diff options
author | Yang Zhang <yang.z.zhang@intel.com> | 2015-08-28 09:58:54 +0800 |
---|---|---|
committer | Yang Zhang <yang.z.zhang@intel.com> | 2015-09-01 12:44:00 +0800 |
commit | e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch) | |
tree | 66b09f592c55df2878107a468a91d21506104d3f /qemu/target-sparc/ldst_helper.c | |
parent | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff) |
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/target-sparc/ldst_helper.c')
-rw-r--r-- | qemu/target-sparc/ldst_helper.c | 2455 |
1 files changed, 2455 insertions, 0 deletions
diff --git a/qemu/target-sparc/ldst_helper.c b/qemu/target-sparc/ldst_helper.c new file mode 100644 index 000000000..c7ad47d35 --- /dev/null +++ b/qemu/target-sparc/ldst_helper.c @@ -0,0 +1,2455 @@ +/* + * Helpers for loads and stores + * + * Copyright (c) 2003-2005 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "cpu.h" +#include "exec/helper-proto.h" +#include "exec/cpu_ldst.h" + +//#define DEBUG_MMU +//#define DEBUG_MXCC +//#define DEBUG_UNALIGNED +//#define DEBUG_UNASSIGNED +//#define DEBUG_ASI +//#define DEBUG_CACHE_CONTROL + +#ifdef DEBUG_MMU +#define DPRINTF_MMU(fmt, ...) \ + do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) +#else +#define DPRINTF_MMU(fmt, ...) do {} while (0) +#endif + +#ifdef DEBUG_MXCC +#define DPRINTF_MXCC(fmt, ...) \ + do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) +#else +#define DPRINTF_MXCC(fmt, ...) do {} while (0) +#endif + +#ifdef DEBUG_ASI +#define DPRINTF_ASI(fmt, ...) \ + do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) +#endif + +#ifdef DEBUG_CACHE_CONTROL +#define DPRINTF_CACHE_CONTROL(fmt, ...) \ + do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) +#else +#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) +#endif + +#ifdef TARGET_SPARC64 +#ifndef TARGET_ABI32 +#define AM_CHECK(env1) ((env1)->pstate & PS_AM) +#else +#define AM_CHECK(env1) (1) +#endif +#endif + +#define QT0 (env->qt0) +#define QT1 (env->qt1) + +#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) +/* Calculates TSB pointer value for fault page size 8k or 64k */ +static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, + uint64_t tag_access_register, + int page_size) +{ + uint64_t tsb_base = tsb_register & ~0x1fffULL; + int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; + int tsb_size = tsb_register & 0xf; + + /* discard lower 13 bits which hold tag access context */ + uint64_t tag_access_va = tag_access_register & ~0x1fffULL; + + /* now reorder bits */ + uint64_t tsb_base_mask = ~0x1fffULL; + uint64_t va = tag_access_va; + + /* move va bits to correct position */ + if (page_size == 8*1024) { + va >>= 9; + } else if (page_size == 64*1024) { + va >>= 12; + } + + if (tsb_size) { + tsb_base_mask <<= tsb_size; + } + + /* calculate tsb_base mask and adjust va if split is in use */ + if (tsb_split) { + if (page_size == 8*1024) { + va &= ~(1ULL << (13 + tsb_size)); + } else if (page_size == 64*1024) { + va |= (1ULL << (13 + tsb_size)); + } + tsb_base_mask <<= 1; + } + + return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; +} + +/* Calculates tag target register value by reordering bits + in tag access register */ +static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) +{ + return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); +} + +static void replace_tlb_entry(SparcTLBEntry *tlb, + uint64_t tlb_tag, uint64_t tlb_tte, + CPUSPARCState *env1) +{ + target_ulong mask, size, va, offset; + + /* flush page range if translation is valid */ + if (TTE_IS_VALID(tlb->tte)) { + CPUState *cs = CPU(sparc_env_get_cpu(env1)); + + mask = 0xffffffffffffe000ULL; + mask <<= 3 * ((tlb->tte >> 61) & 3); + size = ~mask + 1; + + va = tlb->tag & mask; + + for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { + tlb_flush_page(cs, va + offset); + } + } + + tlb->tag = tlb_tag; + tlb->tte = tlb_tte; +} + +static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, + const char *strmmu, CPUSPARCState *env1) +{ + unsigned int i; + target_ulong mask; + uint64_t context; + + int is_demap_context = (demap_addr >> 6) & 1; + + /* demap context */ + switch ((demap_addr >> 4) & 3) { + case 0: /* primary */ + context = env1->dmmu.mmu_primary_context; + break; + case 1: /* secondary */ + context = env1->dmmu.mmu_secondary_context; + break; + case 2: /* nucleus */ + context = 0; + break; + case 3: /* reserved */ + default: + return; + } + + for (i = 0; i < 64; i++) { + if (TTE_IS_VALID(tlb[i].tte)) { + + if (is_demap_context) { + /* will remove non-global entries matching context value */ + if (TTE_IS_GLOBAL(tlb[i].tte) || + !tlb_compare_context(&tlb[i], context)) { + continue; + } + } else { + /* demap page + will remove any entry matching VA */ + mask = 0xffffffffffffe000ULL; + mask <<= 3 * ((tlb[i].tte >> 61) & 3); + + if (!compare_masked(demap_addr, tlb[i].tag, mask)) { + continue; + } + + /* entry should be global or matching context value */ + if (!TTE_IS_GLOBAL(tlb[i].tte) && + !tlb_compare_context(&tlb[i], context)) { + continue; + } + } + + replace_tlb_entry(&tlb[i], 0, 0, env1); +#ifdef DEBUG_MMU + DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); + dump_mmu(stdout, fprintf, env1); +#endif + } + } +} + +static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, + uint64_t tlb_tag, uint64_t tlb_tte, + const char *strmmu, CPUSPARCState *env1) +{ + unsigned int i, replace_used; + + /* Try replacing invalid entry */ + for (i = 0; i < 64; i++) { + if (!TTE_IS_VALID(tlb[i].tte)) { + replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); +#ifdef DEBUG_MMU + DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); + dump_mmu(stdout, fprintf, env1); +#endif + return; + } + } + + /* All entries are valid, try replacing unlocked entry */ + + for (replace_used = 0; replace_used < 2; ++replace_used) { + + /* Used entries are not replaced on first pass */ + + for (i = 0; i < 64; i++) { + if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { + + replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); +#ifdef DEBUG_MMU + DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", + strmmu, (replace_used ? "used" : "unused"), i); + dump_mmu(stdout, fprintf, env1); +#endif + return; + } + } + + /* Now reset used bit and search for unused entries again */ + + for (i = 0; i < 64; i++) { + TTE_SET_UNUSED(tlb[i].tte); + } + } + +#ifdef DEBUG_MMU + DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); +#endif + /* error state? */ +} + +#endif + +#if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY) +static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) +{ +#ifdef TARGET_SPARC64 + if (AM_CHECK(env1)) { + addr &= 0xffffffffULL; + } +#endif + return addr; +} +#endif + +#ifdef TARGET_SPARC64 +/* returns true if access using this ASI is to have address translated by MMU + otherwise access is to raw physical address */ +/* TODO: check sparc32 bits */ +static inline int is_translating_asi(int asi) +{ + /* Ultrasparc IIi translating asi + - note this list is defined by cpu implementation + */ + switch (asi) { + case 0x04 ... 