devices since they act as a pipe between the host processor and the hardware +Ethernet switch. + +Networking stack hooks +---------------------- + +When a master netdev is used with DSA, a small hook is placed in in the +networking stack is in order to have the DSA subsystem process the Ethernet +switch specific tagging protocol. DSA accomplishes this by registering a +specific (and fake) Ethernet type (later becoming skb->protocol) with the +networking stack, this is also known as a ptype or packet_type. A typical +Ethernet Frame receive sequence looks like this: + +Master network device (e.g.: e1000e): + +Receive interrupt fires: +- receive function is invoked +- basic packet processing is done: getting length, status etc. +- packet is prepared to be processed by the Ethernet layer by calling + eth_type_trans + +net/ethernet/eth.c: + +eth_type_trans(skb, dev) + if (dev->dsa_ptr != NULL) + -> skb->protocol = ETH_P_XDSA + +drivers/net/ethernet/*: + +netif_receive_skb(skb) + -> iterate over registered packet_type + -> invoke handler for ETH_P_XDSA, calls dsa_switch_rcv() + +net/dsa/dsa.c: + -> dsa_switch_rcv() + -> invoke switch tag specific protocol handler in + net/dsa/tag_*.c + +net/dsa/tag_*.c: + -> inspect and strip switch tag protocol to determine originating port + -> locate per-port network device + -> invoke eth_type_trans() with the DSA slave network device + -> invoked netif_receive_skb() + +Past this point, the DSA slave network devices get delivered regular Ethernet +frames that can be processed by the networking stack. + +Slave network devices +--------------------- + +Slave network devices created by DSA are stacked on top of their master network +device, each of these network interfaces will be responsible for being a +controlling and data-flowing end-point for each front-panel port of the switch. +These interfaces are specialized in order to: + +- insert/remove the switch tag protocol (if it exists) when sending traffic + to/from specific switch ports +- query the switch for ethtool operations: statistics, link state, + Wake-on-LAN, register dumps... +- external/internal PHY management: link, auto-negotiation etc. + +These slave network devices have custom net_device_ops and ethtool_ops function +pointers which allow DSA to introduce a level of layering between the networking +stack/ethtool, and the switch driver implementation. + +Upon frame transmission from these slave network devices, DSA will look up which +switch tagging protocol is currently registered with these network devices, and +invoke a specific transmit routine which takes care of adding the relevant +switch tag in the Ethernet frames. + +These frames are then queued for transmission using the master network device +ndo_start_xmit() function, since they contain the appropriate switch tag, the +Ethernet switch will be able to process these incoming frames from the +management interface and delivers these frames to the physical switch port. + +Graphical representation +------------------------ + +Summarized, this is basically how DSA looks like from a network device +perspective: + + + |--------------------------- + | CPU network device (eth0)| + ---------------------------- + | <tag added by switch | + | | + | | + | tag added by CPU> | + |--------------------------------------------| + | Switch driver | + |--------------------------------------------| + || || || + |-------| |-------| |-------| + | sw0p0 | | sw0p1 | | sw0p2 | + |-------| |-------| |-------| + +Slave MDIO bus +-------------- + +In order to be able to read to/from a switch PHY built into it, DSA creates a +slave MDIO bus which allows a specific switch driver to divert and intercept +MDIO reads/writes towards specific PHY addresses. In most MDIO-connected +switches, these functions would utilize direct or indirect PHY addressing mode +to return standard MII registers from the switch builtin PHYs, allowing the PHY +library and/or to return link status, link partner pages, auto-negotiation +results etc.. + +For Ethernet switches which have both external and internal MDIO busses, the +slave MII bus can be utilized to mux/demux MDIO reads and writes towards either +internal or external MDIO devices this switch might be connected to: internal +PHYs, external PHYs, or even external switches. + +Data structures +--------------- + +DSA data structures are defined in include/net/dsa.h as well as +net/dsa/dsa_priv.h. + +dsa_chip_data: platform data configuration for a given switch device, this +structure describes a switch device's parent device, its address, as well as +various properties of its ports: names/labels, and finally a routing table +indication (when cascading switches) + +dsa_platform_data: platform device configuration data which can reference a +collection of dsa_chip_data structure if multiples switches are cascaded, the +master network device this switch tree is attached to needs to be referenced + +dsa_switch_tree: structure assigned to the master network device under +"dsa_ptr", this structure references a dsa_platform_data structure as well as +the tagging protocol supported by the switch tree, and which receive/transmit +function hooks should be invoked, information about the directly attached switch +is also provided: CPU port. Finally, a collection of dsa_switch are referenced +to address individual switches in the tree. + +dsa_switch: structure describing a switch device in the tree, referencing a +dsa_switch_tree as a backpointer, slave network devices, master network device, +and a reference to the backing dsa_switch_driver + +dsa_switch_driver: structure referencing function pointers, see below for a full +description. + +Design limitations +================== + +DSA is a platform device driver +------------------------------- + +DSA is implemented as a DSA platform device driver which is convenient because +it will register the entire DSA switch tree attached to a master network device +in one-shot, facilitating the device creation and simplifying the device driver +model a bit, this comes however with a number of limitations: + +- building DSA and its switch drivers as modules is currently not working +- the device driver parenting does not necessarily reflect the original + bus/device the switch can be created from +- supporting non-MDIO and non-MMIO (platform) switches is not possible + +Limits on the number of devices and ports +----------------------------------------- + +DSA currently limits the number of maximum switches within a tree to 4 +(DSA_MAX_SWITCHES), and the number of ports per switch to 12 (DSA_MAX_PORTS). +These limits could be extended to support larger configurations would this need +arise. + +Lack of CPU/DSA network devices +------------------------------- + +DSA does not currently create slave network devices for the CPU or DSA ports, as +described before. This might be an issue in the following cases: + +- inability to fetch switch CPU port statistics counters using ethtool, which + can make it harder to debug MDIO switch connected using xMII interfaces + +- inability to configure the CPU port link parameters based on the Ethernet + controller capabilities attached to it: http://patchwork.ozlabs.org/patch/509806/ + +- inability to configure specific VLAN IDs / trunking VLANs between switches + when using a cascaded setup + +Common pitfalls using DSA setups +-------------------------------- + +Once a master network device is configured to use DSA (dev->dsa_ptr becomes +non-NULL), and the switch behind it expects a tagging protocol, this network +interface can only exclusively be used as a conduit interface. Sending packets +directly through this interface (e.g.: opening a socket using this interface) +will not make us go through the switch tagging protocol transmit function, so +the Ethernet switch on the other end, expecting a tag will typically drop this +frame. + +Slave network devices check that the master network device is UP before allowing +you to administratively bring UP these slave network devices. A common +configuration mistake is forgetting to bring UP the master network device first. + +Interactions with other subsystems +================================== + +DSA currently leverages the following subsystems: + +- MDIO/PHY library: drivers/net/phy/phy.c, mdio_bus.c +- Switchdev: net/switchdev/* +- Device Tree for various of_* functions +- HWMON: drivers/hwmon/* + +MDIO/PHY library +---------------- + +Slave network devices exposed by DSA may or may not be interfacing with PHY +devices (struct phy_device as defined in include/linux/phy.h), but the DSA +subsystem deals with all possible combinations: + +- internal PHY devices, built into the Ethernet switch hardware +- external PHY devices, connected via an internal or external MDIO bus +- internal PHY devices, connected via an internal MDIO bus +- special, non-autonegotiated or non MDIO-managed PHY devices: SFPs, MoCA; a.k.a + fixed PHYs + +The PHY configuration is done by the dsa_slave_phy_setup() function and the +logic basically looks like this: + +- if Device Tree is used, the PHY device is looked up using the standard + "phy-handle" property, if found, this PHY device is created and registered + using of_phy_connect() + +- if Device Tree is used, and the PHY device is "fixed", that is, conforms to + the definition of a non-MDIO managed PHY as defined in + Documentation/devicetree/bindings/net/fixed-link.txt, the PHY is registered + and connected transparently using the special fixed MDIO bus driver + +- finally, if the PHY is built into the switch, as is very common with + standalone switch packages, the PHY is probed using the slave MII bus created + by DSA + + +SWITCHDEV +--------- + +DSA directly utilizes SWITCHDEV when interfacing with the bridge layer, and +more specifically with its VLAN filtering portion when configuring VLANs on top +of per-port slave network devices. Since DSA primarily deals with +MDIO-connected switches, although not exclusively, SWITCHDEV's +prepare/abort/commit phases are often simplified into a prepare phase which +checks whether the operation is supporte by the DSA switch driver, and a commit +phase which applies the changes. + +As of today, the only SWITCHDEV objects supported by DSA are the FDB and VLAN +objects. + +Device Tree +----------- + +DSA features a standardized binding which is documented in +Documentation/devicetree/bindings/net/dsa/dsa.txt. PHY/MDIO library helper +functions such as of_get_phy_mode(), of_phy_connect() are also used to query +per-port PHY specific details: interface connection, MDIO bus location etc.. + +HWMON +----- + +Some switch drivers feature internal temperature sensors which are exposed as +regular HWMON devices in /sys/class/hwmon/. + +Driver development +================== + +DSA switch drivers need to implement a dsa_switch_driver structure which will +contain the various members described below. + +register_switch_driver() registers this dsa_switch_driver in its internal list +of drivers to probe for. unregister_switch_driver() does the exact opposite. + +Unless requested differently by setting the priv_size member accordingly, DSA +does not allocate any driver private context space. + +Switch configuration +-------------------- + +- priv_size: additional size needed by the switch driver for its private context + +- tag_protocol: this is to indicate what kind of tagging protocol is supported, + should be a valid value from the dsa_tag_protocol enum + +- probe: probe routine which will be invoked by the DSA platform device upon + registration to test for the presence/absence of a switch device. For MDIO + devices, it is recommended to issue a read towards internal registers using + the switch pseudo-PHY and return whether this is a supported device. For other + buses, return a non-NULL string + +- setup: setup function for the switch, this function is responsible for setting + up the dsa_switch_driver private structure with all it needs: register maps, + interrupts, mutexes, locks etc.. This function is also expected to properly + configure the switch to separate all network interfaces from each other, that + is, they should be isolated by the switch hardware itself, typically by creating + a Port-based VLAN ID for each port and allowing only the CPU port and the + specific port to be in the forwarding vector. Ports that are unused by the + platform should be disabled. Past this function, the switch is expected to be + fully configured and ready to serve any kind of request. It is recommended + to issue a software reset of the switch during this setup function in order to + avoid relying on what a previous software agent such as a bootloader/firmware + may have previously configured. + +- set_addr: Some switches require the programming of the management interface's + Ethernet MAC address, switch drivers can also disable ageing of MAC addresses + on the management interface and "hardcode"/"force" this MAC address for the + CPU/management interface as an optimization + +PHY devices and link management +------------------------------- + +- get_phy_flags: Some switches are interfaced to various kinds of Ethernet PHYs, + if the PHY library PHY driver needs to know about information it cannot obtain + on its own (e.g.: coming from switch memory mapped registers), this function + should return a 32-bits bitmask of "flags", that is private between the switch + driver and the Ethernet PHY driver in drivers/net/phy/*. + +- phy_read: Function invoked by the DSA slave MDIO bus when attempting to read + the switch port MDIO registers. If unavailable, return 0xffff for each read. + For builtin switch Ethernet PHYs, this function should allow reading the link + status, auto-negotiation results, link partner pages etc.. + +- phy_write: Function invoked by the DSA slave MDIO bus when attempting to write + to the switch port MDIO registers. If unavailable return a negative error + code. + +- poll_link: Function invoked by DSA to query the link state of the switch + builtin Ethernet PHYs, per port. This function is responsible for calling + netif_carrier_{on,off} when appropriate, and can be used to poll all ports in a + single call. Executes from workqueue context. + +- adjust_link: Function invoked by the PHY library when a slave network device + is attached to a PHY device. This function is responsible for appropriately + configuring the switch port link parameters: speed, duplex, pause based on + what the phy_device is providing. + +- fixed_link_update: Function invoked by the PHY library, and specifically by + the fixed PHY driver asking the switch driver for link parameters that could + not be auto-negotiated, or obtained by reading the PHY registers through MDIO. + This is particularly useful for specific kinds of hardware such as QSGMII, + MoCA or other kinds of non-MDIO managed PHYs where out of band link + information is obtained + +Ethtool operations +------------------ + +- get_strings: ethtool function used to query the driver's strings, will + typically return statistics strings, private flags strings etc. + +- get_ethtool_stats: ethtool function used to query per-port statistics and + return their values. DSA overlays slave network devices general statistics: + RX/TX counters from the network device, with switch driver specific statistics + per port + +- get_sset_count: ethtool function used to query the number of statistics items + +- get_wol: ethtool function used to obtain Wake-on-LAN settings per-port, this + function may, for certain implementations also query the master network device + Wake-on-LAN settings if this interface needs to participate in Wake-on-LAN + +- set_wol: ethtool function used to configure Wake-on-LAN settings per-port, + direct counterpart to set_wol with similar restrictions + +- set_eee: ethtool function which is used to configure a switch port EEE (Green + Ethernet) settings, can optionally invoke the PHY library to enable EEE at the + PHY level if relevant. This function should enable EEE at the switch port MAC + controller and data-processing logic + +- get_eee: ethtool function which is used to query a switch port EEE settings, + this function should return the EEE state of the switch port MAC controller + and data-processing logic as well as query the PHY for its currently configured + EEE settings + +- get_eeprom_len: ethtool function returning for a given switch the EEPROM + length/size in bytes + +- get_eeprom: ethtool function returning for a given switch the EEPROM contents + +- set_eeprom: ethtool function writing specified data to a given switch EEPROM + +- get_regs_len: ethtool function returning the register length for a given + switch + +- get_regs: ethtool function returning the Ethernet switch internal register + contents. This function might require user-land code in ethtool to + pretty-print register values and registers + +Power management +---------------- + +- suspend: function invoked by the DSA platform device when the system goes to + suspend, should quiesce all Ethernet switch activities, but keep ports + participating in Wake-on-LAN active as well as additional wake-up logic if + supported + +- resume: function invoked by the DSA platform device when the system resumes, + should resume all Ethernet switch activities and re-configure the switch to be + in a fully active state + +- port_enable: function invoked by the DSA slave network device ndo_open + function when a port is administratively brought up, this function should be + fully enabling a given switch port. DSA takes care of marking the port with + BR_STATE_BLOCKING if the port is a bridge member, or BR_STATE_FORWARDING if it + was not, and propagating these changes down to the hardware + +- port_disable: function invoked by the DSA slave network device ndo_close + function when a port is administratively brought down, this function should be + fully disabling a given switch port. DSA takes care of marking the port with + BR_STATE_DISABLED and propagating changes to the hardware if this port is + disabled while being a bridge member + +Hardware monitoring +------------------- + +These callbacks are only available if CONFIG_NET_DSA_HWMON is enabled: + +- get_temp: this function queries the given switch for its temperature + +- get_temp_limit: this function returns the switch current maximum temperature + limit + +- set_temp_limit: this function configures the maximum temperature limit allowed + +- get_temp_alarm: this function returns the critical temperature threshold + returning an alarm notification + +See Documentation/hwmon/sysfs-interface for details. + +Bridge layer +------------ + +- port_join_bridge: bridge layer function invoked when a given switch port is + added to a bridge, this function should be doing the necessary at the switch + level to permit the joining port from being added to the relevant logical + domain for it to ingress/egress traffic with other members of the bridge. DSA + does nothing but calculate a bitmask of switch ports currently members of the + specified bridge being requested the join + +- port_leave_bridge: bridge layer function invoked when a given switch port is + removed from a bridge, this function should be doing the necessary at the + switch level to deny the leaving port from ingress/egress traffic from the + remaining bridge members. When the port leaves the bridge, it should be aged + out at the switch hardware for the switch to (re) learn MAC addresses behind + this port. DSA calculates the bitmask of ports still members of the bridge + being left + +- port_stp_update: bridge layer function invoked when a given switch port STP + state is computed by the bridge layer and should be propagated to switch + hardware to forward/block/learn traffic. The switch driver is responsible for + computing a STP state change based on current and asked parameters and perform + the relevant ageing based on the intersection results + +Bridge VLAN filtering +--------------------- + +- port_pvid_get: bridge layer function invoked when a Port-based VLAN ID is + queried for the given switch port + +- port_pvid_set: bridge layer function invoked when a Port-based VLAN ID needs + to be configured on the given switch port + +- port_vlan_add: bridge layer function invoked when a VLAN is configured + (tagged or untagged) for the given switch port + +- port_vlan_del: bridge layer function invoked when a VLAN is removed from the + given switch port + +- vlan_getnext: bridge layer function invoked to query the next configured VLAN + in the switch, i.e. returns the bitmaps of members and untagged ports + +- port_fdb_add: bridge layer function invoked when the bridge wants to install a + Forwarding Database entry, the switch hardware should be programmed with the + specified address in the specified VLAN Id in the forwarding database + associated with this VLAN ID + +Note: VLAN ID 0 corresponds to the port private database, which, in the context +of DSA, would be the its port-based VLAN, used by the associated bridge device. + +- port_fdb_del: bridge layer function invoked when the bridge wants to remove a + Forwarding Database entry, the switch hardware should be programmed to delete + the specified MAC address from the specified VLAN ID if it was mapped into + this port forwarding database + +TODO +==== + +The platform device problem +--------------------------- +DSA is currently implemented as a platform device driver which is far from ideal +as was discussed in this thread: + +http://permalink.gmane.org/gmane.linux.network/329848 + +This basically prevents the device driver model to be properly used and applied, +and support non-MDIO, non-MMIO Ethernet connected switches. + +Another problem with the platform device driver approach is that it prevents the +use of a modular switch drivers build due to a circular dependency, illustrated +here: + +http://comments.gmane.org/gmane.linux.network/345803 + +Attempts of reworking this has been done here: + +https://lwn.net/Articles/643149/ + +Making SWITCHDEV and DSA converge towards an unified codebase +------------------------------------------------------------- + +SWITCHDEV properly takes care of abstracting the networking stack with offload +capable hardware, but does not enforce a strict switch device driver model. On +the other DSA enforces a fairly strict device driver model, and deals with most +of the switch specific. At some point we should envision a merger between these +two subsystems and get the best of both worlds. + +Other hanging fruits +-------------------- + +- making the number of ports fully dynamic and not dependent on DSA_MAX_PORTS +- allowing more than one CPU/management interface: + http://comments.gmane.org/gmane.linux.network/365657 +- porting more drivers from other vendors: + http://comments.gmane.org/gmane.linux.network/365510 diff --git a/kernel/Documentation/networking/e100.txt b/kernel/Documentation/networking/e100.txt index f862cf3af..42ddbd4b5 100644 --- a/kernel/Documentation/networking/e100.txt +++ b/kernel/Documentation/networking/e100.txt @@ -181,17 +181,3 @@ For general information, go