diff options
Diffstat (limited to 'kernel/Documentation/DocBook/genericirq.tmpl')
-rw-r--r-- | kernel/Documentation/DocBook/genericirq.tmpl | 520 |
1 files changed, 520 insertions, 0 deletions
diff --git a/kernel/Documentation/DocBook/genericirq.tmpl b/kernel/Documentation/DocBook/genericirq.tmpl new file mode 100644 index 000000000..59fb5c077 --- /dev/null +++ b/kernel/Documentation/DocBook/genericirq.tmpl @@ -0,0 +1,520 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" + "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> + +<book id="Generic-IRQ-Guide"> + <bookinfo> + <title>Linux generic IRQ handling</title> + + <authorgroup> + <author> + <firstname>Thomas</firstname> + <surname>Gleixner</surname> + <affiliation> + <address> + <email>tglx@linutronix.de</email> + </address> + </affiliation> + </author> + <author> + <firstname>Ingo</firstname> + <surname>Molnar</surname> + <affiliation> + <address> + <email>mingo@elte.hu</email> + </address> + </affiliation> + </author> + </authorgroup> + + <copyright> + <year>2005-2010</year> + <holder>Thomas Gleixner</holder> + </copyright> + <copyright> + <year>2005-2006</year> + <holder>Ingo Molnar</holder> + </copyright> + + <legalnotice> + <para> + This documentation is free software; you can redistribute + it and/or modify it under the terms of the GNU General Public + License version 2 as published by the Free Software Foundation. + </para> + + <para> + This program is distributed in the hope that it will be + useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU General Public License for more details. + </para> + + <para> + You should have received a copy of the GNU General Public + License along with this program; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, + MA 02111-1307 USA + </para> + + <para> + For more details see the file COPYING in the source + distribution of Linux. + </para> + </legalnotice> + </bookinfo> + +<toc></toc> + + <chapter id="intro"> + <title>Introduction</title> + <para> + The generic interrupt handling layer is designed to provide a + complete abstraction of interrupt handling for device drivers. + It is able to handle all the different types of interrupt controller + hardware. Device drivers use generic API functions to request, enable, + disable and free interrupts. The drivers do not have to know anything + about interrupt hardware details, so they can be used on different + platforms without code changes. + </para> + <para> + This documentation is provided to developers who want to implement + an interrupt subsystem based for their architecture, with the help + of the generic IRQ handling layer. + </para> + </chapter> + + <chapter id="rationale"> + <title>Rationale</title> + <para> + The original implementation of interrupt handling in Linux uses + the __do_IRQ() super-handler, which is able to deal with every + type of interrupt logic. + </para> + <para> + Originally, Russell King identified different types of handlers to + build a quite universal set for the ARM interrupt handler + implementation in Linux 2.5/2.6. He distinguished between: + <itemizedlist> + <listitem><para>Level type</para></listitem> + <listitem><para>Edge type</para></listitem> + <listitem><para>Simple type</para></listitem> + </itemizedlist> + During the implementation we identified another type: + <itemizedlist> + <listitem><para>Fast EOI type</para></listitem> + </itemizedlist> + In the SMP world of the __do_IRQ() super-handler another type + was identified: + <itemizedlist> + <listitem><para>Per CPU type</para></listitem> + </itemizedlist> + </para> + <para> + This split implementation of high-level IRQ handlers allows us to + optimize the flow of the interrupt handling for each specific + interrupt type. This reduces complexity in that particular code path + and allows the optimized handling of a given type. + </para> + <para> + The original general IRQ implementation used hw_interrupt_type + structures and their ->ack(), ->end() [etc.] callbacks to + differentiate the flow control in the super-handler. This leads to + a mix of flow logic and low-level hardware logic, and it also leads + to unnecessary code duplication: for example in i386, there is an + ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many + of the low-level details but have different flow handling. + </para> + <para> + A more natural abstraction is the clean separation of the + 'irq flow' and the 'chip