0x11: + case 0x16 ... 0x19: + case 0x1E ... 0x1F: + case 0x24 ... 0x2C: + case 0x70 ... 0x73: + case 0x78 ... 0x79: + case 0x80 ... 0xFF: + return 1; + + default: + return 0; + } +} + +static inline target_ulong asi_address_mask(CPUSPARCState *env, + int asi, target_ulong addr) +{ + if (is_translating_asi(asi)) { + return address_mask(env, addr); + } else { + return addr; + } +} +#endif + +void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) +{ + if (addr & align) { +#ifdef DEBUG_UNALIGNED + printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx + "\n", addr, env->pc); +#endif + helper_raise_exception(env, TT_UNALIGNED); + } +} + +#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ + defined(DEBUG_MXCC) +static void dump_mxcc(CPUSPARCState *env) +{ + printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 + "\n", + env->mxccdata[0], env->mxccdata[1], + env->mxccdata[2], env->mxccdata[3]); + printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 + "\n" + " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 + "\n", + env->mxccregs[0], env->mxccregs[1], + env->mxccregs[2], env->mxccregs[3], + env->mxccregs[4], env->mxccregs[5], + env->mxccregs[6], env->mxccregs[7]); +} +#endif + +#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ + && defined(DEBUG_ASI) +static void dump_asi(const char *txt, target_ulong addr, int asi, int size, + uint64_t r1) +{ + switch (size) { + case 1: + DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, + addr, asi, r1 & 0xff); + break; + case 2: + DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, + addr, asi, r1 & 0xffff); + break; + case 4: + DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, + addr, asi, r1 & 0xffffffff); + break; + case 8: + DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, + addr, asi, r1); + break; + } +} +#endif + +#ifndef TARGET_SPARC64 +#ifndef CONFIG_USER_ONLY + + +/* Leon3 cache control */ + +static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, + uint64_t val, int size) +{ + DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", + addr, val, size); + + if (size != 4) { + DPRINTF_CACHE_CONTROL("32bits only\n"); + return; + } + + switch (addr) { + case 0x00: /* Cache control */ + + /* These values must always be read as zeros */ + val &= ~CACHE_CTRL_FD; + val &= ~CACHE_CTRL_FI; + val &= ~CACHE_CTRL_IB; + val &= ~CACHE_CTRL_IP; + val &= ~CACHE_CTRL_DP; + + env->cache_control = val; + break; + case 0x04: /* Instruction cache configuration */ + case 0x08: /* Data cache configuration */ + /* Read Only */ + break; + default: + DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); + break; + }; +} + +static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, + int size) +{ + uint64_t ret = 0; + + if (size != 4) { + DPRINTF_CACHE_CONTROL("32bits only\n"); + return 0; + } + + switch (addr) { + case 0x00: /* Cache control */ + ret = env->cache_control; + break; + + /* Configuration registers are read and only always keep those + predefined values */ + + case 0x04: /* Instruction cache configuration */ + ret = 0x10220000; + break; + case 0x08: /* Data cache configuration */ + ret = 0x18220000; + break; + default: + DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); + break; + }; + DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", + addr, ret, size); + return ret; +} + +uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, + int sign) +{ + CPUState *cs = CPU(sparc_env_get_cpu(env)); + uint64_t ret = 0; +#if defined(DEBUG_MXCC) || defined(DEBUG_ASI) + uint32_t last_addr = addr; +#endif + + helper_check_align(env, addr, size - 1); + switch (asi) { + case 2: /* SuperSparc MXCC registers and Leon3 cache control */ + switch (addr) { + case 0x00: /* Leon3 Cache Control */ + case 0x08: /* Leon3 Instruction Cache config */ + case 0x0C: /* Leon3 Date Cache config */ + if (env->def->features & CPU_FEATURE_CACHE_CTRL) { + ret = leon3_cache_control_ld(env, addr, size); + } + break; + case 0x01c00a00: /* MXCC control register */ + if (size == 8) { + ret = env->mxccregs[3]; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00a04: /* MXCC control register */ + if (size == 4) { + ret = env->mxccregs[3]; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00c00: /* Module reset register */ + if (size == 8) { + ret = env->mxccregs[5]; + /* should we do something here? */ + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00f00: /* MBus port address register */ + if (size == 8) { + ret = env->mxccregs[7]; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + default: + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented address, size: %d\n", addr, + size); + break; + } + DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " + "addr = %08x -> ret = %" PRIx64 "," + "addr = %08x\n", asi, size, sign, last_addr, ret, addr); +#ifdef DEBUG_MXCC + dump_mxcc(env); +#endif + break; + case 3: /* MMU probe */ + case 0x18: /* LEON3 MMU probe */ + { + int mmulev; + + mmulev = (addr >> 8) & 15; + if (mmulev > 4) { + ret = 0; + } else { + ret = mmu_probe(env, addr, mmulev); + } + DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", + addr, mmulev, ret); + } + break; + case 4: /* read MMU regs */ + case 0x19: /* LEON3 read MMU regs */ + { + int reg = (addr >> 8) & 0x1f; + + ret = env->mmuregs[reg]; + if (reg == 3) { /* Fault status cleared on read */ + env->mmuregs[3] = 0; + } else if (reg == 0x13) { /* Fault status read */ + ret = env->mmuregs[3]; + } else if (reg == 0x14) { /* Fault address read */ + ret = env->mmuregs[4]; + } + DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); + } + break; + case 5: /* Turbosparc ITLB Diagnostic */ + case 6: /* Turbosparc DTLB Diagnostic */ + case 7: /* Turbosparc IOTLB Diagnostic */ + break; + case 9: /* Supervisor code access */ + switch (size) { + case 1: + ret = cpu_ldub_code(env, addr); + break; + case 2: + ret = cpu_lduw_code(env, addr); + break; + default: + case 4: + ret = cpu_ldl_code(env, addr); + break; + case 8: + ret = cpu_ldq_code(env, addr); + break; + } + break; + case 0xa: /* User data access */ + switch (size) { + case 1: + ret = cpu_ldub_user(env, addr); + break; + case 2: + ret = cpu_lduw_user(env, addr); + break; + default: + case 4: + ret = cpu_ldl_user(env, addr); + break; + case 8: + ret = cpu_ldq_user(env, addr); + break; + } + break; + case 0xb: /* Supervisor data access */ + case 0x80: + switch (size) { + case 1: + ret = cpu_ldub_kernel(env, addr); + break; + case 2: + ret = cpu_lduw_kernel(env, addr); + break; + default: + case 4: + ret = cpu_ldl_kernel(env, addr); + break; + case 8: + ret = cpu_ldq_kernel(env, addr); + break; + } + break; + case 0xc: /* I-cache tag */ + case 0xd: /* I-cache data */ + case 0xe: /* D-cache tag */ + case 0xf: /* D-cache data */ + break; + case 0x20: /* MMU passthrough */ + case 0x1c: /* LEON MMU passthrough */ + switch (size) { + case 1: + ret = ldub_phys(cs->as, addr); + break; + case 2: + ret = lduw_phys(cs->as, addr); + break; + default: + case 4: + ret = ldl_phys(cs->as, addr); + break; + case 8: + ret = ldq_phys(cs->as, addr); + break; + } + break; + case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ + switch (size) { + case 1: + ret = ldub_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32)); + break; + case 2: + ret = lduw_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32)); + break; + default: + case 4: + ret = ldl_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32)); + break; + case 8: + ret = ldq_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32)); + break; + } + break; + case 0x30: /* Turbosparc secondary cache diagnostic */ + case 0x31: /* Turbosparc RAM snoop */ + case 0x32: /* Turbosparc page table descriptor diagnostic */ + case 0x39: /* data cache diagnostic register */ + ret = 0; + break; + case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ + { + int reg = (addr >> 8) & 3; + + switch (reg) { + case 0: /* Breakpoint Value (Addr) */ + ret = env->mmubpregs[reg]; + break; + case 1: /* Breakpoint Mask */ + ret = env->mmubpregs[reg]; + break; + case 2: /* Breakpoint Control */ + ret = env->mmubpregs[reg]; + break; + case 3: /* Breakpoint Status */ + ret = env->mmubpregs[reg]; + env->mmubpregs[reg] = 0ULL; + break; + } + DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, + ret); + } + break; + case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ + ret = env->mmubpctrv; + break; + case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ + ret = env->mmubpctrc; + break; + case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ + ret = env->mmubpctrs; + break; + case 0x4c: /* SuperSPARC MMU Breakpoint Action */ + ret = env->mmubpaction; + break; + case 8: /* User code access, XXX */ + default: + cpu_unassigned_access(cs, addr, false, false, asi, size); + ret = 0; + break; + } + if (sign) { + switch (size) { + case 1: + ret = (int8_t) ret; + break; + case 2: + ret = (int16_t) ret; + break; + case 4: + ret = (int32_t) ret; + break; + default: + break; + } + } +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + return ret; +} + +void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi, + int size) +{ + SPARCCPU *cpu = sparc_env_get_cpu(env); + CPUState *cs = CPU(cpu); + + helper_check_align(env, addr, size - 1); + switch (asi) { + case 2: /* SuperSparc MXCC registers and Leon3 cache control */ + switch (addr) { + case 0x00: /* Leon3 Cache Control */ + case 0x08: /* Leon3 Instruction Cache config */ + case 0x0C: /* Leon3 Date Cache config */ + if (env->def->features & CPU_FEATURE_CACHE_CTRL) { + leon3_cache_control_st(env, addr, val, size); + } + break; + + case 0x01c00000: /* MXCC stream data register 0 */ + if (size == 8) { + env->mxccdata[0] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00008: /* MXCC stream data register 1 */ + if (size == 8) { + env->mxccdata[1] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00010: /* MXCC stream data register 2 */ + if (size == 8) { + env->mxccdata[2] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00018: /* MXCC stream data register 3 */ + if (size == 8) { + env->mxccdata[3] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00100: /* MXCC stream source */ + if (size == 8) { + env->mxccregs[0] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + env->mxccdata[0] = ldq_phys(cs->as, + (env->mxccregs[0] & 0xffffffffULL) + + 0); + env->mxccdata[1] = ldq_phys(cs->as, + (env->mxccregs[0] & 0xffffffffULL) + + 8); + env->mxccdata[2] = ldq_phys(cs->as, + (env->mxccregs[0] & 0xffffffffULL) + + 16); + env->mxccdata[3] = ldq_phys(cs->as, + (env->mxccregs[0] & 0xffffffffULL) + + 24); + break; + case 0x01c00200: /* MXCC stream destination */ + if (size == 8) { + env->mxccregs[1] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0, + env->mxccdata[0]); + stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8, + env->mxccdata[1]); + stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16, + env->mxccdata[2]); + stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24, + env->mxccdata[3]); + break; + case 0x01c00a00: /* MXCC control register */ + if (size == 8) { + env->mxccregs[3] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00a04: /* MXCC control register */ + if (size == 4) { + env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) + | val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00e00: /* MXCC error register */ + /* writing a 1 bit clears the error */ + if (size == 8) { + env->mxccregs[6] &= ~val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + case 0x01c00f00: /* MBus port address register */ + if (size == 8) { + env->mxccregs[7] = val; + } else { + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented access size: %d\n", addr, + size); + } + break; + default: + qemu_log_mask(LOG_UNIMP, + "%08x: unimplemented address, size: %d\n", addr, + size); + break; + } + DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", + asi, size, addr, val); +#ifdef DEBUG_MXCC + dump_mxcc(env); +#endif + break; + case 3: /* MMU flush */ + case 0x18: /* LEON3 MMU flush */ + { + int mmulev; + + mmulev = (addr >> 8) & 15; + DPRINTF_MMU("mmu flush level %d\n", mmulev); + switch (mmulev) { + case 0: /* flush page */ + tlb_flush_page(CPU(cpu), addr & 0xfffff000); + break; + case 1: /* flush segment (256k) */ + case 2: /* flush region (16M) */ + case 3: /* flush context (4G) */ + case 4: /* flush entire */ + tlb_flush(CPU(cpu), 1); + break; + default: + break; + } +#ifdef DEBUG_MMU + dump_mmu(stdout, fprintf, env); +#endif + } + break; + case 4: /* write MMU regs */ + case 0x19: /* LEON3 write MMU regs */ + { + int reg = (addr >> 8) & 0x1f; + uint32_t oldreg; + + oldreg = env->mmuregs[reg]; + switch (reg) { + case 0: /* Control Register */ + env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | + (val & 0x00ffffff); + /* Mappings generated during no-fault mode or MMU + disabled mode are invalid in normal mode */ + if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != + (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) { + tlb_flush(CPU(cpu), 1); + } + break; + case 1: /* Context Table Pointer Register */ + env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; + break; + case 2: /* Context Register */ + env->mmuregs[reg] = val & env->def->mmu_cxr_mask; + if (oldreg != env->mmuregs[reg]) { + /* we flush when the MMU context changes because + QEMU has no MMU context support */ + tlb_flush(CPU(cpu), 1); + } + break; + case 3: /* Synchronous Fault Status Register with Clear */ + case 4: /* Synchronous Fault Address Register */ + break; + case 0x10: /* TLB Replacement Control Register */ + env->mmuregs[reg] = val & env->def->mmu_trcr_mask; + break; + case 0x13: /* Synchronous Fault Status Register with Read + and Clear */ + env->mmuregs[3] = val & env->def->mmu_sfsr_mask; + break; + case 0x14: /* Synchronous Fault Address Register */ + env->mmuregs[4] = val; + break; + default: + env->mmuregs[reg] = val; + break; + } + if (oldreg != env->mmuregs[reg]) { + DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", + reg, oldreg, env->mmuregs[reg]); + } +#ifdef DEBUG_MMU + dump_mmu(stdout, fprintf, env); +#endif + } + break; + case 5: /* Turbosparc ITLB Diagnostic */ + case 6: /* Turbosparc DTLB