to the Intel support website at: If an issue is identified with the released source code on the supported kernel with a supported adapter, email the specific information related to the issue to e1000-devel@lists.sourceforge.net. - - -License -======= - -This software program is released under the terms of a license agreement -between you ('Licensee') and Intel. Do not use or load this software or any -associated materials (collectively, the 'Software') until you have carefully -read the full terms and conditions of the file COPYING located in this software -package. By loading or using the Software, you agree to the terms of this -Agreement. If you do not agree with the terms of this Agreement, do not install -or use the Software. - -* Other names and brands may be claimed as the property of others. diff --git a/kernel/Documentation/networking/filter.txt b/kernel/Documentation/networking/filter.txt index 135581f01..96da119a4 100644 --- a/kernel/Documentation/networking/filter.txt +++ b/kernel/Documentation/networking/filter.txt @@ -596,9 +596,9 @@ skb pointer). All constraints and restrictions from bpf_check_classic() apply before a conversion to the new layout is being done behind the scenes! Currently, the classic BPF format is being used for JITing on most of the -architectures. Only x86-64 performs JIT compilation from eBPF instruction set, -however, future work will migrate other JIT compilers as well, so that they -will profit from the very same benefits. +architectures. x86-64, aarch64 and s390x perform JIT compilation from eBPF +instruction set, however, future work will migrate other JIT compilers as well, +so that they will profit from the very same benefits. Some core changes of the new internal format: diff --git a/kernel/Documentation/networking/fore200e.txt b/kernel/Documentation/networking/fore200e.txt index d52af53ef..1f98f62b4 100644 --- a/kernel/Documentation/networking/fore200e.txt +++ b/kernel/Documentation/networking/fore200e.txt @@ -37,7 +37,7 @@ version. Alternative binary firmware images can be found somewhere on the ForeThought CD-ROM supplied with your adapter by FORE Systems. You can also get the latest firmware images from FORE Systems at -http://en.wikipedia.org/wiki/FORE_Systems. Register TACTics Online and go to +https://en.wikipedia.org/wiki/FORE_Systems. Register TACTics Online and go to the 'software updates' pages. The firmware binaries are part of the various ForeThought software distributions. diff --git a/kernel/Documentation/networking/ieee802154.txt b/kernel/Documentation/networking/ieee802154.txt index 22bbc7225..aa69ccc48 100644 --- a/kernel/Documentation/networking/ieee802154.txt +++ b/kernel/Documentation/networking/ieee802154.txt @@ -7,11 +7,11 @@ Introduction The IEEE 802.15.4 working group focuses on standardization of bottom two layers: Medium Access Control (MAC) and Physical (PHY). And there are mainly two options available for upper layers: - - ZigBee - proprietary protocol from ZigBee Alliance - - 6LowPAN - IPv6 networking over low rate personal area networks + - ZigBee - proprietary protocol from the ZigBee Alliance + - 6LoWPAN - IPv6 networking over low rate personal area networks -The Linux-ZigBee project goal is to provide complete implementation -of IEEE 802.15.4 and 6LoWPAN protocols. IEEE 802.15.4 is a stack +The linux-wpan project goal is to provide a complete implementation +of the IEEE 802.15.4 and 6LoWPAN protocols. IEEE 802.15.4 is a stack of protocols for organizing Low-Rate Wireless Personal Area Networks. The stack is composed of three main parts: @@ -30,8 +30,8 @@ int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0); The address family, socket addresses etc. are defined in the include/net/af_ieee802154.h header or in the special header -in our userspace package (see either linux-zigbee sourceforge download page -or git tree at git://linux-zigbee.git.sourceforge.net/gitroot/linux-zigbee). +in the userspace package (see either http://wpan.cakelab.org/ or the +git tree at https://github.com/linux-wpan/wpan-tools). One can use SOCK_RAW for passing raw data towards device xmit function. YMMV. @@ -49,15 +49,6 @@ Like with WiFi, there are several types of devices implementing IEEE 802.15.4. Those types of devices require different approach to be hooked into Linux kernel. -MLME - MAC Level Management -============================ - -Most of IEEE 802.15.4 MLME interfaces are directly mapped on netlink commands. -See the include/net/nl802154.h header. Our userspace tools package -(see above) provides CLI configuration utility for radio interfaces and simple -coordinator for IEEE 802.15.4 networks as an example users of MLME protocol. - - HardMAC ======= @@ -75,8 +66,6 @@ net_device with a pointer to struct ieee802154_mlme_ops instance. The fields assoc_req, assoc_resp, disassoc_req, start_req, and scan_req are optional. All other fields are required. -We provide an example of simple HardMAC driver at drivers/ieee802154/fakehard.c - SoftMAC ======= @@ -89,7 +78,8 @@ stack interface for network sniffers (e.g. WireShark). This layer is going to be extended soon. -See header include/net/mac802154.h and several drivers in drivers/ieee802154/. +See header include/net/mac802154.h and several drivers in +drivers/net/ieee802154/. Device drivers API @@ -114,18 +104,17 @@ Moreover IEEE 802.15.4 device operations structure should be filled. Fake drivers ============ -In addition there are two drivers available which simulate real devices with -HardMAC (fakehard) and SoftMAC (fakelb - IEEE 802.15.4 loopback driver) -interfaces. This option provides possibility to test and debug stack without -usage of real hardware. +In addition there is a driver available which simulates a real device with +SoftMAC (fakelb - IEEE 802.15.4 loopback driver) interface. This option +provides possibility to test and debug stack without usage of real hardware. -See sources in drivers/ieee802154 folder for more details. +See sources in drivers/net/ieee802154 folder for more details. 6LoWPAN Linux implementation ============================ -The IEEE 802.15.4 standard specifies an MTU of 128 bytes, yielding about 80 +The IEEE 802.15.4 standard specifies an MTU of 127 bytes, yielding about 80 octets of actual MAC payload once security is turned on, on a wireless link with a link throughput of 250 kbps or less. The 6LoWPAN adaptation format [RFC4944] was specified to carry IPv6 datagrams over such constrained links, @@ -140,7 +129,8 @@ In Semptember 2011 the standard update was published - [RFC6282]. It deprecates HC1 and HC2 compression and defines IPHC encoding format which is used in this Linux implementation. -All the code related to 6lowpan you may find in files: net/ieee802154/6lowpan.* +All the code related to 6lowpan you may find in files: net/6lowpan/* +and net/ieee802154/6lowpan/* To setup 6lowpan interface you need (busybox release > 1.17.0): 1. Add IEEE802.15.4 interface and initialize PANid; diff --git a/kernel/Documentation/networking/ip-sysctl.txt b/kernel/Documentation/networking/ip-sysctl.txt index 071fb18dc..2ea4c45cf 100644 --- a/kernel/Documentation/networking/ip-sysctl.txt +++ b/kernel/Documentation/networking/ip-sysctl.txt @@ -267,6 +267,15 @@ tcp_ecn - INTEGER but do not request ECN on outgoing connections. Default: 2 +tcp_ecn_fallback - BOOLEAN + If the kernel detects that ECN connection misbehaves, enable fall + back to non-ECN. Currently, this knob implements the fallback + from RFC3168, section 6.1.1.1., but we reserve that in future, + additional detection mechanisms could be implemented under this + knob. The value is not used, if tcp_ecn or per route (or congestion + control) ECN settings are disabled. + Default: 1 (fallback enabled) + tcp_fack - BOOLEAN Enable FACK congestion avoidance and fast retransmission. The value is not used, if tcp_sack is not enabled. @@ -375,6 +384,14 @@ tcp_mem - vector of 3 INTEGERs: min, pressure, max Defaults are calculated at boot time from amount of available memory. +tcp_min_rtt_wlen - INTEGER + The window length of the windowed min filter to track the minimum RTT. + A shorter window lets a flow more quickly pick up new (higher) + minimum RTT when it is moved to a longer path (e.g., due to traffic + engineering). A longer window makes the filter more resistant to RTT + inflations such as transient congestion. The unit is seconds. + Default: 300 + tcp_moderate_rcvbuf - BOOLEAN If set, TCP performs receive buffer auto-tuning, attempting to automatically size the buffer (no greater than tcp_rmem[2]) to @@ -416,6 +433,15 @@ tcp_orphan_retries - INTEGER you should think about lowering this value, such sockets may consume significant resources. Cf. tcp_max_orphans. +tcp_recovery - INTEGER + This value is a bitmap to enable various experimental loss recovery + features. + + RACK: 0x1 enables the RACK loss detection for fast detection of lost + retransmissions and tail drops. + + Default: 0x1 + tcp_reordering - INTEGER Initial reordering level of packets in a TCP stream. TCP stack can then dynamically adjust flow reordering level @@ -577,6 +603,21 @@ tcp_min_tso_segs - INTEGER if available window is too small. Default: 2 +tcp_pacing_ss_ratio - INTEGER + sk->sk_pacing_rate is set by TCP stack using a ratio applied + to current rate. (current_rate = cwnd * mss / srtt) + If TCP is in slow start, tcp_pacing_ss_ratio is applied + to let TCP probe for bigger speeds, assuming cwnd can be + doubled every other RTT. + Default: 200 + +tcp_pacing_ca_ratio - INTEGER + sk->sk_pacing_rate is set by TCP stack using a ratio applied + to current rate. (current_rate = cwnd * mss / srtt) + If TCP is in congestion avoidance phase, tcp_pacing_ca_ratio + is applied to conservatively probe for bigger throughput. + Default: 120 + tcp_tso_win_divisor - INTEGER This allows control over what percentage of the congestion window can be consumed by a single TSO frame. @@ -668,7 +709,7 @@ tcp_limit_output_bytes - INTEGER typical pfifo_fast qdiscs. tcp_limit_output_bytes limits the number of bytes on qdisc or device to reduce artificial RTT/cwnd and reduce bufferbloat. - Default: 131072 + Default: 262144 tcp_challenge_ack_limit - INTEGER Limits number of Challenge ACK sent per second, as recommended @@ -742,8 +783,10 @@ IP Variables: ip_local_port_range - 2 INTEGERS Defines the local port range that is used by TCP and UDP to choose the local port. The first number is the first, the - second the last local port number. The default values are - 32768 and 61000 respectively. + second the last local port number. + If possible, it is better these numbers have different parity. + (one even and one odd values) + The default values are 32768 and 60999 respectively. ip_local_reserved_ports - list of comma separated ranges Specify the ports which are reserved for known third-party @@ -766,7 +809,7 @@ ip_local_reserved_ports - list of comma separated ranges ip_local_port_range, e.g.: $ cat /proc/sys/net/ipv4/ip_local_port_range - 32000 61000 + 32000 60999 $ cat /proc/sys/net/ipv4/ip_local_reserved_ports 8080,9148 @@ -1170,6 +1213,17 @@ tag - INTEGER Allows you to write a number, which can be used as required. Default value is 0. +xfrm4_gc_thresh - INTEGER + The threshold at which we will start garbage collecting for IPv4 + destination cache entries. At twice this value the system will + refuse new allocations. The value must be set below the flowcache + limit (4096 * number of online cpus) to take effect. + +igmp_link_local_mcast_reports - BOOLEAN + Enable IGMP reports for link local multicast groups in the + 224.0.0.X range. + Default TRUE + Alexey Kuznetsov. kuznet@ms2.inr.ac.ru @@ -1204,14 +1258,28 @@ flowlabel_consistency - BOOLEAN FALSE: disabled Default: TRUE -auto_flowlabels - BOOLEAN - Automatically generate flow labels based based on a flow hash - of the packet. This allows intermediate devices, such as routers, - to idenfify packet flows for mechanisms like Equal Cost Multipath +auto_flowlabels - INTEGER + Automatically generate flow labels based on a flow hash of the + packet. This allows intermediate devices, such as routers, to + identify packet flows for mechanisms like Equal Cost Multipath Routing (see RFC 6438). + 0: automatic flow labels are completely disabled + 1: automatic flow labels are enabled by default, they can be + disabled on a per socket basis using the IPV6_AUTOFLOWLABEL + socket option + 2: automatic flow labels are allowed, they may be enabled on a + per socket basis using the IPV6_AUTOFLOWLABEL socket option + 3: automatic flow labels are enabled and enforced, they cannot + be disabled by the socket option + Default: 1 + +flowlabel_state_ranges - BOOLEAN + Split the flow label number space into two ranges. 