details'. + </para> + <para> + Analysing a couple of architecture's IRQ subsystem implementations + reveals that most of them can use a generic set of 'irq flow' + methods and only need to add the chip-level specific code. + The separation is also valuable for (sub)architectures + which need specific quirks in the IRQ flow itself but not in the + chip details - and thus provides a more transparent IRQ subsystem + design. + </para> + <para> + Each interrupt descriptor is assigned its own high-level flow + handler, which is normally one of the generic + implementations. (This high-level flow handler implementation also + makes it simple to provide demultiplexing handlers which can be + found in embedded platforms on various architectures.) + </para> + <para> + The separation makes the generic interrupt handling layer more + flexible and extensible. For example, an (sub)architecture can + use a generic IRQ-flow implementation for 'level type' interrupts + and add a (sub)architecture specific 'edge type' implementation. + </para> + <para> + To make the transition to the new model easier and prevent the + breakage of existing implementations, the __do_IRQ() super-handler + is still available. This leads to a kind of duality for the time + being. Over time the new model should be used in more and more + architectures, as it enables smaller and cleaner IRQ subsystems. + It's deprecated for three years now and about to be removed. + </para> + </chapter> + <chapter id="bugs"> + <title>Known Bugs And Assumptions</title> + <para> + None (knock on wood). + </para> + </chapter> + + <chapter id="Abstraction"> + <title>Abstraction layers</title> + <para> + There are three main levels of abstraction in the interrupt code: + <orderedlist> + <listitem><para>High-level driver API</para></listitem> + <listitem><para>High-level IRQ flow handlers</para></listitem> + <listitem><para>Chip-level hardware encapsulation</para></listitem> + </orderedlist> + </para> + <sect1 id="Interrupt_control_flow"> + <title>Interrupt control flow</title> + <para> + Each interrupt is described by an interrupt descriptor structure + irq_desc. The interrupt is referenced by an 'unsigned int' numeric + value which selects the corresponding interrupt description structure + in the descriptor structures array. + The descriptor structure contains status information and pointers + to the interrupt flow method and the interrupt chip structure + which are assigned to this interrupt. + </para> + <para> + Whenever an interrupt triggers, the low-level architecture code calls + into the generic interrupt code by calling desc->handle_irq(). + This high-level IRQ handling function only uses desc->irq_data.chip + primitives referenced by the assigned chip descriptor structure. + </para> + </sect1> + <sect1 id="Highlevel_Driver_API"> + <title>High-level Driver API</title> + <para> + The high-level Driver API consists of following functions: + <itemizedlist> + <listitem><para>request_irq()</para></listitem> + <listitem><para>free_irq()</para></listitem> + <listitem><para>disable_irq()</para></listitem> + <listitem><para>enable_irq()</para></listitem> + <listitem><para>disable_irq_nosync() (SMP only)</para></listitem> + <listitem><para>synchronize_irq() (SMP only)</para></listitem> + <listitem><para>irq_set_irq_type()</para></listitem> + <listitem><para>irq_set_irq_wake()</para></listitem> + <listitem><para>irq_set_handler_data()</para></listitem> + <listitem><para>irq_set_chip()</para></listitem> + <listitem><para>irq_set_chip_data()</para></listitem> + </itemizedlist> + See the autogenerated function documentation for details. + </para> + </sect1> + <sect1 id="Highlevel_IRQ_flow_handlers"> + <title>High-level IRQ flow handlers</title> + <para> + The generic layer provides a set of pre-defined irq-flow methods: + <itemizedlist> + <listitem><para>handle_level_irq</para></listitem> + <listitem><para>handle_edge_irq</para></listitem> + <listitem><para>handle_fasteoi_irq</para></listitem> + <listitem><para>handle_simple_irq</para></listitem> + <listitem><para>handle_percpu_irq</para></listitem> + <listitem><para>handle_edge_eoi_irq</para></listitem> + <listitem><para>handle_bad_irq</para></listitem> + </itemizedlist> + The interrupt flow handlers (either pre-defined or architecture + specific) are assigned to specific interrupts by the architecture + either during bootup or during device initialization. + </para> + <sect2 