Diagnostic */ + case 7: /* Turbosparc IOTLB Diagnostic */ + break; + case 0xa: /* User data access */ + switch (size) { + case 1: + cpu_stb_user(env, addr, val); + break; + case 2: + cpu_stw_user(env, addr, val); + break; + default: + case 4: + cpu_stl_user(env, addr, val); + break; + case 8: + cpu_stq_user(env, addr, val); + break; + } + break; + case 0xb: /* Supervisor data access */ + case 0x80: + switch (size) { + case 1: + cpu_stb_kernel(env, addr, val); + break; + case 2: + cpu_stw_kernel(env, addr, val); + break; + default: + case 4: + cpu_stl_kernel(env, addr, val); + break; + case 8: + cpu_stq_kernel(env, addr, val); + break; + } + break; + case 0xc: /* I-cache tag */ + case 0xd: /* I-cache data */ + case 0xe: /* D-cache tag */ + case 0xf: /* D-cache data */ + case 0x10: /* I/D-cache flush page */ + case 0x11: /* I/D-cache flush segment */ + case 0x12: /* I/D-cache flush region */ + case 0x13: /* I/D-cache flush context */ + case 0x14: /* I/D-cache flush user */ + break; + case 0x17: /* Block copy, sta access */ + { + /* val = src + addr = dst + copy 32 bytes */ + unsigned int i; + uint32_t src = val & ~3, dst = addr & ~3, temp; + + for (i = 0; i < 32; i += 4, src += 4, dst += 4) { + temp = cpu_ldl_kernel(env, src); + cpu_stl_kernel(env, dst, temp); + } + } + break; + case 0x1f: /* Block fill, stda access */ + { + /* addr = dst + fill 32 bytes with val */ + unsigned int i; + uint32_t dst = addr & 7; + + for (i = 0; i < 32; i += 8, dst += 8) { + cpu_stq_kernel(env, dst, val); + } + } + break; + case 0x20: /* MMU passthrough */ + case 0x1c: /* LEON MMU passthrough */ + { + switch (size) { + case 1: + stb_phys(cs->as, addr, val); + break; + case 2: + stw_phys(cs->as, addr, val); + break; + case 4: + default: + stl_phys(cs->as, addr, val); + break; + case 8: + stq_phys(cs->as, addr, val); + break; + } + } + break; + case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ + { + switch (size) { + case 1: + stb_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32), val); + break; + case 2: + stw_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32), val); + break; + case 4: + default: + stl_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32), val); + break; + case 8: + stq_phys(cs->as, (hwaddr)addr + | ((hwaddr)(asi & 0xf) << 32), val); + break; + } + } + break; + case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ + case 0x31: /* store buffer data, Ross RT620 I-cache flush or + Turbosparc snoop RAM */ + case 0x32: /* store buffer control or Turbosparc page table + descriptor diagnostic */ + case 0x36: /* I-cache flash clear */ + case 0x37: /* D-cache flash clear */ + break; + case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ + { + int reg = (addr >> 8) & 3; + + switch (reg) { + case 0: /* Breakpoint Value (Addr) */ + env->mmubpregs[reg] = (val & 0xfffffffffULL); + break; + case 1: /* Breakpoint Mask */ + env->mmubpregs[reg] = (val & 0xfffffffffULL); + break; + case 2: /* Breakpoint Control */ + env->mmubpregs[reg] = (val & 0x7fULL); + break; + case 3: /* Breakpoint Status */ + env->mmubpregs[reg] = (val & 0xfULL); + break; + } + DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, + env->mmuregs[reg]); + } + break; + case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ + env->mmubpctrv = val & 0xffffffff; + break; + case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ + env->mmubpctrc = val & 0x3; + break; + case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ + env->mmubpctrs = val & 0x3; + break; + case 0x4c: /* SuperSPARC MMU Breakpoint Action */ + env->mmubpaction = val & 0x1fff; + break; + case 8: /* User code access, XXX */ + case 9: /* Supervisor code access, XXX */ + default: + cpu_unassigned_access(CPU(sparc_env_get_cpu(env)), + addr, true, false, asi, size); + break; + } +#ifdef DEBUG_ASI + dump_asi("write", addr, asi, size, val); +#endif +} + +#endif /* CONFIG_USER_ONLY */ +#else /* TARGET_SPARC64 */ + +#ifdef CONFIG_USER_ONLY +uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, + int sign) +{ + uint64_t ret = 0; +#if defined(DEBUG_ASI) + target_ulong last_addr = addr; +#endif + + if (asi < 0x80) { + helper_raise_exception(env, TT_PRIV_ACT); + } + + helper_check_align(env, addr, size - 1); + addr = asi_address_mask(env, asi, addr); + + switch (asi) { + case 0x82: /* Primary no-fault */ + case 0x8a: /* Primary no-fault LE */ + if (page_check_range(addr, size, PAGE_READ) == -1) { +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + return 0; + } + /* Fall through */ + case 0x80: /* Primary */ + case 0x88: /* Primary LE */ + { + switch (size) { + case 1: + ret = cpu_ldub_data(env, addr); + break; + case 2: + ret = cpu_lduw_data(env, addr); + break; + case 4: + ret = cpu_ldl_data(env, addr); + break; + default: + case 8: + ret = cpu_ldq_data(env, addr); + break; + } + } + break; + case 0x83: /* Secondary no-fault */ + case 0x8b: /* Secondary no-fault LE */ + if (page_check_range(addr, size, PAGE_READ) == -1) { +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + return 0; + } + /* Fall through */ + case 0x81: /* Secondary */ + case 0x89: /* Secondary LE */ + /* XXX */ + break; + default: + break; + } + + /* Convert from little endian */ + switch (asi) { + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + case 0x8a: /* Primary no-fault LE */ + case 0x8b: /* Secondary no-fault LE */ + switch (size) { + case 2: + ret = bswap16(ret); + break; + case 4: + ret = bswap32(ret); + break; + case 8: + ret = bswap64(ret); + break; + default: + break; + } + default: + break; + } + + /* Convert to signed number */ + if (sign) { + switch (size) { + case 1: + ret = (int8_t) ret; + break; + case 2: + ret = (int16_t) ret; + break; + case 4: + ret = (int32_t) ret; + break; + default: + break; + } + } +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + return ret; +} + +void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, + int asi, int size) +{ +#ifdef DEBUG_ASI + dump_asi("write", addr, asi, size, val); +#endif + if (asi < 0x80) { + helper_raise_exception(env, TT_PRIV_ACT); + } + + helper_check_align(env, addr, size - 1); + addr = asi_address_mask(env, asi, addr); + + /* Convert to little endian */ + switch (asi) { + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + switch (size) { + case 2: + val = bswap16(val); + break; + case 4: + val = bswap32(val); + break; + case 8: + val = bswap64(val); + break; + default: + break; + } + default: + break; + } + + switch (asi) { + case 0x80: /* Primary */ + case 0x88: /* Primary LE */ + { + switch (size) { + case 1: + cpu_stb_data(env, addr, val); + break; + case 2: + cpu_stw_data(env, addr, val); + break; + case 4: + cpu_stl_data(env, addr, val); + break; + case 8: + default: + cpu_stq_data(env, addr, val); + break; + } + } + break; + case 0x81: /* Secondary */ + case 0x89: /* Secondary LE */ + /* XXX */ + return; + + case 0x82: /* Primary no-fault, RO */ + case 0x83: /* Secondary no-fault, RO */ + case 0x8a: /* Primary no-fault LE, RO */ + case 0x8b: /* Secondary no-fault LE, RO */ + default: + helper_raise_exception(env, TT_DATA_ACCESS); + return; + } +} + +#else /* CONFIG_USER_ONLY */ + +uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, + int sign) +{ + CPUState *cs = CPU(sparc_env_get_cpu(env)); + uint64_t ret = 0; +#if defined(DEBUG_ASI) + target_ulong last_addr = addr; +#endif + + asi &= 0xff; + + if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) + || (cpu_has_hypervisor(env) + && asi >= 0x30 && asi < 0x80 + && !