0-0x7FFFF is + reserved for the IPv6 flow manager facility, 0x80000-0xFFFFF + is reserved for stateless flow labels as described in RFC6437. TRUE: enabled FALSE: disabled - Default: false + Default: true anycast_src_echo_reply - BOOLEAN Controls the use of anycast addresses as source addresses for ICMPv6 @@ -1321,6 +1389,14 @@ accept_ra_from_local - BOOLEAN disabled if accept_ra_from_local is disabled on a specific interface. +accept_ra_min_hop_limit - INTEGER + Minimum hop limit Information in Router Advertisement. + + Hop limit Information in Router Advertisement less than this + variable shall be ignored. + + Default: 1 + accept_ra_pinfo - BOOLEAN Learn Prefix Information in Router Advertisement. @@ -1416,6 +1492,11 @@ mtu - INTEGER Default Maximum Transfer Unit Default: 1280 (IPv6 required minimum) +ip_nonlocal_bind - BOOLEAN + If set, allows processes to bind() to non-local IPv6 addresses, + which can be quite useful - but may break some applications. + Default: 0 + router_probe_interval - INTEGER Minimum interval (in seconds) between Router Probing described in RFC4191. @@ -1436,6 +1517,13 @@ router_solicitations - INTEGER routers are present. Default: 3 +use_oif_addrs_only - BOOLEAN + When enabled, the candidate source addresses for destinations + routed via this interface are restricted to the set of addresses + configured on this interface (vis. RFC 6724, section 4). + + Default: false + use_tempaddr - INTEGER Preference for Privacy Extensions (RFC3041). <= 0 : disable Privacy Extensions @@ -1572,6 +1660,12 @@ ratelimit - INTEGER otherwise the minimal space between responses in milliseconds. Default: 1000 +xfrm6_gc_thresh - INTEGER + The threshold at which we will start garbage collecting for IPv6 + destination cache entries. At twice this value the system will + refuse new allocations. The value must be set below the flowcache + limit (4096 * number of online cpus) to take effect. + IPv6 Update by: Pekka Savola <pekkas@netcore.fi> diff --git a/kernel/Documentation/networking/ipvs-sysctl.txt b/kernel/Documentation/networking/ipvs-sysctl.txt index 3ba709531..e6b1c025f 100644 --- a/kernel/Documentation/networking/ipvs-sysctl.txt +++ b/kernel/Documentation/networking/ipvs-sysctl.txt @@ -157,6 +157,16 @@ expire_quiescent_template - BOOLEAN persistence template if it is to be used to schedule a new connection and the destination server is quiescent. +ignore_tunneled - BOOLEAN + 0 - disabled (default) + not 0 - enabled + + If set, ipvs will set the ipvs_property on all packets which are of + unrecognized protocols. This prevents us from routing tunneled + protocols like ipip, which is useful to prevent rescheduling + packets that have been tunneled to the ipvs host (i.e. to prevent + ipvs routing loops when ipvs is also acting as a real server). + nat_icmp_send - BOOLEAN 0 - disabled (default) not 0 - enabled diff --git a/kernel/Documentation/networking/l2tp.txt b/kernel/Documentation/networking/l2tp.txt index c74434de2..4650a00ed 100644 --- a/kernel/Documentation/networking/l2tp.txt +++ b/kernel/Documentation/networking/l2tp.txt @@ -213,15 +213,12 @@ To create an L2TPv3 ethernet pseudowire between local host 192.168.1.1 and peer 192.168.1.2, using IP addresses 10.5.1.1 and 10.5.1.2 for the tunnel endpoints:- -# modprobe l2tp_eth -# modprobe l2tp_netlink - # ip l2tp add tunnel tunnel_id 1 peer_tunnel_id 1 udp_sport 5000 \ udp_dport 5000 encap udp local 192.168.1.1 remote 192.168.1.2 # ip l2tp add session tunnel_id 1 session_id 1 peer_session_id 1 -# ifconfig -a +# ip -s -d show dev l2tpeth0 # ip addr add 10.5.1.2/32 peer 10.5.1.1/32 dev l2tpeth0 -# ifconfig l2tpeth0 up +# ip li set dev l2tpeth0 up Choose IP addresses to be the address of a local IP interface and that of the remote system. The IP addresses of the l2tpeth0 interface can be diff --git a/kernel/Documentation/networking/netconsole.txt b/kernel/Documentation/networking/netconsole.txt index a5d574a9a..30409a36e 100644 --- a/kernel/Documentation/networking/netconsole.txt +++ b/kernel/Documentation/networking/netconsole.txt @@ -2,6 +2,7 @@ started by Ingo Molnar <mingo@redhat.com>, 2001.09.17 2.6 port and netpoll api by Matt Mackall <mpm@selenic.com>, Sep 9 2003 IPv6 support by Cong Wang <xiyou.wangcong@gmail.com>, Jan 1 2013 +Extended console support by Tejun Heo <tj@kernel.org>, May 1 2015 Please send bug reports to Matt Mackall <mpm@selenic.com> Satyam Sharma <satyam.sharma@gmail.com>, and Cong Wang <xiyou.wangcong@gmail.com> @@ -24,9 +25,10 @@ Sender and receiver configuration: It takes a string configuration parameter "netconsole" in the following format: - netconsole=[src-port]@[src-ip]/[<dev>],[tgt-port]@<tgt-ip>/[tgt-macaddr] + netconsole=[+][src-port]@[src-ip]/[<dev>],[tgt-port]@<tgt-ip>/[tgt-macaddr] where + + if present, enable extended console support src-port source for UDP packets (defaults to 6665) src-ip source IP to use (interface address) dev network interface (eth0) @@ -107,6 +109,7 @@ To remove a target: The interface exposes these parameters of a netconsole target to userspace: enabled Is this target currently enabled? (read-write) + extended Extended mode enabled (read-write) dev_name Local network interface name (read-write) local_port Source UDP port to use (read-write) remote_port Remote agent's UDP port (read-write) @@ -132,6 +135,36 @@ You can also update the local interface dynamically. This is especially useful if you want to use interfaces that have newly come up (and may not have existed when netconsole was loaded / initialized). +Extended console: +================= + +If '+' is prefixed to the configuration line or "extended" config file +is set to 1, extended console support is enabled. An example boot +param follows. + + linux netconsole=+4444@10.0.0.1/eth1,9353@10.0.0.2/12:34:56:78:9a:bc + +Log messages are transmitted with extended metadata header in the +following format which is the same as /dev/kmsg. + + <level>,<sequnum>,<timestamp>,<contflag>;<message text> + +Non printable characters in <message text> are escaped using "\xff" +notation. If the message contains optional dictionary, verbatim +newline is used as the delimeter. + +If a message doesn't fit in certain number of bytes (currently 1000), +the message is split into multiple fragments by netconsole. These +fragments are transmitted with "ncfrag" header field added. + + ncfrag=<byte-offset>/<total-bytes> + +For example, assuming a lot smaller chunk size, a message "the first +chunk, the 2nd chunk." may be split as follows. + + 6,416,1758426,-,ncfrag=0/31;the first chunk, + 6,416,1758426,-,ncfrag=16/31; the 2nd chunk. + Miscellaneous notes: ==================== diff --git a/kernel/Documentation/networking/pktgen.txt b/kernel/Documentation/networking/pktgen.txt index 0344f1d45..f4be85e96 100644 --- a/kernel/Documentation/networking/pktgen.txt +++ b/kernel/Documentation/networking/pktgen.txt @@ -1,6 +1,6 @@ - HOWTO for the linux packet generator + HOWTO for the linux packet generator ------------------------------------ Enable CONFIG_NET_PKTGEN to compile and build pktgen either in-kernel @@ -50,17 +50,33 @@ For ixgbe use e.g. "30" resulting in approx 33K interrupts/sec (1/30*10^6): # ethtool -C ethX rx-usecs 30 -Viewing threads -=============== -/proc/net/pktgen/kpktgend_0 -Name: kpktgend_0 max_before_softirq: 10000 -Running: -Stopped: eth1 -Result: OK: max_before_softirq=10000 +Kernel threads +============== +Pktgen creates a thread for each CPU with affinity to that CPU. +Which is controlled through procfile /proc/net/pktgen/kpktgend_X. + +Example: /proc/net/pktgen/kpktgend_0 + + Running: + Stopped: eth4@0 + Result: OK: add_device=eth4@0 + +Most important are the devices assigned to the thread. + +The two basic thread commands are: + * add_device DEVICE@NAME -- adds a single device + * rem_device_all -- remove all associated devices + +When adding a device to a thread, a corrosponding procfile is created +which is used for configuring this device. Thus, device names need to +be unique. -Most important are the devices assigned to the thread. Note that a -device can only belong to one thread. +To support adding the same device to multiple threads, which is useful +with multi queue NICs, a the device naming scheme is extended with "@": + device@something +The part after "@" can be anything, but it is custom to use the thread +number. Viewing devices =============== @@ -69,29 +85,32 @@ The Params section holds configured information. The Current section holds running statistics. The Result is printed after a run or after interruption. Example: -/proc/net/pktgen/eth1 +/proc/net/pktgen/eth4@0 -Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60 - frags: 0 delay: 0 clone_skb: 1000000 ifname: eth1 + Params: count 100000 min_pkt_size: 60 max_pkt_size: 60 + frags: 0 delay: 0 clone_skb: 64 ifname: eth4@0 flows: 0 flowlen: 0 - dst_min: 10.10.11.2 dst_max: - src_min: src_max: - src_mac: 00:00:00:00:00:00 dst_mac: 00:04:23:AC:FD:82 - udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9 udp_dst_max: 9 - src_mac_count: 0 dst_mac_count: 0 - Flags: -Current: - pkts-sofar: 10000000 errors: 39664 - started: 1103053986245187us stopped: 1103053999346329us idle: 880401us - seq_num: 10000011 cur_dst_mac_offset: 0 cur_src_mac_offset: 0 - cur_saddr: 0x10a0a0a cur_daddr: 0x20b0a0a - cur_udp_dst: 9 cur_udp_src: 9 + queue_map_min: 0 queue_map_max: 0 + dst_min: 192.168.81.2 dst_max: + src_min: src_max: + src_mac: 90:e2:ba:0a:56:b4 dst_mac: 00:1b:21:3c:9d:f8 + udp_src_min: 9 udp_src_max: 109 udp_dst_min: 9 udp_dst_max: 9 + src_mac_count: 0 dst_mac_count: 0 + Flags: UDPSRC_RND NO_TIMESTAMP QUEUE_MAP_CPU + Current: + pkts-sofar: 100000 errors: 0 + started: 623913381008us stopped: 623913396439us idle: 25us + seq_num: 100001 cur_dst_mac_offset: 0 cur_src_mac_offset: 0 + cur_saddr: 192.168.8.3 cur_daddr: 192.168.81.2 + cur_udp_dst: 9 cur_udp_src: 42 + cur_queue_map: 0 flows: 0 -Result: OK: 13101142(c12220741+d880401) usec, 10000000 (60byte,0frags) - 763292pps 390Mb/sec (390805504bps) errors: 39664 + Result: OK: 15430(c15405+d25) usec, 100000 (60byte,0frags) + 6480562pps 3110Mb/sec (3110669760bps) errors: 0 -Configuring threads and devices -================================ + +Configuring devices +=================== This is done via the /proc interface, and most easily done via pgset as defined in the sample scripts. @@ -126,7 +145,7 @@ Examples: To select queue 1 of a given device, use