id="Default_flow_implementations"> + <title>Default flow implementations</title> + <sect3 id="Helper_functions"> + <title>Helper functions</title> + <para> + The helper functions call the chip primitives and + are used by the default flow implementations. + The following helper functions are implemented (simplified excerpt): + <programlisting> +default_enable(struct irq_data *data) +{ + desc->irq_data.chip->irq_unmask(data); +} + +default_disable(struct irq_data *data) +{ + if (!delay_disable(data)) + desc->irq_data.chip->irq_mask(data); +} + +default_ack(struct irq_data *data) +{ + chip->irq_ack(data); +} + +default_mask_ack(struct irq_data *data) +{ + if (chip->irq_mask_ack) { + chip->irq_mask_ack(data); + } else { + chip->irq_mask(data); + chip->irq_ack(data); + } +} + +noop(struct irq_data *data)) +{ +} + + </programlisting> + </para> + </sect3> + </sect2> + <sect2 id="Default_flow_handler_implementations"> + <title>Default flow handler implementations</title> + <sect3 id="Default_Level_IRQ_flow_handler"> + <title>Default Level IRQ flow handler</title> + <para> + handle_level_irq provides a generic implementation + for level-triggered interrupts. + </para> + <para> + The following control flow is implemented (simplified excerpt): + <programlisting> +desc->irq_data.chip->irq_mask_ack(); +handle_irq_event(desc->action); +desc->irq_data.chip->irq_unmask(); + </programlisting> + </para> + </sect3> + <sect3 id="Default_FASTEOI_IRQ_flow_handler"> + <title>Default Fast EOI IRQ flow handler</title> + <para> + handle_fasteoi_irq provides a generic implementation + for interrupts, which only need an EOI at the end of + the handler. + </para> + <para> + The following control flow is implemented (simplified excerpt): + <programlisting> +handle_irq_event(desc->action); +desc->irq_data.chip->irq_eoi(); + </programlisting> + </para> + </sect3> + <sect3 id="Default_Edge_IRQ_flow_handler"> + <title>Default Edge IRQ flow handler</title> + <para> + handle_edge_irq provides a generic implementation + for edge-triggered interrupts. + </para> + <para> + The following control flow is implemented (simplified excerpt): + <programlisting> +if (desc->status & running) { + desc->irq_data.chip->irq_mask_ack(); + desc->status |= pending | masked; + return; +} +desc->irq_data.chip->irq_ack(); +desc->status |= running; +do { + if (desc->status & masked) + desc->irq_data.chip->irq_unmask(); + desc->status &= ~pending; + handle_irq_event(desc->action); +} while (status & pending); +desc->status &= ~running; + </programlisting> + </para> + </sect3> + <sect3 id="Default_simple_IRQ_flow_handler"> + <title>Default simple IRQ flow handler</title> + <para> + handle_simple_irq provides a generic implementation + for simple interrupts. + </para> + <para> + Note: The simple flow handler does not call any + handler/chip primitives. + </para> + <para> + The following control flow is implemented (simplified excerpt): + <programlisting> +handle_irq_event(desc->action); + </programlisting> + </para> + </sect3> + <sect3 id="Default_per_CPU_flow_handler"> + <title>Default per CPU flow handler</title> + <para> + handle_percpu_irq provides a generic implementation + for per CPU interrupts. + </para> + <para> + Per CPU interrupts are only available on SMP and + the handler provides a simplified version without + locking. + </para> + <para> + The following control flow is implemented (simplified excerpt): + <programlisting> +if (desc->irq_data.chip->irq_ack) + desc->irq_data.chip->irq_ack(); +handle_irq_event(desc->action); +if (desc->irq_data.chip->irq_eoi) + desc->irq_data.chip->irq_eoi(); + </programlisting> + </para> + </sect3> + <sect3 id="EOI_Edge_IRQ_flow_handler"> + <title>EOI Edge IRQ flow handler</title> + <para> + handle_edge_eoi_irq provides an abnomination of the edge + handler which is solely used to tame a badly wreckaged + irq controller on powerpc/cell. + </para> + </sect3> + <sect3 id="BAD_IRQ_flow_handler"> + <title>Bad IRQ flow handler</title> + <para> + handle_bad_irq is used for spurious interrupts which + have no real handler assigned.. + </para> + </sect3> + </sect2> + <sect2 id="Quirks_and_optimizations"> + <title>Quirks and optimizations</title> + <para> + The generic functions are intended for 'clean' architectures and chips, + which have no platform-specific IRQ handling quirks. If an architecture + needs to implement quirks on the 'flow' level then it can do so by + overriding the high-level