(env->hpstate & HS_PRIV))) { + helper_raise_exception(env, TT_PRIV_ACT); + } + + helper_check_align(env, addr, size - 1); + addr = asi_address_mask(env, asi, addr); + + /* process nonfaulting loads first */ + if ((asi & 0xf6) == 0x82) { + int mmu_idx; + + /* secondary space access has lowest asi bit equal to 1 */ + if (env->pstate & PS_PRIV) { + mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX; + } else { + mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX; + } + + if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) { +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + /* env->exception_index is set in get_physical_address_data(). */ + helper_raise_exception(env, cs->exception_index); + } + + /* convert nonfaulting load ASIs to normal load ASIs */ + asi &= ~0x02; + } + + switch (asi) { + case 0x10: /* As if user primary */ + case 0x11: /* As if user secondary */ + case 0x18: /* As if user primary LE */ + case 0x19: /* As if user secondary LE */ + case 0x80: /* Primary */ + case 0x81: /* Secondary */ + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + case 0xe2: /* UA2007 Primary block init */ + case 0xe3: /* UA2007 Secondary block init */ + if ((asi & 0x80) && (env->pstate & PS_PRIV)) { + if (cpu_hypervisor_mode(env)) { + switch (size) { + case 1: + ret = cpu_ldub_hypv(env, addr); + break; + case 2: + ret = cpu_lduw_hypv(env, addr); + break; + case 4: + ret = cpu_ldl_hypv(env, addr); + break; + default: + case 8: + ret = cpu_ldq_hypv(env, addr); + break; + } + } else { + /* secondary space access has lowest asi bit equal to 1 */ + if (asi & 1) { + switch (size) { + case 1: + ret = cpu_ldub_kernel_secondary(env, addr); + break; + case 2: + ret = cpu_lduw_kernel_secondary(env, addr); + break; + case 4: + ret = cpu_ldl_kernel_secondary(env, addr); + break; + default: + case 8: + ret = cpu_ldq_kernel_secondary(env, addr); + break; + } + } else { + switch (size) { + case 1: + ret = cpu_ldub_kernel(env, addr); + break; + case 2: + ret = cpu_lduw_kernel(env, addr); + break; + case 4: + ret = cpu_ldl_kernel(env, addr); + break; + default: + case 8: + ret = cpu_ldq_kernel(env, addr); + break; + } + } + } + } else { + /* secondary space access has lowest asi bit equal to 1 */ + if (asi & 1) { + switch (size) { + case 1: + ret = cpu_ldub_user_secondary(env, addr); + break; + case 2: + ret = cpu_lduw_user_secondary(env, addr); + break; + case 4: + ret = cpu_ldl_user_secondary(env, addr); + break; + default: + case 8: + ret = cpu_ldq_user_secondary(env, addr); + break; + } + } else { + switch (size) { + case 1: + ret = cpu_ldub_user(env, addr); + break; + case 2: + ret = cpu_lduw_user(env, addr); + break; + case 4: + ret = cpu_ldl_user(env, addr); + break; + default: + case 8: + ret = cpu_ldq_user(env, addr); + break; + } + } + } + break; + case 0x14: /* Bypass */ + case 0x15: /* Bypass, non-cacheable */ + case 0x1c: /* Bypass LE */ + case 0x1d: /* Bypass, non-cacheable LE */ + { + switch (size) { + case 1: + ret = ldub_phys(cs->as, addr); + break; + case 2: + ret = lduw_phys(cs->as, addr); + break; + case 4: + ret = ldl_phys(cs->as, addr); + break; + default: + case 8: + ret = ldq_phys(cs->as, addr); + break; + } + break; + } + case 0x24: /* Nucleus quad LDD 128 bit atomic */ + case 0x2c: /* Nucleus quad LDD 128 bit atomic LE + Only ldda allowed */ + helper_raise_exception(env, TT_ILL_INSN); + return 0; + case 0x04: /* Nucleus */ + case 0x0c: /* Nucleus Little Endian (LE) */ + { + switch (size) { + case 1: + ret = cpu_ldub_nucleus(env, addr); + break; + case 2: + ret = cpu_lduw_nucleus(env, addr); + break; + case 4: + ret = cpu_ldl_nucleus(env, addr); + break; + default: + case 8: + ret = cpu_ldq_nucleus(env, addr); + break; + } + break; + } + case 0x4a: /* UPA config */ + /* XXX */ + break; + case 0x45: /* LSU */ + ret = env->lsu; + break; + case 0x50: /* I-MMU regs */ + { + int reg = (addr >> 3) & 0xf; + + if (reg == 0) { + /* I-TSB Tag Target register */ + ret = ultrasparc_tag_target(env->immu.tag_access); + } else { + ret = env->immuregs[reg]; + } + + break; + } + case 0x51: /* I-MMU 8k TSB pointer */ + { + /* env->immuregs[5] holds I-MMU TSB register value + env->immuregs[6] holds I-MMU Tag Access register value */ + ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, + 8*1024); + break; + } + case 0x52: /* I-MMU 64k TSB pointer */ + { + /* env->immuregs[5] holds I-MMU TSB register value + env->immuregs[6] holds I-MMU Tag Access register value */ + ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, + 64*1024); + break; + } + case 0x55: /* I-MMU data access */ + { + int reg = (addr >> 3) & 0x3f; + + ret = env->itlb[reg].tte; + break; + } + case 0x56: /* I-MMU tag read */ + { + int reg = (addr >> 3) & 0x3f; + + ret = env->itlb[reg].tag; + break; + } + case 0x58: /* D-MMU regs */ + { + int reg = (addr >> 3) & 0xf; + + if (reg == 0) { + /* D-TSB Tag Target register */ + ret = ultrasparc_tag_target(env->dmmu.tag_access); + } else { + ret = env->dmmuregs[reg]; + } + break; + } + case 0x59: /* D-MMU 8k TSB pointer */ + { + /* env->dmmuregs[5] holds D-MMU TSB register value + env->dmmuregs[6] holds D-MMU Tag Access register value */ + ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, + 8*1024); + break; + } + case 0x5a: /* D-MMU 64k TSB pointer */ + { + /* env->dmmuregs[5] holds D-MMU TSB register value + env->dmmuregs[6] holds D-MMU Tag Access register value */ + ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, + 64*1024); + break; + } + case 0x5d: /* D-MMU data access */ + { + int reg = (addr >> 3) & 0x3f; + + ret = env->dtlb[reg].tte; + break; + } + case 0x5e: /* D-MMU tag read */ + { + int reg = (addr >> 3) & 0x3f; + + ret = env->dtlb[reg].tag; + break; + } + case 0x48: /* Interrupt dispatch, RO */ + break; + case 0x49: /* Interrupt data receive */ + ret = env->ivec_status; + break; + case 0x7f: /* Incoming interrupt vector, RO */ + { + int reg = (addr >> 4) & 0x3; + if (reg < 3) { + ret = env->ivec_data[reg]; + } + break; + } + case 0x46: /* D-cache data */ + case 0x47: /* D-cache tag access */ + case 0x4b: /* E-cache error enable */ + case 0x4c: /* E-cache asynchronous fault status */ + case 0x4d: /* E-cache asynchronous fault address */ + case 0x4e: /* E-cache tag data */ + case 0x66: /* I-cache instruction access */ + case 0x67: /* I-cache tag access */ + case 0x6e: /* I-cache predecode */ + case 0x6f: /* I-cache LRU etc. */ + case 0x76: /* E-cache tag */ + case 0x7e: /* E-cache tag */ + break; + case 0x5b: /* D-MMU data pointer */ + case 0x54: /* I-MMU data in, WO */ + case 0x57: /* I-MMU demap, WO */ + case 0x5c: /* D-MMU data in, WO */ + case 0x5f: /* D-MMU demap, WO */ + case 0x77: /* Interrupt vector, WO */ + default: + cpu_unassigned_access(cs, addr, false, false, 1, size); + ret = 0; + break; + } + + /* Convert from little endian */ + switch (asi) { + case 0x0c: /* Nucleus Little Endian (LE) */ + case 0x18: /* As if user primary LE */ + case 0x19: /* As if user secondary LE */ + case 0x1c: /* Bypass LE */ + case 0x1d: /* Bypass, non-cacheable LE */ + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + switch(size) { + case 2: + ret = bswap16(ret); + break; + case 4: + ret = bswap32(ret); + break; + case 8: + ret = bswap64(ret); + break; + default: + break; + } + default: + break; + } + + /* Convert to signed number */ + if (sign) { + switch (size) { + case 1: + ret = (int8_t) ret; + break; + case 2: + ret = (int16_t) ret; + break; + case 4: + ret = (int32_t) ret; + break; + default: + break; + } + } +#ifdef DEBUG_ASI + dump_asi("read ", last_addr, asi, size, ret); +#endif + return ret; +} + +void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, + int asi, int size) +{ + SPARCCPU *cpu = sparc_env_get_cpu(env); + CPUState *cs = CPU(cpu); + +#ifdef DEBUG_ASI + dump_asi("write", addr, asi, size, val); +#endif + + asi &= 0xff; + + if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) + || (cpu_has_hypervisor(env) + && asi >= 0x30 && asi < 0x80 + && !(env->hpstate & HS_PRIV))) { + helper_raise_exception(env, TT_PRIV_ACT); + } + + helper_check_align(env, addr, size - 1); + addr = asi_address_mask(env, asi, addr); + + /* Convert to little endian */ + switch (asi) { + case 0x0c: /* Nucleus Little Endian (LE) */ + case 0x18: /* As if user primary LE */ + case 0x19: /* As if user secondary LE */ + case 0x1c: /* Bypass LE */ + case 0x1d: /* Bypass, non-cacheable LE */ + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + switch (size) { + case 2: + val = bswap16(val); + break; + case 4: + val = bswap32(val); + break; + case 8: + val = bswap64(val); + break; + default: + break; + } + default: + break; + } + + switch (asi) { + case 0x10: /* As if user primary */ + case 0x11: /* As if user secondary */ + case 0x18: /* As if user primary LE */ + case 0x19: /* As if user secondary LE */ + case 0x80: /* Primary */ + case 0x81: /* Secondary */ + case 0x88: /* Primary LE */ + case 0x89: /* Secondary LE */ + case 0xe2: /* UA2007 Primary block init */ + case 0xe3: /* UA2007 Secondary block init */ + if ((asi & 0x80) && (env->pstate & PS_PRIV)) { + if (cpu_hypervisor_mode(env)) { + switch (size) { + case 1: + cpu_stb_hypv(env, addr, val); + break; + case 2: + cpu_stw_hypv(env, addr, val); + break; + case 4: + cpu_stl_hypv(env, addr, val); + break; + case 8: + default: + cpu_stq_hypv(env, addr, val); + break; + } + } else { + /* secondary space access has lowest asi bit equal to 1 */ + if (asi & 1) { + switch (size) { + case 1: + cpu_stb_kernel_secondary(env, addr, val); + break; + case 2: + cpu_stw_kernel_secondary(env, addr, val); + break; + case 4: + cpu_stl_kernel_secondary(env, addr, val); + break; + case 8: + default: + cpu_stq_kernel_secondary(env, addr, val); + break; + } + } else { + switch (size) { + case 1: + cpu_stb_kernel(env, addr, val); + break; + case 2: + cpu_stw_kernel(env, addr, val); + break; + case 4: + cpu_stl_kernel(env, addr, val); + break; + case 8: + default: + cpu_stq_kernel(env, addr, val); + break; + } + } + } + } else { + /* secondary space access has lowest asi bit equal to 1 */ + if (asi & 1) { + switch (size) { + case 1: + cpu_stb_user_secondary(env, addr, val); + break; + case 2: + cpu_stw_user_secondary(env, addr, val); + break; + case 4: + cpu_stl_user_secondary(env, addr, val); + break; + case 8: + default: + cpu_stq_user_secondary(env, addr, val); + break; + } + } else { + switch (size) { + case 1: + cpu_stb_user(env, addr, val); + break; + case 2: + cpu_stw_user(env, addr, val); + break; + case 4: + cpu_stl_user(env, addr, val); + break; + case 8: + default: + cpu_stq_user(env, addr, val); + break; + } + } + } + break; + case 0x14: /* Bypass */ + case 0x15: /* Bypass, non-cacheable */ + case 0x1c: /* Bypass LE */ + case 0x1d: /* Bypass, non-cacheable LE */ + { + switch (size) { + case 1: + stb_phys(cs->as, addr, val); + break; + case 2: + stw_phys(cs->as, addr, val); + break; + case 4: + stl_phys(cs->as, addr, val); + break; + case 8: + default: + stq_phys(cs->as, addr, val); + break; + } + } + return; + case 0x24: /* Nucleus quad LDD 128 bit atomic */ + case 0x2c: /* Nucleus quad LDD 128 bit atomic LE + Only ldda allowed */ + helper_raise_exception(env, TT_ILL_INSN); + return; + case 0x04: /* Nucleus */ + case 0x0c: /* Nucleus Little Endian (LE) */ + { + switch (size) { + case 1: + cpu_stb_nucleus(env, addr, val); + break; + case 2: + cpu_stw_nucleus(env, addr, val); + break; + case 4: + cpu_stl_nucleus(env, addr, val); + break; + default: + case 8: + cpu_stq_nucleus(env, addr, val); + break; + } + break; + } + + case 0x4a: /* UPA config */ + /* XXX */ + return; + case 0x45: /* LSU */ + { + uint64_t oldreg; + + oldreg = env->lsu; + env->lsu = val & (DMMU_E | IMMU_E); + /* Mappings generated during D/I MMU disabled mode are + invalid in normal mode */ + if (oldreg != env->lsu) { + DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", + oldreg, env->lsu); +#ifdef DEBUG_MMU + dump_mmu(stdout, fprintf, env); +#endif + tlb_flush(CPU(cpu), 1); + } + return; + } + case 0x50: /* I-MMU regs */ + { + int reg = (addr >> 3) & 0xf; + uint64_t oldreg; + + oldreg = env->immuregs[reg]; + switch (reg) { + case 0: /* RO */ + return; + case 1: /* Not in I-MMU */ + case 2: + return; + case 3: /* SFSR */ + if ((val & 1) == 0) { + val = 0; /* Clear SFSR */ + } + env->immu.sfsr = val; + break; + case 4: /* RO */ + return; + case 5: /* TSB access */ + DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" + PRIx64 "\n", env->immu.tsb, val); + env->immu.tsb = val; + break; + case 6: /* Tag access */ + env->immu.tag_access = val; + break; + case 7: + case 8: + return; + default: + break; + } + + if (oldreg != env->immuregs[reg]) { + DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" + PRIx64 "\n", reg, oldreg, env->immuregs[reg]); + } +#ifdef DEBUG_MMU + dump_mmu(stdout, fprintf, env); +#endif + return; + } + case 0x54: /* I-MMU data in */ + replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); + return; + case 0x55: /* I-MMU data access */ + { + /* TODO: auto demap */ + + unsigned int i = (addr >> 3) & 0x3f; + + replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); + +#ifdef DEBUG_MMU + DPRINTF_MMU("immu data access replaced entry [%i]\n", i); + dump_mmu(stdout, fprintf, env); +#endif + return; + } + case 0x57: /* I-MMU demap */ + demap_tlb(env->itlb, addr, "immu", env); + return; + case 0x58: /* D-MMU regs */ + { + int reg = (addr >> 3) & 0xf; + uint64_t oldreg; + + oldreg = env->dmmuregs[reg]; + switch (reg) { + case 0: /* RO */ + case 4: + return; + case 3: /* SFSR */ + if ((val & 1) == 0) { + val = 0; /* Clear SFSR, Fault address */ + env->dmmu.sfar = 0; + } + env->dmmu.sfsr = val; + break; + case 1: /* Primary context */ + env->dmmu.mmu_primary_context = val; + /* can be optimized to only flush MMU_USER_IDX + and MMU_KERNEL_IDX entries */ + tlb_flush(CPU(cpu), 