queue_map_min=1 and queue_map_max=1 - pgset "src_mac_count 1" Sets the number of MACs we'll range through. + pgset "src_mac_count 1" Sets the number of MACs we'll range through. The 'minimum' MAC is what you set with srcmac. pgset "dst_mac_count 1" Sets the number of MACs we'll range through. @@ -145,6 +164,7 @@ Examples: UDPCSUM, IPSEC # IPsec encapsulation (needs CONFIG_XFRM) NODE_ALLOC # node specific memory allocation + NO_TIMESTAMP # disable timestamping pgset spi SPI_VALUE Set specific SA used to transform packet. @@ -192,24 +212,43 @@ Examples: pgset "rate 300M" set rate to 300 Mb/s pgset "ratep 1000000" set rate to 1Mpps + pgset "xmit_mode netif_receive" RX inject into stack netif_receive_skb() + Works with "burst" but not with "clone_skb". + Default xmit_mode is "start_xmit". + Sample scripts ============== -A collection of small tutorial scripts for pktgen is in the -samples/pktgen directory: +A collection of tutorial scripts and helpers for pktgen is in the +samples/pktgen directory. The helper parameters.sh file support easy +and consistant parameter parsing across the sample scripts. + +Usage example and help: + ./pktgen_sample01_simple.sh -i eth4 -m 00:1B:21:3C:9D:F8 -d 192.168.8.2 + +Usage: ./pktgen_sample01_simple.sh [-vx] -i ethX + -i : ($DEV) output interface/device (required) + -s : ($PKT_SIZE) packet size + -d : ($DEST_IP) destination IP + -m : ($DST_MAC) destination MAC-addr + -t : ($THREADS) threads to start + -c : ($SKB_CLONE) SKB clones send before alloc new SKB + -b : ($BURST) HW level bursting of SKBs + -v : ($VERBOSE) verbose + -x : ($DEBUG) debug + +The global variables being set are also listed. E.g. the required +interface/device parameter "-i" sets variable $DEV. Copy the +pktgen_sampleXX scripts and modify them to fit your own needs. + +The old scripts: -pktgen.conf-1-1 # 1 CPU 1 dev pktgen.conf-1-2 # 1 CPU 2 dev -pktgen.conf-2-1 # 2 CPU's 1 dev -pktgen.conf-2-2 # 2 CPU's 2 dev pktgen.conf-1-1-rdos # 1 CPU 1 dev w. route DoS pktgen.conf-1-1-ip6 # 1 CPU 1 dev ipv6 pktgen.conf-1-1-ip6-rdos # 1 CPU 1 dev ipv6 w. route DoS pktgen.conf-1-1-flows # 1 CPU 1 dev multiple flows. -Run in shell: ./pktgen.conf-X-Y -This does all the setup including sending. - Interrupt affinity =================== @@ -217,6 +256,9 @@ Note that when adding devices to a specific CPU it is a good idea to also assign /proc/irq/XX/smp_affinity so that the TX interrupts are bound to the same CPU. This reduces cache bouncing when freeing skbs. +Plus using the device flag QUEUE_MAP_CPU, which maps the SKBs TX queue +to the running threads CPU (directly from smp_processor_id()). + Enable IPsec ============ Default IPsec transformation with ESP encapsulation plus transport mode @@ -237,18 +279,19 @@ Current commands and configuration options start stop +reset ** Thread commands: add_device rem_device_all -max_before_softirq ** Device commands: count clone_skb +burst debug frags @@ -257,10 +300,17 @@ delay src_mac_count dst_mac_count -pkt_size +pkt_size min_pkt_size max_pkt_size +queue_map_min +queue_map_max +skb_priority + +tos (ipv4) +traffic_class (ipv6) + mpls udp_src_min @@ -269,6 +319,8 @@ udp_src_max udp_dst_min udp_dst_max +node + flag IPSRC_RND IPDST_RND @@ -287,6 +339,9 @@ flag UDPCSUM IPSEC NODE_ALLOC + NO_TIMESTAMP + +spi (ipsec) dst_min dst_max @@ -299,8 +354,10 @@ src_mac clear_counters -dst6 src6 +dst6 +dst6_max +dst6_min flows flowlen @@ -308,6 +365,17 @@ flowlen rate ratep +xmit_mode <start_xmit|netif_receive> + +vlan_cfi +vlan_id +vlan_p + +svlan_cfi +svlan_id +svlan_p + + References: ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/ ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/ diff --git a/kernel/Documentation/networking/stmmac.txt b/kernel/Documentation/networking/stmmac.txt index e655e2453..d64a14714 100644 --- a/kernel/Documentation/networking/stmmac.txt +++ b/kernel/Documentation/networking/stmmac.txt @@ -135,12 +135,8 @@ struct plat_stmmacenet_data { int maxmtu; void (*fix_mac_speed)(void *priv, unsigned int speed); void (*bus_setup)(void __iomem *ioaddr); - void *(*setup)(struct platform_device *pdev); - void (*free)(struct platform_device *pdev, void *priv); int (*init)(struct platform_device *pdev, void *priv); void (*exit)(struct platform_device *pdev, void *priv); - void *custom_cfg; - void *custom_data; void *bsp_priv; }; @@ -179,15 +175,11 @@ Where: o bus_setup: perform HW setup of the bus. For example, on some ST platforms this field is used to configure the AMBA bridge to generate more efficient STBus traffic. - o setup/init/exit: callbacks used for calling a custom initialization; + o init/exit: callbacks used for calling a custom initialization; this is sometime necessary on some platforms (e.g. ST boxes) where the HW needs to have set some PIO lines or system cfg - registers. setup should return a pointer to private data, - which will be stored in bsp_priv, and then passed to init and - exit callbacks. init/exit callbacks should not use or modify + registers. init/exit callbacks should not use or modify platform data. - o custom_cfg/custom_data: this is a custom configuration that can be passed - while initializing the resources. o bsp_priv: another private pointer. For MDIO bus The we have: @@ -262,7 +254,7 @@ static struct fixed_phy_status stmmac0_fixed_phy_status = { During the board's device_init we can configure the first MAC for fixed_link by calling: - fixed_phy_add(PHY_POLL, 1, &stmmac0_fixed_phy_status));) + fixed_phy_add(PHY_POLL, 1, &stmmac0_fixed_phy_status, -1); and the second one, with a real PHY device attached to the bus, by using the stmmac_mdio_bus_data structure (to provide the id, the reset procedure etc). @@ -278,8 +270,6 @@ capability register can replace what has been passed from the platform. Please see the following document: Documentation/devicetree/bindings/net/stmmac.txt -and the stmmac_of_data structure inside the include/linux/stmmac.h header file. - 4.11) This is a summary of the content of some relevant files: o stmmac_main.c: to implement the main network device driver; o stmmac_mdio.c: to provide mdio functions; diff --git a/kernel/Documentation/networking/switchdev.txt b/kernel/Documentation/networking/switchdev.txt index f981a9295..91994134e 100644 --- a/kernel/Documentation/networking/switchdev.txt +++ b/kernel/Documentation/networking/switchdev.txt @@ -1,59 +1,394 @@ -Switch (and switch-ish) device drivers HOWTO -=========================== - -Please note that the word "switch" is here used in very generic meaning. -This include devices supporting L2/L3 but also various flow offloading chips, -including switches embedded into SR-IOV NICs. - -Lets describe a topology a bit. Imagine the following example: - - +----------------------------+ +---------------+ - | SOME switch chip | | CPU | - +----------------------------+ +---------------+ - port1 port2 port3 port4 MNGMNT | PCI-E | - | | | | | +---------------+ - PHY PHY | | | | NIC0 NIC1 - | | | | | | - | | +- PCI-E -+ | | - | +------- MII -------+ | - +------------- MII ------------+ - -In this example, there are two independent lines between the switch silicon -and CPU. NIC0 and NIC1 drivers are not aware of a switch presence. They are -separate from the switch driver. SOME switch chip is by managed by a driver -via PCI-E device MNGMNT. Note that MNGMNT device, NIC0 and NIC1 may be -connected to some other type of bus. - -Now, for the previous example show the representation in kernel: - - +----------------------------+ +---------------+ - | SOME switch chip | | CPU | - +----------------------------+ +---------------+ - sw0p0 sw0p1 sw0p2 sw0p3 MNGMNT | PCI-E | - | | | | | +---------------+ - PHY PHY | | | | eth0 eth1 - | | | | | | - | | +- PCI-E -+ | | - | +------- MII -------+ | - +------------- MII ------------+ - -Lets call the example switch driver for SOME switch chip "SOMEswitch". This -driver takes care of PCI-E device MNGMNT. There is a netdevice instance sw0pX -created for each port of a switch. These netdevices are instances -of "SOMEswitch" driver. sw0pX netdevices serve as a "representation" -of the switch chip. eth0 and eth1 are instances of some other existing driver. - -The only difference of the switch-port netdevice from the ordinary netdevice -is that is implements couple more NDOs: - - ndo_switch_parent_id_get - This returns the same ID for two port netdevices - of the same physical switch chip. This is - mandatory to be implemented by all switch drivers - and serves the caller for recognition of a port - netdevice. - ndo_switch_parent_* - Functions that serve for a manipulation of the switch - chip itself (it can be though of as a "parent" of the - port, therefore the name). They are not port-specific. - Caller might use arbitrary port netdevice of the same - switch and it will make no difference. - ndo_switch_port_* - Functions that serve for a port-specific manipulation. +Ethernet switch device driver model (switchdev) +=============================================== +Copyright (c) 2014 Jiri Pirko <jiri@resnulli.us> +Copyright (c) 2014-2015 Scott Feldman <sfeldma@gmail.com> + + +The Ethernet switch device driver model (switchdev) is an in-kernel driver +model for switch devices which offload the forwarding (data) plane from the +kernel. + +Figure 1 is a block diagram showing the components of the switchdev model for +an example setup using a data-center-class switch ASIC chip. Other setups +with SR-IOV or soft switches, such as OVS, are possible. + + +βββββββββββββββββββββββββββββUser-spaceβtoolsβββββββββββββββββββββββββββββββββ +ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ +βββββββuserβspaceβββββββββββββββββββ|βββββββββββββββββββββββββββββββββββββββββ +ββββββ+-------------------------------------------------------------------+βββ +βββββββkernelβββββββββββββββββββββββ|βNetlinkβββββββββββββββββββββββββββββββββ +ββββββββββββββββββββββββββββββββββββ|βββββββββββββββββββββββββββββββββββββββββ +βββββββββββββββββββββ+--------------+-------------------------------+βββββββββ +βββββββββββββββββββββ|βββββββββNetworkβstackββββββββββββββββββββββββ|βββββββββ +βββββββββββββββββββββ|βββββββββββ(Linux)ββββββββββββββββββββββββββββ|βββββββββ +βββββββββββββββββββββ|ββββββββββββββββββββββββββββββββββββββββββββββ|βββββββββ +βββββββββββββββββββββ+----------------------------------------------+βββββββββ +ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + sw1p2 sw1p4 sw1p6 +ββββββββββββββββββββββsw1p1β + sw1p3 + βsw1p5 + ββββββββeth1βββββββββββββ +ββββββββββββββββββββββββ+ββββ|ββββ+ββββ|ββββ+ββββ|ββββββββββββ+βββββββββββββββ +ββββββββββββββββββββββββ|ββββ|ββββ|ββββ|ββββ|ββββ|ββββββββββββ|βββββββββββββββ +βββββββββββββββββββββ+--+----+----+----+-+--+----+---+ββ+-----+-----+βββββββββ +βββββββββββββββββββββ|βββββββββSwitchβdriverβββββββββ|ββ|ββββmgmtβββ|βββββββββ +βββββββββββββββββββββ|ββββββββ(thisβdocument)ββββββββ|ββ|βββdriverββ|βββββββββ +βββββββββββββββββββββ|βββββββββββββββββββββββββββββββ|ββ|βββββββββββ|βββββββββ +βββββββββββββββββββββ+--------------+----------------+ββ+-----------+βββββββββ +ββββββββββββββββββββββββββββββββββββ|βββββββββββββββββββββββββ βββββββββββββββ +βββββββkernelβββββββββββββββββββββββ|βHWβbusβ(egβPCI)βββββββββ βββββββββββββββ +ββββββ+-------------------------------------------------------------------+βββ +βββββββhardwareβββββββββββββββββββββ|βββββββββββββββββββββββββ βββββββββββββββ +βββββββββββββββββββββ+--------------+---+------------+ββββββββ βββββββββββββββ +βββββββββββββββββββββ|βββββββββSwitchβdevice (sw1)βββ|ββββββββ βββββββββββββββ +βββββββββββββββββββββ|ββ+----+βββββββββββββββββββββββ+--------+βββββββββββββββ +βββββββββββββββββββββ|ββ|ββββvβoffloadedβdataβpathβββ|βmgmtβportββββββββββββββ +βββββββββββββββββββββ|ββ|ββββ|βββββββββββββββββββββββ|ββββββββββββββββββββββββ +βββββββββββββββββββββ+--|----|----+----+----+----+---+ββββββββββββββββββββββββ +ββββββββββββββββββββββββ|ββββ|ββββ|ββββ|ββββ|ββββ|ββββββββββββββββββββββββββββ +ββββββββββββββββββββββββ+ββββ+ββββ+ββββ+ββββ+ββββ+ββββββββββββββββββββββββββββ +βββββββββββββββββββββββp1βββp2βββp3βββp4βββp5βββp6 +βββββββββββββββββββββββββββββββββββββββ +βββββββββββββββββββββββββββββfront-panelβportsββββββββββββββββββββββββββββββββ +ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + + Fig 1. + + +Include Files +------------- + +#include <linux/netdevice.h> +#include <net/switchdev.h> + + +Configuration +------------- + +Use "depends NET_SWITCHDEV" in driver's Kconfig to ensure switchdev model +support is built for driver. + + +Switch Ports +------------ + +On switchdev driver initialization, the driver will allocate and register a +struct net_device (using register_netdev()) for each enumerated physical switch +port, called the port netdev. A port netdev is the software representation of +the physical port and provides a conduit for control traffic to/from the +controller (the kernel) and the network, as well as an anchor point for higher +level constructs such as bridges, bonds, VLANs, tunnels, and L3 routers. Using +standard netdev tools (iproute2, ethtool, etc), the port netdev can also +provide to the user access to the physical properties of the switch port such +as PHY link state and I/O statistics. + +There is (currently) no higher-level kernel object for the switch beyond the +port netdevs. All of the switchdev driver ops are netdev ops or switchdev ops. + +A switch management port is outside the scope of the switchdev driver model. +Typically, the management port is not participating in offloaded data plane and +is loaded with a different driver, such as a NIC driver, on the management port +device. + +Port Netdev Naming +^^^^^^^^^^^^^^^^^^ + +Udev rules should be used for port netdev naming, using some unique attribute +of the port as a key, for example the port MAC address or the port PHYS name. +Hard-coding of kernel netdev names within the driver is discouraged; let the +kernel pick the default netdev name, and let udev set the final name based on a +port attribute. + +Using port PHYS name (ndo_get_phys_port_name) for the key is particularly +useful for dynamically-named ports where the device names its ports based on +external configuration. For example, if a physical 40G port is split logically +into 4 10G ports, resulting in 4 port netdevs, the device can give a unique +name for each port using port PHYS name. The udev rule would be: + +SUBSYSTEM=="net", ACTION=="add", DRIVER="<driver>", ATTR{phys_port_name}!="", \ + NAME="$attr{phys_port_name}" + +Suggested naming convention is "swXpYsZ", where X is the switch name or ID, Y +is the port name or ID, and Z is the sub-port name or ID. For example, sw1p1s0 +would be sub-port 0 on port 1 on switch 1. + +Switch ID +^^^^^^^^^ + +The switchdev driver must implement the switchdev op switchdev_port_attr_get +for SWITCHDEV_ATTR_ID_PORT_PARENT_ID for each port netdev, returning the same +physical ID for each port of a switch. The ID must be unique between switches +on the same system. The ID does not need to be unique between switches on +different systems. + +The switch ID is used to locate ports on a switch and to know if aggregated +ports belong to the same switch. + +Port Features +^^^^^^^^^^^^^ + +NETIF_F_NETNS_LOCAL + +If the switchdev driver (and device) only supports offloading of the default +network namespace (netns), the driver should set this feature flag to prevent +the port netdev from being moved out of the default netns. A netns-aware +driver/device would not set this flag and be responsible for partitioning +hardware to preserve netns containment. This means hardware cannot forward +traffic from a port in one namespace to another port in another namespace. + +Port Topology +^^^^^^^^^^^^^ + +The port netdevs representing the physical switch ports can be organized into +higher-level switching constructs. The default construct is a standalone +router port, used to offload L3 forwarding. Two or more ports can be bonded +together to form a LAG. Two or more ports (or LAGs) can be bridged to bridge +L2 networks. VLANs can be applied to sub-divide L2 networks. L2-over-L3 +tunnels can be built on ports. These constructs are built using standard Linux +tools such as the bridge driver, the bonding/team drivers, and netlink-based +tools such as iproute2. + +The switchdev driver can know a particular port's position in the topology by +monitoring NETDEV_CHANGEUPPER notifications. For example, a port moved into a +bond will see it's upper master change. If that bond is moved into a bridge, +the bond's upper master will change. And so on. The driver will track such +movements to know what position a port is in in the overall topology by +registering for netdevice events and acting on NETDEV_CHANGEUPPER. + +L2 Forwarding Offload +--------------------- + +The idea is to offload the L2 data forwarding (switching) path from the kernel +to the switchdev device by mirroring bridge FDB entries down to the device. An +FDB entry is the {port, MAC, VLAN} tuple forwarding destination. + +To offloading L2 bridging, the switchdev driver/device should support: + + - Static FDB entries installed on a bridge port + - Notification of learned/forgotten src mac/vlans from device + - STP state changes on the port + - VLAN flooding of multicast/broadcast and unknown unicast packets + +Static FDB Entries +^^^^^^^^^^^^^^^^^^ + +The switchdev driver should implement ndo_fdb_add, ndo_fdb_del and ndo_fdb_dump +to support static FDB entries installed to the device. Static bridge FDB +entries are installed, for example, using iproute2 bridge cmd: + + bridge fdb add ADDR dev DEV [vlan VID] [self] + +The driver should use the helper switchdev_port_fdb_xxx ops for ndo_fdb_xxx +ops, and handle add/delete/dump of SWITCHDEV_OBJ_ID_PORT_FDB object using +switchdev_port_obj_xxx ops. + +XXX: what should be done if offloading this rule to hardware fails (for +example, due to full capacity in hardware tables) ? + +Note: by default, the bridge does not filter on VLAN and only bridges untagged +traffic. To enable VLAN support, turn on VLAN filtering: + + echo 1 >/sys/class/net/<bridge>/bridge/vlan_filtering + +Notification of Learned/Forgotten Source MAC/VLANs +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The switch device will learn/forget source MAC address/VLAN on ingress packets +and notify the switch driver of the mac/vlan/port tuples. The switch driver, +in turn, will notify the bridge driver using the switchdev notifier call: + + err = call_switchdev_notifiers(val, dev, info); + +Where val is SWITCHDEV_FDB_ADD when learning and SWITCHDEV_FDB_DEL when +forgetting, and info points to a struct switchdev_notifier_fdb_info. On +SWITCHDEV_FDB_ADD, the bridge driver will install the FDB entry into the +bridge's FDB and mark the entry as NTF_EXT_LEARNED. The iproute2 bridge +command will label these entries "offload": + + $ bridge fdb + 52:54:00:12:35:01 dev sw1p1 master br0 permanent + 00:02:00:00:02:00 dev sw1p1 master br0 offload + 00:02:00:00:02:00 dev sw1p1 self + 52:54:00:12:35:02 dev sw1p2 master br0 permanent + 00:02:00:00:03:00 dev sw1p2 master br0 offload + 00:02:00:00:03:00 dev sw1p2 self + 33:33:00:00:00:01 dev eth0 self permanent + 01:00:5e:00:00:01 dev eth0 self permanent + 33:33:ff:00:00:00 dev eth0 self permanent + 01:80:c2:00:00:0e dev eth0 self permanent + 33:33:00:00:00:01 dev br0 self permanent + 01:00:5e:00:00:01 dev br0 self permanent + 33:33:ff:12:35:01 dev br0 self permanent + +Learning on the port should be disabled on the bridge using the bridge command: + + bridge link set dev DEV learning off + +Learning on the device port should be enabled, as well as learning_sync: + + bridge link set dev DEV learning on self + bridge link set dev DEV learning_sync on self + +Learning_sync attribute enables syncing of the learned/forgotton FDB entry to +the bridge's FDB. It's possible, but not optimal, to enable learning on the +device port and on the bridge port, and disable learning_sync. + +To support learning and learning_sync port attributes, the driver implements +switchdev op switchdev_port_attr_get/set for +SWITCHDEV_ATTR_PORT_ID_BRIDGE_FLAGS. The driver should initialize the attributes +to the hardware defaults. + +FDB Ageing +^^^^^^^^^^ + +The bridge will skip ageing FDB entries marked with NTF_EXT_LEARNED and it is +the responsibility of the port driver/device to age out these entries. If the +port device supports ageing, when the FDB entry expires, it will notify the +driver which in turn will notify the bridge with SWITCHDEV_FDB_DEL. If the +device does not support ageing, the driver can simulate ageing using a +garbage collection timer to monitor FBD entries. Expired entries will be +notified to the bridge using SWITCHDEV_FDB_DEL. See rocker driver for +example of driver running ageing timer. + +To keep an NTF_EXT_LEARNED entry "alive", the driver should refresh the FDB +entry by calling call_switchdev_notifiers(SWITCHDEV_FDB_ADD, ...). The +notification will reset the FDB entry's last-used time to now. The driver +should rate limit refresh notifications, for example, no more than once a +second. (The last-used time is visible using the bridge -s fdb option). + +STP State Change on Port +^^^^^^^^^^^^^^^^^^^^^^^^ + +Internally or with a third-party STP protocol implementation (e.g. mstpd), the +bridge driver maintains the STP state for ports, and will notify the switch +driver of STP state change on a port using the switchdev op +switchdev_attr_port_set for SWITCHDEV_ATTR_PORT_ID_STP_UPDATE. + +State is one of BR_STATE_*. The switch driver can use STP state updates to +update ingress packet filter list for the port. For example, if port is +DISABLED, no packets should pass, but if port moves to BLOCKED, then STP BPDUs +and other IEEE 01:80:c2:xx:xx:xx link-local multicast packets can pass. + +Note that STP BDPUs are untagged and STP state applies to all VLANs on the port +so packet filters should be applied consistently across untagged and tagged +VLANs on the port. + +Flooding L2 domain +^^^^^^^^^^^^^^^^^^ + +For a given L2 VLAN domain, the switch device should flood multicast/broadcast +and unknown unicast packets to all ports in domain, if allowed by port's +current STP state. The switch driver, knowing which ports are within which +vlan L2 domain, can program the switch device for flooding. The packet may +be sent to the port netdev for processing by the bridge driver. The +bridge should not reflood the packet to the same ports the device flooded, +otherwise there will be duplicate packets on the wire. + +To avoid duplicate packets, the device/driver should mark a packet as already +forwarded using skb->offload_fwd_mark. The same mark is set on the device +ports in the domain using dev->offload_fwd_mark. If the skb->offload_fwd_mark +is non-zero and matches the forwarding egress port's dev->skb_mark, the kernel +will drop the skb right before transmit on the egress port, with the +understanding that the device already forwarded the packet on same egress port. +The driver can use switchdev_port_fwd_mark_set() to set a globally unique mark +for port's dev->offload_fwd_mark, based on the port's parent ID (switch ID) and +a group ifindex. + +It