diff options
Diffstat (limited to 'kernel/Documentation/locking/spinlocks.txt')
-rw-r--r-- | kernel/Documentation/locking/spinlocks.txt | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/kernel/Documentation/locking/spinlocks.txt b/kernel/Documentation/locking/spinlocks.txt new file mode 100644 index 000000000..ff35e40bd --- /dev/null +++ b/kernel/Documentation/locking/spinlocks.txt @@ -0,0 +1,167 @@ +Lesson 1: Spin locks + +The most basic primitive for locking is spinlock. + +static DEFINE_SPINLOCK(xxx_lock); + + unsigned long flags; + + spin_lock_irqsave(&xxx_lock, flags); + ... critical section here .. + spin_unlock_irqrestore(&xxx_lock, flags); + +The above is always safe. It will disable interrupts _locally_, but the +spinlock itself will guarantee the global lock, so it will guarantee that +there is only one thread-of-control within the region(s) protected by that +lock. This works well even under UP also, so the code does _not_ need to +worry about UP vs SMP issues: the spinlocks work correctly under both. + + NOTE! Implications of spin_locks for memory are further described in: + + Documentation/memory-barriers.txt + (5) LOCK operations. + (6) UNLOCK operations. + +The above is usually pretty simple (you usually need and want only one +spinlock for most things - using more than one spinlock can make things a +lot more complex and even slower and is usually worth it only for +sequences that you _know_ need to be split up: avoid it at all cost if you +aren't sure). + +This is really the only really hard part about spinlocks: once you start +using spinlocks they tend to expand to areas you might not have noticed +before, because you have to make sure the spinlocks correctly protect the +shared data structures _everywhere_ they are used. The spinlocks are most +easily added to places that are completely independent of other code (for +example, internal driver data structures that nobody else ever touches). + + NOTE! The spin-lock is safe only when you _also_ use the lock itself + to do locking across CPU's, which implies that EVERYTHING that + touches a shared variable has to agree about the spinlock they want + to use. + +---- + +Lesson 2: reader-writer spinlocks. + +If your data accesses have a very natural pattern where you usually tend +to mostly read from the shared variables, the reader-writer locks +(rw_lock) versions of the spinlocks are sometimes useful. They allow multiple +readers to be in the same critical region at once, but if somebody wants +to change the variables it has to get an exclusive write lock. + + NOTE! reader-writer locks require more atomic memory operations than + simple spinlocks. Unless the reader critical section is long, you + are better off just using spinlocks. + +The routines look the same as above: + + rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock); + + unsigned long flags; + + read_lock_irqsave(&xxx_lock, flags); + .. critical section that only reads the info ... + read_unlock_irqrestore(&xxx_lock, flags); + + write_lock_irqsave(&xxx_lock, flags); + .. read and write exclusive access to the info ... + write_unlock_irqrestore(&xxx_lock, flags); + +The above kind of lock may be useful for complex data structures like +linked lists, especially searching for entries without changing the list +itself. The read lock allows many concurrent readers. Anything that +_changes_ the list will have to get the write lock. + + NOTE! RCU is better for list traversal, but requires careful + attention to design detail (see Documentation/RCU/listRCU.txt). + +Also, you cannot "upgrade" a read-lock to a write-lock, so if you at _any_ +time need to do any changes (even if you don't do it every time), you have +to get the write-lock at the very beginning. + + NOTE! We are working hard to remove reader-writer spinlocks in most + cases, so please don't add a new one without consensus. (Instead, see + Documentation/RCU/rcu.txt for complete information.) + +---- + +Lesson 3: spinlocks revisited. + +The single spin-lock primitives above are by no means the only ones. They +are the most safe ones, and the ones that work under all circumstances, +but partly _because_ they are safe they are also fairly slow. They are slower +than they'd need to be, because they do have to disable interrupts +(which is just a single instruction on a x86, but it's an expensive one - +and on other architectures it can be worse). + +If you have a case where you have to protect a data structure across +several CPU's and you want to use spinlocks you can potentially use +cheaper versions of the spinlocks. IFF you know that the spinlocks are +never used in interrupt handlers, you can use the non-irq versions: + + spin_lock(&lock); + ... + spin_unlock(&lock); + +(and the equivalent read-write versions too, of course). The spinlock will +guarantee the same kind of exclusive access, and it will be much faster. +This is useful if you know that the data in question is only ever +manipulated from a "process context", ie no interrupts involved. + +The reasons you mustn't use these versions if you have interrupts that +play with the spinlock is that you can get deadlocks: + + spin_lock(&lock); + ... + <- interrupt comes in: + spin_lock(&lock); + +where an interrupt tries to lock an already locked variable. This is ok if +the other interrupt happens on another CPU, but it is _not_ ok if the +interrupt happens on the same CPU that already holds the lock, because the +lock will obviously never be released (because the interrupt is waiting +for the lock, and the lock-holder is interrupted by the interrupt and will +not continue until the interrupt has been processed). + +(This is also the reason why the irq-versions of the spinlocks only need +to disable the _local_ interrupts - it's ok to use spinlocks in interrupts +on other CPU's, because an interrupt on another CPU doesn't interrupt the +CPU that holds the lock, so the lock-holder can continue and eventually +releases the lock). + +Note that you can be clever with read-write locks and interrupts. For +example, if you know that the interrupt only ever gets a read-lock, then +you can use a non-irq version of read locks everywhere - because they +don't block on each other (and thus there is no dead-lock wrt interrupts. +But when you do the write-lock, you have to use the irq-safe version. + +For an example of being clever with rw-locks, see the "waitqueue_lock" +handling in kernel/sched/core.c - nothing ever _changes_ a wait-queue from +within an interrupt, they only read the queue in order to know whom to +wake up. So read-locks are safe (which is good: they are very common +indeed), while write-locks need to protect themselves against interrupts. + + Linus + +---- + +Reference information: + +For dynamic initialization, use spin_lock_init() or rwlock_init() as +appropriate: + + spinlock_t xxx_lock; + rwlock_t xxx_rw_lock; + + static int __init xxx_init(void) + { + spin_lock_init(&xxx_lock); + rwlock_init(&xxx_rw_lock); + ... + } + + module_init(xxx_init); + +For static initialization, use DEFINE_SPINLOCK() / DEFINE_RWLOCK() or +__SPIN_LOCK_UNLOCKED() / __RW_LOCK_UNLOCKED() as appropriate. |