1); + break; + case 2: /* Secondary context */ + env->dmmu.mmu_secondary_context = val; + /* can be optimized to only flush MMU_USER_SECONDARY_IDX + and MMU_KERNEL_SECONDARY_IDX entries */ + tlb_flush(CPU(cpu), 1); + break; + case 5: /* TSB access */ + DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" + PRIx64 "\n", env->dmmu.tsb, val); + env->dmmu.tsb = val; + break; + case 6: /* Tag access */ + env->dmmu.tag_access = val; + break; + case 7: /* Virtual Watchpoint */ + case 8: /* Physical Watchpoint */ + default: + env->dmmuregs[reg] = val; + break; + } + + if (oldreg != env->dmmuregs[reg]) { + DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" + PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); + } +#ifdef DEBUG_MMU + dump_mmu(stdout, fprintf, env); +#endif + return; + } + case 0x5c: /* D-MMU data in */ + replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); + return; + case 0x5d: /* D-MMU data access */ + { + unsigned int i = (addr >> 3) & 0x3f; + + replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); + +#ifdef DEBUG_MMU + DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); + dump_mmu(stdout, fprintf, env); +#endif + return; + } + case 0x5f: /* D-MMU demap */ + demap_tlb(env->dtlb, addr, "dmmu", env); + return; + case 0x49: /* Interrupt data receive */ + env->ivec_status = val & 0x20; + return; + case 0x46: /* D-cache data */ + case 0x47: /* D-cache tag access */ + case 0x4b: /* E-cache error enable */ + case 0x4c: /* E-cache asynchronous fault status */ + case 0x4d: /* E-cache asynchronous fault address */ + case 0x4e: /* E-cache tag data */ + case 0x66: /* I-cache instruction access */ + case 0x67: /* I-cache tag access */ + case 0x6e: /* I-cache predecode */ + case 0x6f: /* I-cache LRU etc. */ + case 0x76: /* E-cache tag */ + case 0x7e: /* E-cache tag */ + return; + case 0x51: /* I-MMU 8k TSB pointer, RO */ + case 0x52: /* I-MMU 64k TSB pointer, RO */ + case 0x56: /* I-MMU tag read, RO */ + case 0x59: /* D-MMU 8k TSB pointer, RO */ + case 0x5a: /* D-MMU 64k TSB pointer, RO */ + case 0x5b: /* D-MMU data pointer, RO */ + case 0x5e: /* D-MMU tag read, RO */ + case 0x48: /* Interrupt dispatch, RO */ + case 0x7f: /* Incoming interrupt vector, RO */ + case 0x82: /* Primary no-fault, RO */ + case 0x83: /* Secondary no-fault, RO */ + case 0x8a: /* Primary no-fault LE, RO */ + case 0x8b: /* Secondary no-fault LE, RO */ + default: + cpu_unassigned_access(cs, addr, true, false, 1, size); + return; + } +} +#endif /* CONFIG_USER_ONLY */ + +void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd) +{ + if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) + || (cpu_has_hypervisor(env) + && asi >= 0x30 && asi < 0x80 + && !(env->hpstate & HS_PRIV))) { + helper_raise_exception(env, TT_PRIV_ACT); + } + + addr = asi_address_mask(env, asi, addr); + + switch (asi) { +#if !defined(CONFIG_USER_ONLY) + case 0x24: /* Nucleus quad LDD 128 bit atomic */ + case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */ + helper_check_align(env, addr, 0xf); + if (rd == 0) { + env->gregs[1] = cpu_ldq_nucleus(env, addr + 8); + if (asi == 0x2c) { + bswap64s(&env->gregs[1]); + } + } else if (rd < 8) { + env->gregs[rd] = cpu_ldq_nucleus(env, addr); + env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8); + if (asi == 0x2c) { + bswap64s(&env->gregs[rd]); + bswap64s(&env->gregs[rd + 1]); + } + } else { + env->regwptr[rd] = cpu_ldq_nucleus(env, addr); + env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8); + if (asi == 0x2c) { + bswap64s(&env->regwptr[rd]); + bswap64s(&env->regwptr[rd + 1]); + } + } + break; +#endif + default: + helper_check_align(env, addr, 0x3); + if (rd == 0) { + env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0); + } else if (rd < 8) { + env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0); + env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0); + } else { + env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0); + env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0); + } + break; + } +} + +void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, + int rd) +{ + unsigned int i; + target_ulong val; + + helper_check_align(env, addr, 3); + addr = asi_address_mask(env, asi, addr); + + switch (asi) { + case 0xf0: /* UA2007/JPS1 Block load primary */ + case 0xf1: /* UA2007/JPS1 Block load secondary */ + case 0xf8: /* UA2007/JPS1 Block load primary LE */ + case 0xf9: /* UA2007/JPS1 Block load secondary LE */ + if (rd & 7) { + helper_raise_exception(env, TT_ILL_INSN); + return; + } + helper_check_align(env, addr, 0x3f); + for (i = 0; i < 8; i++, rd += 2, addr += 8) { + env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0); + } + return; + + case 0x16: /* UA2007 Block load primary, user privilege */ + case 0x17: /* UA2007 Block load secondary, user privilege */ + case 0x1e: /* UA2007 Block load primary LE, user privilege */ + case 0x1f: /* UA2007 Block load secondary LE, user privilege */ + case 0x70: /* JPS1 Block load primary, user privilege */ + case 0x71: /* JPS1 Block load secondary, user privilege */ + case 0x78: /* JPS1 Block load primary LE, user privilege */ + case 0x79: /* JPS1 Block load secondary LE, user privilege */ + if (rd & 7) { + helper_raise_exception(env, TT_ILL_INSN); + return; + } + helper_check_align(env, addr, 0x3f); + for (i = 0; i < 8; i++, rd += 2, addr += 8) { + env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0); + } + return; + + default: + break; + } + + switch (size) { + default: + case 4: + val = helper_ld_asi(env, addr, asi, size, 0); + if (rd & 1) { + env->fpr[rd / 2].l.lower = val; + } else { + env->fpr[rd / 2].l.upper = val; + } + break; + case 8: + env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0); + break; + case 16: + env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0); + env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0); + break; + } +} + +void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, + int rd) +{ + unsigned int i; + target_ulong val; + + addr = asi_address_mask(env, asi, addr); + + switch (asi) { + case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */ + case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */ + case 0xf0: /* UA2007/JPS1 Block store primary */ + case 0xf1: /* UA2007/JPS1 Block store secondary */ + case 0xf8: /* UA2007/JPS1 Block store primary LE */ + case 0xf9: /* UA2007/JPS1 Block store secondary LE */ + if (rd & 7) { + helper_raise_exception(env, TT_ILL_INSN); + return; + } + helper_check_align(env, addr, 0x3f); + for (i = 0; i < 8; i++, rd += 2, addr += 8) { + helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8); + } + + return; + case 0x16: /* UA2007 Block load primary, user privilege */ + case 0x17: /* UA2007 Block load secondary, user privilege */ + case 0x1e: /* UA2007 Block load primary LE, user privilege */ + case 0x1f: /* UA2007 Block load secondary LE, user privilege */ + case 0x70: /* JPS1 Block store primary, user privilege */ + case 0x71: /* JPS1 Block store secondary, user privilege */ + case 0x78: /* JPS1 Block load primary LE, user privilege */ + case 