is possible for the switch device to not handle flooding and push the +packets up to the bridge driver for flooding. This is not ideal as the number +of ports scale in the L2 domain as the device is much more efficient at +flooding packets that software. + +If supported by the device, flood control can be offloaded to it, preventing +certain netdevs from flooding unicast traffic for which there is no FDB entry. + +IGMP Snooping +^^^^^^^^^^^^^ + +XXX: complete this section + + +L3 Routing Offload +------------------ + +Offloading L3 routing requires that device be programmed with FIB entries from +the kernel, with the device doing the FIB lookup and forwarding. The device +does a longest prefix match (LPM) on FIB entries matching route prefix and +forwards the packet to the matching FIB entry's nexthop(s) egress ports. + +To program the device, the driver implements support for +SWITCHDEV_OBJ_IPV[4|6]_FIB object using switchdev_port_obj_xxx ops. +switchdev_port_obj_add is used for both adding a new FIB entry to the device, +or modifying an existing entry on the device. + +XXX: Currently, only SWITCHDEV_OBJ_ID_IPV4_FIB objects are supported. + +SWITCHDEV_OBJ_ID_IPV4_FIB object passes: + + struct switchdev_obj_ipv4_fib { /* IPV4_FIB */ + u32 dst; + int dst_len; + struct fib_info *fi; + u8 tos; + u8 type; + u32 nlflags; + u32 tb_id; + } ipv4_fib; + +to add/modify/delete IPv4 dst/dest_len prefix on table tb_id. The *fi +structure holds details on the route and route's nexthops. *dev is one of the +port netdevs mentioned in the routes next hop list. If the output port netdevs +referenced in the route's nexthop list don't all have the same switch ID, the +driver is not called to add/modify/delete the FIB entry. + +Routes offloaded to the device are labeled with "offload" in the ip route +listing: + + $ ip route show + default via 192.168.0.2 dev eth0 + 11.0.0.0/30 dev sw1p1 proto kernel scope link src 11.0.0.2 offload + 11.0.0.4/30 via 11.0.0.1 dev sw1p1 proto zebra metric 20 offload + 11.0.0.8/30 dev sw1p2 proto kernel scope link src 11.0.0.10 offload + 11.0.0.12/30 via 11.0.0.9 dev sw1p2 proto zebra metric 20 offload + 12.0.0.2 proto zebra metric 30 offload + nexthop via 11.0.0.1 dev sw1p1 weight 1 + nexthop via 11.0.0.9 dev sw1p2 weight 1 + 12.0.0.3 via 11.0.0.1 dev sw1p1 proto zebra metric 20 offload + 12.0.0.4 via 11.0.0.9 dev sw1p2 proto zebra metric 20 offload + 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.15 + +XXX: add/mod/del IPv6 FIB API + +Nexthop Resolution +^^^^^^^^^^^^^^^^^^ + +The FIB entry's nexthop list contains the nexthop tuple (gateway, dev), but for +the switch device to forward the packet with the correct dst mac address, the +nexthop gateways must be resolved to the neighbor's mac address. Neighbor mac +address discovery comes via the ARP (or ND) process and is available via the +arp_tbl neighbor table. To resolve the routes nexthop gateways, the driver +should trigger the kernel's neighbor resolution process. See the rocker +driver's rocker_port_ipv4_resolve() for an example. + +The driver can monitor for updates to arp_tbl using the netevent notifier +NETEVENT_NEIGH_UPDATE. The device can be programmed with resolved nexthops +for the routes as arp_tbl updates. The driver implements ndo_neigh_destroy +to know when arp_tbl neighbor entries are purged from the port. + +Transaction item queue +^^^^^^^^^^^^^^^^^^^^^^ + +For switchdev ops attr_set and obj_add, there is a 2 phase transaction model +used. First phase is to "prepare" anything needed, including various checks, +memory allocation, etc. The goal is to handle the stuff that is not unlikely +to fail here. The second phase is to "commit" the actual changes. + +Switchdev provides an inftrastructure for sharing items (for example memory +allocations) between the two phases. + +The object created by a driver in "prepare" phase and it is queued up by: +switchdev_trans_item_enqueue() +During the "commit" phase, the driver gets the object by: +switchdev_trans_item_dequeue() + +If a transaction is aborted during "prepare" phase, switchdev code will handle +cleanup of the queued-up objects. diff --git a/kernel/Documentation/networking/tc-actions-env-rules.txt b/kernel/Documentation/networking/tc-actions-env-rules.txt index 70d6cf608..f37814693 100644 --- a/kernel/Documentation/networking/tc-actions-env-rules.txt +++ b/kernel/Documentation/networking/tc-actions-env-rules.txt @@ -8,14 +8,8 @@ For example if your action queues a packet to be processed later, or intentionally branches by redirecting a packet, then you need to clone the packet. -There are certain fields in the skb tc_verd that need to be reset so we -avoid loops, etc. A few are generic enough that skb_act_clone() -resets them for you, so invoke skb_act_clone() rather than skb_clone(). - 2) If you munge any packet thou shalt call pskb_expand_head in the case someone else is referencing the skb. After that you "own" the skb. -You must also tell us if it is ok to munge the packet (TC_OK2MUNGE), -this way any action downstream can stomp on the packet. 3) Dropping packets you don't own is a no-no. You simply return TC_ACT_SHOT to the caller and they will drop it. diff --git a/kernel/Documentation/networking/timestamping.txt b/kernel/Documentation/networking/timestamping.txt index 5f0922613..a977339fb 100644 --- a/kernel/Documentation/networking/timestamping.txt +++ b/kernel/Documentation/networking/timestamping.txt @@ -359,6 +359,13 @@ the requested fine-grained filtering for incoming packets is not supported, the driver may time stamp more than just the requested types of packets. +Drivers are free to use a more permissive configuration than the requested +configuration. It is expected that drivers should only implement directly the +most generic mode that can be supported. For example if the hardware can +support HWTSTAMP_FILTER_V2_EVENT, then it should generally always upscale +HWTSTAMP_FILTER_V2_L2_SYNC_MESSAGE, and so forth, as HWTSTAMP_FILTER_V2_EVENT +is more generic (and more useful to applications). + A driver which supports hardware time stamping shall update the struct with the actual, possibly more permissive configuration. If the requested packets cannot be time stamped, then nothing should be diff --git a/kernel/Documentation/networking/timestamping/txtimestamp.c b/kernel/Documentation/networking/timestamping/txtimestamp.c index 8217510d3..5df07047c 100644 --- a/kernel/Documentation/networking/timestamping/txtimestamp.c +++ b/kernel/Documentation/networking/timestamping/txtimestamp.c @@ -36,6 +36,7 @@ #include <asm/types.h> #include <error.h> #include <errno.h> +#include <inttypes.h> #include <linux/errqueue.h> #include <linux/if_ether.h> #include <linux/net_tstamp.h> @@ -49,7 +50,6 @@ #include <poll.h> #include <stdarg.h> #include <stdbool.h> -#include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> @@ -96,7 +96,7 @@ static void __print_timestamp(const char *name, struct timespec *cur, prev_ms = (long) ts_prev.tv_sec * 1000 * 1000; prev_ms += ts_prev.tv_nsec / 1000; - fprintf(stderr, " (%+ld us)", cur_ms - prev_ms); + fprintf(stderr, " (%+" PRId64 " us)", cur_ms - prev_ms); } ts_prev = *cur; diff --git a/kernel/Documentation/networking/vrf.txt b/kernel/Documentation/networking/vrf.txt new file mode 100644 index 000000000..d52aa10cf --- /dev/null +++ b/kernel/Documentation/networking/vrf.txt @@ -0,0 +1,393 @@ +Virtual Routing and Forwarding (VRF) +==================================== +The VRF device combined with ip rules provides the ability to create virtual +routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the +Linux network stack. One use case is the multi-tenancy problem where each +tenant has their own unique routing tables and in the very least need +different default gateways. + +Processes can be "VRF aware" by binding a socket to the VRF device. Packets +through the socket then use the routing table associated with the VRF +device. An important feature of the VRF device implementation is that it +impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected +(ie., they do not need to be run in each VRF). The design also allows +the use of higher priority ip rules (Policy Based Routing, PBR) to take +precedence over the VRF device rules directing specific traffic as desired. + +In addition, VRF devices allow VRFs to be nested within namespaces. For +example network namespaces provide separation of network interfaces at L1 +(Layer 1 separation), VLANs on the interfaces within a namespace provide +L2 separation and then VRF devices provide L3 separation. + +Design +------ +A VRF device is created with an associated route table. Network interfaces +are then enslaved to a VRF device: + + +-----------------------------+ + | vrf-blue | ===> route table 10 + +-----------------------------+ + | | | + +------+ +------+ +-------------+ + | eth1 | | eth2 | ... | bond1 | + +------+ +------+ +-------------+ + | | + +------+ +------+ + | eth8 | | eth9 | + +------+ +------+ + +Packets received on an enslaved device and are switched to the VRF device +using an rx_handler which gives the impression that packets flow through +the VRF device. Similarly on egress routing rules are used to send packets +to the VRF device driver before getting sent out the actual interface. This +allows tcpdump on a VRF device to capture all packets into and out of the +VRF as a whole.[1] Similiarly, netfilter [2] and tc rules can be applied +using the VRF device to specify rules that apply to the VRF domain as a whole. + +[1] Packets in the forwarded state do not flow through the device, so those + packets are not seen by tcpdump. Will revisit this limitation in a + future release. + +[2] Iptables on ingress is limited to NF_INET_PRE_ROUTING only with skb->dev + set to real ingress device and egress is limited to NF_INET_POST_ROUTING. + Will revisit this limitation in a future release. + + +Setup +----- +1. VRF device is created with an association to a FIB table. + e.g, ip link add vrf-blue type vrf table 10 + ip link set dev vrf-blue up + +2. Rules are added that send lookups to the associated FIB table when the + iif or oif is the VRF device. e.g., + ip ru add oif vrf-blue table 10 + ip ru add iif vrf-blue table 10 + + Set the default route for the table (and hence default route for the VRF). + e.g, ip route add table 10 prohibit default + +3. Enslave L3 interfaces to a VRF device. + e.g, ip link set dev eth1 master vrf-blue + + Local and connected routes for enslaved devices are automatically moved to + the table associated with VRF device. Any additional routes depending on + the enslaved device will need to be reinserted following the enslavement. + +4. Additional VRF routes are added to associated table. + e.g., ip route add table 10 ... + + +Applications +------------ +Applications that are to work within a VRF need to bind their socket to the +VRF device: + + setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1); + +or to specify the output device using cmsg and IP_PKTINFO. + + +Limitations +----------- +Index of original ingress interface is not available via cmsg. Will address +soon. + +################################################################################ + +Using iproute2 for VRFs +======================= +VRF devices do *not* have to start with 'vrf-'. That is a convention used here +for emphasis of the device type, similar to use of 'br' in bridge names. + +1. Create a VRF + + To instantiate a VRF device and associate it with a table: + $ ip link add dev NAME type vrf table ID + + Remember to add