diff options
Diffstat (limited to 'kernel/Documentation/RCU/arrayRCU.txt')
-rw-r--r-- | kernel/Documentation/RCU/arrayRCU.txt | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/kernel/Documentation/RCU/arrayRCU.txt b/kernel/Documentation/RCU/arrayRCU.txt new file mode 100644 index 000000000..453ebe695 --- /dev/null +++ b/kernel/Documentation/RCU/arrayRCU.txt @@ -0,0 +1,141 @@ +Using RCU to Protect Read-Mostly Arrays + + +Although RCU is more commonly used to protect linked lists, it can +also be used to protect arrays. Three situations are as follows: + +1. Hash Tables + +2. Static Arrays + +3. Resizeable Arrays + +Each of these situations are discussed below. + + +Situation 1: Hash Tables + +Hash tables are often implemented as an array, where each array entry +has a linked-list hash chain. Each hash chain can be protected by RCU +as described in the listRCU.txt document. This approach also applies +to other array-of-list situations, such as radix trees. + + +Situation 2: Static Arrays + +Static arrays, where the data (rather than a pointer to the data) is +located in each array element, and where the array is never resized, +have not been used with RCU. Rik van Riel recommends using seqlock in +this situation, which would also have minimal read-side overhead as long +as updates are rare. + +Quick Quiz: Why is it so important that updates be rare when + using seqlock? + + +Situation 3: Resizeable Arrays + +Use of RCU for resizeable arrays is demonstrated by the grow_ary() +function used by the System V IPC code. The array is used to map from +semaphore, message-queue, and shared-memory IDs to the data structure +that represents the corresponding IPC construct. The grow_ary() +function does not acquire any locks; instead its caller must hold the +ids->sem semaphore. + +The grow_ary() function, shown below, does some limit checks, allocates a +new ipc_id_ary, copies the old to the new portion of the new, initializes +the remainder of the new, updates the ids->entries pointer to point to +the new array, and invokes ipc_rcu_putref() to free up the old array. +Note that rcu_assign_pointer() is used to update the ids->entries pointer, +which includes any memory barriers required on whatever architecture +you are running on. + + static int grow_ary(struct ipc_ids* ids, int newsize) + { + struct ipc_id_ary* new; + struct ipc_id_ary* old; + int i; + int size = ids->entries->size; + + if(newsize > IPCMNI) + newsize = IPCMNI; + if(newsize <= size) + return newsize; + + new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize + + sizeof(struct ipc_id_ary)); + if(new == NULL) + return size; + new->size = newsize; + memcpy(new->p, ids->entries->p, + sizeof(struct kern_ipc_perm *)*size + + sizeof(struct ipc_id_ary)); + for(i=size;i<newsize;i++) { + new->p[i] = NULL; + } + old = ids->entries; + + /* + * Use rcu_assign_pointer() to make sure the memcpyed + * contents of the new array are visible before the new + * array becomes visible. + */ + rcu_assign_pointer(ids->entries, new); + + ipc_rcu_putref(old); + return newsize; + } + +The ipc_rcu_putref() function decrements the array's reference count +and then, if the reference count has dropped to zero, uses call_rcu() +to free the array after a grace period has elapsed. + +The array is traversed by the ipc_lock() function. This function +indexes into the array under the protection of rcu_read_lock(), +using rcu_dereference() to pick up the pointer to the array so +that it may later safely be dereferenced -- memory barriers are +required on the Alpha CPU. Since the size of the array is stored +with the array itself, there can be no array-size mismatches, so +a simple check suffices. The pointer to the structure corresponding +to the desired IPC object is placed in "out", with NULL indicating +a non-existent entry. After acquiring "out->lock", the "out->deleted" +flag indicates whether the IPC object is in the process of being +deleted, and, if not, the pointer is returned. + + struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id) + { + struct kern_ipc_perm* out; + int lid = id % SEQ_MULTIPLIER; + struct ipc_id_ary* entries; + + rcu_read_lock(); + entries = rcu_dereference(ids->entries); + if(lid >= entries->size) { + rcu_read_unlock(); + return NULL; + } + out = entries->p[lid]; + if(out == NULL) { + rcu_read_unlock(); + return NULL; + } + spin_lock(&out->lock); + + /* ipc_rmid() may have already freed the ID while ipc_lock + * was spinning: here verify that the structure is still valid + */ + if (out->deleted) { + spin_unlock(&out->lock); + rcu_read_unlock(); + return NULL; + } + return out; + } + + +Answer to Quick Quiz: + + The reason that it is important that updates be rare when + using seqlock is that frequent updates can livelock readers. + One way to avoid this problem is to assign a seqlock for + each array entry rather than to the entire array. |