irq-flow handler. + </para> + </sect2> + <sect2 id="Delayed_interrupt_disable"> + <title>Delayed interrupt disable</title> + <para> + This per interrupt selectable feature, which was introduced by Russell + King in the ARM interrupt implementation, does not mask an interrupt + at the hardware level when disable_irq() is called. The interrupt is + kept enabled and is masked in the flow handler when an interrupt event + happens. This prevents losing edge interrupts on hardware which does + not store an edge interrupt event while the interrupt is disabled at + the hardware level. When an interrupt arrives while the IRQ_DISABLED + flag is set, then the interrupt is masked at the hardware level and + the IRQ_PENDING bit is set. When the interrupt is re-enabled by + enable_irq() the pending bit is checked and if it is set, the + interrupt is resent either via hardware or by a software resend + mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when + you want to use the delayed interrupt disable feature and your + hardware is not capable of retriggering an interrupt.) + The delayed interrupt disable is not configurable. + </para> + </sect2> + </sect1> + <sect1 id="Chiplevel_hardware_encapsulation"> + <title>Chip-level hardware encapsulation</title> + <para> + The chip-level hardware descriptor structure irq_chip + contains all the direct chip relevant functions, which + can be utilized by the irq flow implementations. + <itemizedlist> + <listitem><para>irq_ack()</para></listitem> + <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem> + <listitem><para>irq_mask()</para></listitem> + <listitem><para>irq_unmask()</para></listitem> + <listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem> + <listitem><para>irq_retrigger() - Optional</para></listitem> + <listitem><para>irq_set_type() - Optional</para></listitem> + <listitem><para>irq_set_wake() - Optional</para></listitem> + </itemizedlist> + These primitives are strictly intended to mean what they say: ack means + ACK, masking means masking of an IRQ line, etc. It is up to the flow + handler(s) to use these basic units of low-level functionality. + </para> + </sect1> + </chapter> + + <chapter id="doirq"> + <title>__do_IRQ entry point</title> + <para> + The original implementation __do_IRQ() was an alternative entry + point for all types of interrupts. It no longer exists. + </para> + <para> + This handler turned out to be not suitable for all + interrupt hardware and was therefore reimplemented with split + functionality for edge/level/simple/percpu interrupts. This is not + only a functional optimization. It also shortens code paths for + interrupts. + </para> + </chapter> + + <chapter id="locking"> + <title>Locking on SMP</title> + <para> + The locking of chip registers is up to the architecture that + defines the chip primitives. The per-irq structure is + protected via desc->lock, by the generic layer. + </para> + </chapter> + + <chapter id="genericchip"> + <title>Generic interrupt chip</title> + <para> + To avoid copies of identical implementations of IRQ chips the + core provides a configurable generic interrupt chip + implementation. Developers should check carefully whether the + generic chip fits their needs before implementing the same + functionality slightly differently themselves. + </para> +!Ekernel/irq/generic-chip.c + </chapter> + + <chapter id="structs"> + <title>Structures</title> + <para> + This chapter contains the autogenerated documentation of the structures which are + used in the generic IRQ layer. + </para> +!Iinclude/linux/irq.h +!Iinclude/linux/interrupt.h + </chapter> + + <chapter id="pubfunctions"> + <title>Public Functions Provided</title> + <para> + This chapter contains the autogenerated documentation of the kernel API functions + which are exported. + </para> +!Ekernel/irq/manage.c +!Ekernel/irq/chip.c + </chapter> + + <chapter id="intfunctions"> + <title>Internal Functions Provided</title> + <para> + This chapter contains the autogenerated documentation of the internal functions. + </para> +!Ikernel/irq/irqdesc.c +!Ikernel/irq/handle.c +!Ikernel/irq/chip.c + </chapter> + + <chapter id="credits"> + <title>Credits</title> + <para> + The following people have contributed to this document: + <orderedlist> + <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> + <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem> + </orderedlist> + </para> + </chapter> +</book> |