the ip rules as well: + $ ip ru add oif NAME table 10 + $ ip ru add iif NAME table 10 + $ ip -6 ru add oif NAME table 10 + $ ip -6 ru add iif NAME table 10 + + Without the rules route lookups are not directed to the table. + + For example: + $ ip link add dev vrf-blue type vrf table 10 + $ ip ru add pref 200 oif vrf-blue table 10 + $ ip ru add pref 200 iif vrf-blue table 10 + $ ip -6 ru add pref 200 oif vrf-blue table 10 + $ ip -6 ru add pref 200 iif vrf-blue table 10 + + +2. List VRFs + + To list VRFs that have been created: + $ ip [-d] link show type vrf + NOTE: The -d option is needed to show the table id + + For example: + $ ip -d link show type vrf + 11: vrf-mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0 + vrf table 1 addrgenmode eui64 + 12: vrf-red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0 + vrf table 10 addrgenmode eui64 + 13: vrf-blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0 + vrf table 66 addrgenmode eui64 + 14: vrf-green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0 + vrf table 81 addrgenmode eui64 + + + Or in brief output: + + $ ip -br link show type vrf + vrf-mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> + vrf-red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> + vrf-blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> + vrf-green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> + + +3. Assign a Network Interface to a VRF + + Network interfaces are assigned to a VRF by enslaving the netdevice to a + VRF device: + $ ip link set dev NAME master VRF-NAME + + On enslavement connected and local routes are automatically moved to the + table associated with the VRF device. + + For example: + $ ip link set dev eth0 master vrf-mgmt + + +4. Show Devices Assigned to a VRF + + To show devices that have been assigned to a specific VRF add the master + option to the ip command: + $ ip link show master VRF-NAME + + For example: + $ ip link show master vrf-red + 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 + link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff + 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 + link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff + 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN mode DEFAULT group default qlen 1000 + link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff + + + Or using the brief output: + $ ip -br link show master vrf-red + eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP> + eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP> + eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST> + + +5. Show Neighbor Entries for a VRF + + To list neighbor entries associated with devices enslaved to a VRF device + add the master option to the ip command: + $ ip [-6] neigh show master VRF-NAME + + For example: + $ ip neigh show master vrf-red + 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE + 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE + + $ ip -6 neigh show master vrf-red + 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE + + +6. Show Addresses for a VRF + + To show addresses for interfaces associated with a VRF add the master + option to the ip command: + $ ip addr show master VRF-NAME + + For example: + $ ip addr show master vrf-red + 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 + link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff + inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1 + valid_lft forever preferred_lft forever + inet6 2002:1::2/120 scope global + valid_lft forever preferred_lft forever + inet6 fe80::ff:fe00:202/64 scope link + valid_lft forever preferred_lft forever + 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 + link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff + inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2 + valid_lft forever preferred_lft forever + inet6 2002:2::2/120 scope global + valid_lft forever preferred_lft forever + inet6 fe80::ff:fe00:203/64 scope link + valid_lft forever preferred_lft forever + 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN group default qlen 1000 + link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff + + Or in brief format: + $ ip -br addr show master vrf-red + eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64 + eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64 + eth5 DOWN + + +7. Show Routes for a VRF + + To show routes for a VRF use the ip command to display the table associated + with the VRF device: + $ ip [-6] route show table ID + + For example: + $ ip route show table vrf-red + prohibit default + broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2 + 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2 + local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2 + broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2 + broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2 + 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2 + local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2 + broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2 + + $ ip -6 route show table vrf-red + local 2002:1:: dev lo proto none metric 0 pref medium + local 2002:1::2 dev lo proto none metric 0 pref medium + 2002:1::/120 dev eth1 proto kernel metric 256 pref medium + local 2002:2:: dev lo proto none metric 0 pref medium + local 2002:2::2 dev lo proto none metric 0 pref medium + 2002:2::/120 dev eth2 proto kernel metric 256 pref medium + local fe80:: dev lo proto none metric 0 pref medium + local fe80:: dev lo proto none metric 0 pref medium + local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium + local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium + fe80::/64 dev eth1 proto kernel metric 256 pref medium + fe80::/64 dev eth2 proto kernel metric 256 pref medium + ff00::/8 dev vrf-red metric 256 pref medium + ff00::/8 dev eth1 metric 256 pref medium + ff00::/8 dev eth2 metric 256 pref medium + + +8. Route Lookup for a VRF + + A test route lookup can be done for a VRF by adding the oif option to ip: + $ ip [-6] route get oif VRF-NAME ADDRESS + + For example: + $ ip route get 10.2.1.40 oif vrf-red + 10.2.1.40 dev eth1 table vrf-red src 10.2.1.2 + cache + + $ ip -6 route get 2002:1::32 oif vrf-red + 2002:1::32 from :: dev eth1 table vrf-red proto kernel src 2002:1::2 metric 256 pref medium + + +9. Removing Network Interface from a VRF + + Network interfaces are removed from a VRF by breaking the enslavement to + the VRF device: + $ ip link set dev NAME nomaster + + Connected routes are moved back to the default table and local entries are + moved to the local table. + + For example: + $ ip link set dev eth0 nomaster + +-------------------------------------------------------------------------------- + +Commands used in this example: + +cat >> /etc/iproute2/rt_tables <<EOF +1 vrf-mgmt +10 vrf-red +66 vrf-blue +81 vrf-green +EOF + +function vrf_create +{ + VRF=$1 + TBID=$2 + # create VRF device + ip link add vrf-${VRF} type vrf table ${TBID} + + # add rules that direct lookups to vrf table + ip ru add pref 200 oif vrf-${VRF} table ${TBID} + ip ru add pref 200 iif vrf-${VRF} table ${TBID} + ip -6 ru add pref 200 oif vrf-${VRF} table ${TBID} + ip -6 ru add pref 200 iif vrf-${VRF} table ${TBID} + + if [ "${VRF}" != "mgmt" ]; then + ip route add table ${TBID} prohibit default + fi + ip link set dev vrf-${VRF} up + ip link set dev vrf-${VRF} state up +} + +vrf_create mgmt 1 +ip link set dev eth0 master vrf-mgmt + +vrf_create red 10 +ip link set dev eth1 master vrf-red +ip link set dev eth2 master vrf-red +ip link set dev eth5 master vrf-red + +vrf_create blue 66 +ip link set dev eth3 master vrf-blue + +vrf_create green 81 +ip link set dev eth4 master vrf-green + + +Interface addresses from /etc/network/interfaces: +auto eth0 +iface eth0 inet static + address 10.0.0.2 + netmask 255.255.255.0 + gateway 10.0.0.254 + +iface eth0 inet6 static + address 2000:1::2 + netmask 120 + +auto eth1 +iface eth1 inet static + address 10.2.1.2 + netmask 255.255.255.0 + +iface eth1 inet6 static + address 2002:1::2 + netmask 120 + +auto eth2 +iface eth2 inet static + address 10.2.2.2 + netmask 255.255.255.0 + +iface eth2 inet6 static + address 2002:2::2 + netmask 120 + +auto eth3 +iface eth3 inet static + address 10.2.3.2 + netmask 255.255.255.0 + +iface eth3 inet6 static + address 2002:3::2 + netmask 120 + +auto eth4 +iface eth4 inet static + address 10.2.4.2 + netmask 255.255.255.0 + +iface eth4 inet6 static + address 2002:4::2 + netmask 120 diff --git a/kernel/Documentation/networking/vxlan.txt b/kernel/Documentation/networking/vxlan.txt index 6d993510f..c28f4989c 100644 --- a/kernel/Documentation/networking/vxlan.txt +++ b/kernel/Documentation/networking/vxlan.txt @@ -1,32 +1,36 @@ Virtual eXtensible Local Area Networking documentation ====================================================== -The VXLAN protocol is a tunnelling protocol that is designed to -solve the problem of limited number of available VLAN's (4096). -With VXLAN identifier is expanded to 24 bits. - -It is a draft RFC standard, that is implemented by Cisco Nexus, -Vmware and Brocade. The protocol runs over UDP using a single -destination port (still not standardized by IANA). -This document describes the Linux kernel tunnel device, -there is also an implantation of VXLAN for Openvswitch. - -Unlike most tunnels, a VXLAN is a 1 to N network, not just point -to point. A VXLAN device can either dynamically learn the IP address -of the other end, in a manner similar to a learning bridge, or the -forwarding entries can be configured statically. - -The management of vxlan is done in a similar fashion to it's -too closest neighbors GRE and VLAN. Configuring VXLAN requires -the version of iproute2 that matches the kernel release -where VXLAN was first merged upstream. +The VXLAN protocol is a tunnelling protocol designed to solve the +problem of limited VLAN IDs (4096) in IEEE 802.1q. With VXLAN the +size of the identifier is expanded to 24 bits (16777216). + +VXLAN is described by IETF RFC 7348, and has been implemented by a +number of vendors. The protocol runs over UDP using a single +destination port. This document describes the Linux kernel tunnel +device, there is also a separate implementation of VXLAN for +Openvswitch. + +Unlike most tunnels, a VXLAN is a 1 to N network, not just point to +point. A VXLAN device can learn the IP address of the other endpoint +either dynamically in a manner similar to a learning bridge, or make +use of statically-configured forwarding entries. + +The management of vxlan is done in a manner similar to its two closest +neighbors GRE and VLAN. Configuring VXLAN requires the version of +iproute2 that matches the kernel release where VXLAN was first merged +upstream. 1. Create vxlan device - # ip li add vxlan0 type vxlan id 42 group 239.1.1.1 dev eth1 - -This creates a new device (vxlan0). The device uses the -the multicast group 239.1.1.1 over eth1 to handle packets where -no entry is in the forwarding table. + # ip link add vxlan0 type vxlan id 42 group 239.1.1.1 dev eth1 dstport 4789 + +This creates a new device named vxlan0. The device uses the multicast +group 239.1.1.1 over eth1 to handle traffic for which there is no +entry in the forwarding table. The destination port number is set to +the IANA-assigned value of 4789. The Linux implementation of VXLAN +pre-dates the IANA's selection of a standard destination port number +and uses the Linux-selected value by default to maintain backwards +compatibility. 2. Delete vxlan device # ip link delete vxlan0 |