diff options
Diffstat (limited to 'kernel/Documentation/filesystems/inotify.txt')
-rw-r--r-- | kernel/Documentation/filesystems/inotify.txt | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/kernel/Documentation/filesystems/inotify.txt b/kernel/Documentation/filesystems/inotify.txt new file mode 100644 index 000000000..51f61db78 --- /dev/null +++ b/kernel/Documentation/filesystems/inotify.txt @@ -0,0 +1,79 @@ + inotify + a powerful yet simple file change notification system + + + +Document started 15 Mar 2005 by Robert Love <rml@novell.com> +Document updated 4 Jan 2015 by Zhang Zhen <zhenzhang.zhang@huawei.com> + --Deleted obsoleted interface, just refer to manpages for user interface. + +(i) Rationale + +Q: What is the design decision behind not tying the watch to the open fd of + the watched object? + +A: Watches are associated with an open inotify device, not an open file. + This solves the primary problem with dnotify: keeping the file open pins + the file and thus, worse, pins the mount. Dnotify is therefore infeasible + for use on a desktop system with removable media as the media cannot be + unmounted. Watching a file should not require that it be open. + +Q: What is the design decision behind using an-fd-per-instance as opposed to + an fd-per-watch? + +A: An fd-per-watch quickly consumes more file descriptors than are allowed, + more fd's than are feasible to manage, and more fd's than are optimally + select()-able. Yes, root can bump the per-process fd limit and yes, users + can use epoll, but requiring both is a silly and extraneous requirement. + A watch consumes less memory than an open file, separating the number + spaces is thus sensible. The current design is what user-space developers + want: Users initialize inotify, once, and add n watches, requiring but one + fd and no twiddling with fd limits. Initializing an inotify instance two + thousand times is silly. If we can implement user-space's preferences + cleanly--and we can, the idr layer makes stuff like this trivial--then we + should. + + There are other good arguments. With a single fd, there is a single + item to block on, which is mapped to a single queue of events. The single + fd returns all watch events and also any potential out-of-band data. If + every fd was a separate watch, + + - There would be no way to get event ordering. Events on file foo and + file bar would pop poll() on both fd's, but there would be no way to tell + which happened first. A single queue trivially gives you ordering. Such + ordering is crucial to existing applications such as Beagle. Imagine + "mv a b ; mv b a" events without ordering. + + - We'd have to maintain n fd's and n internal queues with state, + versus just one. It is a lot messier in the kernel. A single, linear + queue is the data structure that makes sense. + + - User-space developers prefer the current API. The Beagle guys, for + example, love it. Trust me, I asked. It is not a surprise: Who'd want + to manage and block on 1000 fd's via select? + + - No way to get out of band data. + + - 1024 is still too low. ;-) + + When you talk about designing a file change notification system that + scales to 1000s of directories, juggling 1000s of fd's just does not seem + the right interface. It is too heavy. + + Additionally, it _is_ possible to more than one instance and + juggle more than one queue and thus more than one associated fd. There + need not be a one-fd-per-process mapping; it is one-fd-per-queue and a + process can easily want more than one queue. + +Q: Why the system call approach? + +A: The poor user-space interface is the second biggest problem with dnotify. + Signals are a terrible, terrible interface for file notification. Or for + anything, for that matter. The ideal solution, from all perspectives, is a + file descriptor-based one that allows basic file I/O and poll/select. + Obtaining the fd and managing the watches could have been done either via a + device file or a family of new system calls. We decided to implement a + family of system calls because that is the preferred approach for new kernel + interfaces. The only real difference was whether we wanted to use open(2) + and ioctl(2) or a couple of new system calls. System calls beat ioctls. + |