diff options
Diffstat (limited to 'kernel/Documentation/kasan.txt')
-rw-r--r-- | kernel/Documentation/kasan.txt | 172 |
1 files changed, 172 insertions, 0 deletions
diff --git a/kernel/Documentation/kasan.txt b/kernel/Documentation/kasan.txt new file mode 100644 index 000000000..469224178 --- /dev/null +++ b/kernel/Documentation/kasan.txt @@ -0,0 +1,172 @@ +Kernel address sanitizer +================ + +0. Overview +=========== + +Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides +a fast and comprehensive solution for finding use-after-free and out-of-bounds +bugs. + +KASan uses compile-time instrumentation for checking every memory access, +therefore you will need a gcc version of 4.9.2 or later. KASan could detect out +of bounds accesses to stack or global variables, but only if gcc 5.0 or later was +used to built the kernel. + +Currently KASan is supported only for x86_64 architecture and requires that the +kernel be built with the SLUB allocator. + +1. Usage +========= + +To enable KASAN configure kernel with: + + CONFIG_KASAN = y + +and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline/inline +is compiler instrumentation types. The former produces smaller binary the +latter is 1.1 - 2 times faster. Inline instrumentation requires a gcc version +of 5.0 or later. + +Currently KASAN works only with the SLUB memory allocator. +For better bug detection and nicer report, enable CONFIG_STACKTRACE and put +at least 'slub_debug=U' in the boot cmdline. + +To disable instrumentation for specific files or directories, add a line +similar to the following to the respective kernel Makefile: + + For a single file (e.g. main.o): + KASAN_SANITIZE_main.o := n + + For all files in one directory: + KASAN_SANITIZE := n + +1.1 Error reports +========== + +A typical out of bounds access report looks like this: + +================================================================== +BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 +Write of size 1 by task modprobe/1689 +============================================================================= +BUG kmalloc-128 (Not tainted): kasan error +----------------------------------------------------------------------------- + +Disabling lock debugging due to kernel taint +INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689 + __slab_alloc+0x4b4/0x4f0 + kmem_cache_alloc_trace+0x10b/0x190 + kmalloc_oob_right+0x3d/0x75 [test_kasan] + init_module+0x9/0x47 [test_kasan] + do_one_initcall+0x99/0x200 + load_module+0x2cb3/0x3b20 + SyS_finit_module+0x76/0x80 + system_call_fastpath+0x12/0x17 +INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080 +INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720 + +Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ +Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk +Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. +Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........ +Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ +CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98 +Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 + ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78 + ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8 + ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558 +Call Trace: + [<ffffffff81cc68ae>] dump_stack+0x46/0x58 + [<ffffffff811fd848>] print_trailer+0xf8/0x160 + [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] + [<ffffffff811ff0f5>] object_err+0x35/0x40 + [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] + [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 + [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 + [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 + [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 + [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] + [<ffffffff8120a995>] __asan_store1+0x75/0xb0 + [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] + [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] + [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] + [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] + [<ffffffff810002d9>] do_one_initcall+0x99/0x200 + [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 + [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 + [<ffffffff8110fd70>] ? m_show+0x240/0x240 + [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 + [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 +Memory state around the buggy address: + ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc + ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc + ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc + ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc + ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 +>ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc + ^ + ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc + ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc + ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb + ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb + ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb +================================================================== + +First sections describe slub object where bad access happened. +See 'SLUB Debug output' section in Documentation/vm/slub.txt for details. + +In the last section the report shows memory state around the accessed address. +Reading this part requires some more understanding of how KASAN works. + +Each 8 bytes of memory are encoded in one shadow byte as accessible, +partially accessible, freed or they can be part of a redzone. +We use the following encoding for each shadow byte: 0 means that all 8 bytes +of the corresponding memory region are accessible; number N (1 <= N <= 7) means +that the first N bytes are accessible, and other (8 - N) bytes are not; +any negative value indicates that the entire 8-byte word is inaccessible. +We use different negative values to distinguish between different kinds of +inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h). + +In the report above the arrows point to the shadow byte 03, which means that +the accessed address is partially accessible. + + +2. Implementation details +======================== + +From a high level, our approach to memory error detection is similar to that +of kmemcheck: use shadow memory to record whether each byte of memory is safe +to access, and use compile-time instrumentation to check shadow memory on each +memory access. + +AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory +(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and +offset to translate a memory address to its corresponding shadow address. + +Here is the function witch translate an address to its corresponding shadow +address: + +static inline void *kasan_mem_to_shadow(const void *addr) +{ + return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + + KASAN_SHADOW_OFFSET; +} + +where KASAN_SHADOW_SCALE_SHIFT = 3. + +Compile-time instrumentation used for checking memory accesses. Compiler inserts +function calls (__asan_load*(addr), __asan_store*(addr)) before each memory +access of size 1, 2, 4, 8 or 16. These functions check whether memory access is +valid or not by checking corresponding shadow memory. + +GCC 5.0 has possibility to perform inline instrumentation. Instead of making +function calls GCC directly inserts the code to check the shadow memory. +This option significantly enlarges kernel but it gives x1.1-x2 performance +boost over outline instrumented kernel. |