0x79: /* JPS1 Block load secondary LE, user privilege */ + if (rd & 7) { + helper_raise_exception(env, TT_ILL_INSN); + return; + } + helper_check_align(env, addr, 0x3f); + for (i = 0; i < 8; i++, rd += 2, addr += 8) { + helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8); + } + + return; + case 0xd2: /* 16-bit floating point load primary */ + case 0xd3: /* 16-bit floating point load secondary */ + case 0xda: /* 16-bit floating point load primary, LE */ + case 0xdb: /* 16-bit floating point load secondary, LE */ + helper_check_align(env, addr, 1); + /* Fall through */ + case 0xd0: /* 8-bit floating point load primary */ + case 0xd1: /* 8-bit floating point load secondary */ + case 0xd8: /* 8-bit floating point load primary, LE */ + case 0xd9: /* 8-bit floating point load secondary, LE */ + val = env->fpr[rd / 2].l.lower; + helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1); + return; + default: + helper_check_align(env, addr, 3); + break; + } + + switch (size) { + default: + case 4: + if (rd & 1) { + val = env->fpr[rd / 2].l.lower; + } else { + val = env->fpr[rd / 2].l.upper; + } + helper_st_asi(env, addr, val, asi, size); + break; + case 8: + helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size); + break; + case 16: + helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8); + helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8); + break; + } +} + +target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr, + target_ulong val1, target_ulong val2, + uint32_t asi) +{ + target_ulong ret; + + ret = helper_ld_asi(env, addr, asi, 8, 0); + if (val2 == ret) { + helper_st_asi(env, addr, val1, asi, 8); + } + return ret; +} +#endif /* TARGET_SPARC64 */ + +#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) +target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr, + target_ulong val1, target_ulong val2, uint32_t asi) +{ + target_ulong ret; + + val2 &= 0xffffffffUL; + ret = helper_ld_asi(env, addr, asi, 4, 0); + ret &= 0xffffffffUL; + if (val2 == ret) { + helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4); + } + return ret; +} +#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */ + +void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx) +{ + /* XXX add 128 bit load */ + CPU_QuadU u; + + helper_check_align(env, addr, 7); +#if !defined(CONFIG_USER_ONLY) + switch (mem_idx) { + case MMU_USER_IDX: + u.ll.upper = cpu_ldq_user(env, addr); + u.ll.lower = cpu_ldq_user(env, addr + 8); + QT0 = u.q; + break; + case MMU_KERNEL_IDX: + u.ll.upper = cpu_ldq_kernel(env, addr); + u.ll.lower = cpu_ldq_kernel(env, addr + 8); + QT0 = u.q; + break; +#ifdef TARGET_SPARC64 + case MMU_HYPV_IDX: + u.ll.upper = cpu_ldq_hypv(env, addr); + u.ll.lower = cpu_ldq_hypv(env, addr + 8); + QT0 = u.q; + break; +#endif + default: + DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); + break; + } +#else + u.ll.upper = cpu_ldq_data(env, address_mask(env, addr)); + u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8)); + QT0 = u.q; +#endif +} + +void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx) +{ + /* XXX add 128 bit store */ + CPU_QuadU u; + + helper_check_align(env, addr, 7); +#if !defined(CONFIG_USER_ONLY) + switch (mem_idx) { + case MMU_USER_IDX: + u.q = QT0; + cpu_stq_user(env, addr, u.ll.upper); + cpu_stq_user(env, addr + 8, u.ll.lower); + break; + case MMU_KERNEL_IDX: + u.q = QT0; + cpu_stq_kernel(env, addr, u.ll.upper); + cpu_stq_kernel(env, addr + 8, u.ll.lower); + break; +#ifdef TARGET_SPARC64 + case MMU_HYPV_IDX: + u.q = QT0; + cpu_stq_hypv(env, addr, u.ll.upper); + cpu_stq_hypv(env, addr + 8, u.ll.lower); + break; +#endif + default: + DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); + break; + } +#else + u.q = QT0; + cpu_stq_data(env, address_mask(env, addr), u.ll.upper); + cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower); +#endif +} + +#if !defined(CONFIG_USER_ONLY) +#ifndef TARGET_SPARC64 +void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, + bool is_write, bool is_exec, int is_asi, + unsigned size) +{ + SPARCCPU *cpu = SPARC_CPU(cs); + CPUSPARCState *env = &cpu->env; + int fault_type; + +#ifdef DEBUG_UNASSIGNED + if (is_asi) { + printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx + " asi 0x%02x from " TARGET_FMT_lx "\n", + is_exec ? "exec" : is_write ? "write" : "read", size, + size == 1 ? "" : "s", addr, is_asi, env->pc); + } else { + printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx + " from " TARGET_FMT_lx "\n", + is_exec ? "exec" : is_write ? "write" : "read", size, + size == 1 ? "" : "s", addr, env->pc); + } +#endif + /* Don't overwrite translation and access faults */ + fault_type = (env->mmuregs[3] & 0x1c) >> 2; + if ((fault_type > 4) || (fault_type == 0)) { + env->mmuregs[3] = 0; /* Fault status register */ + if (is_asi) { + env->mmuregs[3] |= 1 << 16; + } + if (env->psrs) { + env->mmuregs[3] |= 1 << 5; + } + if (is_exec) { + env->mmuregs[3] |= 1 << 6; + } + if (is_write) { + env->mmuregs[3] |= 1 << 7; + } + env->mmuregs[3] |= (5 << 2) | 2; + /* SuperSPARC will never place instruction fault addresses in the FAR */ + if (!is_exec) { + env->mmuregs[4] = addr; /* Fault address register */ + } + } + /* overflow (same type fault was not read before another fault) */ + if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { + env->mmuregs[3] |= 1; + } + + if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { + if (is_exec) { + helper_raise_exception(env, TT_CODE_ACCESS); + } else { + helper_raise_exception(env, TT_DATA_ACCESS); + } + } + + /* flush neverland mappings created during no-fault mode, + so the sequential MMU faults report proper fault types */ + if (env->mmuregs[0] & MMU_NF) { + tlb_flush(cs, 1); + } +} +#else +void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr, + bool is_write, bool is_exec, int is_asi, + unsigned size) +{ + SPARCCPU *cpu = SPARC_CPU(cs); + CPUSPARCState *env = &cpu->env; + +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx + "\n", addr, env->pc); +#endif + + if (is_exec) { + helper_raise_exception(env, TT_CODE_ACCESS); + } else { + helper_raise_exception(env, TT_DATA_ACCESS); + } +} +#endif +#endif + +#if !defined(CONFIG_USER_ONLY) +void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, + vaddr addr, int is_write, + int is_user, uintptr_t retaddr) +{ + SPARCCPU *cpu = SPARC_CPU(cs); + CPUSPARCState *env = &cpu->env; + +#ifdef DEBUG_UNALIGNED + printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx + "\n", addr, env->pc); +#endif + if (retaddr) { + cpu_restore_state(CPU(cpu), retaddr); + } + helper_raise_exception(env, TT_UNALIGNED); +} + +/* try to fill the TLB and return an exception if error. If retaddr is + NULL, it means that the function was called in C code (i.e. not + from generated code or from helper.c) */ +/* XXX: fix it to restore all registers */ +void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, + uintptr_t retaddr) +{ + int ret; + + ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx); + if (ret) { + if (retaddr) { + cpu_restore_state(cs, retaddr); + } + cpu_loop_exit(cs); + } +} +#endif |