diff options
author | Yang Zhang <yang.z.zhang@intel.com> | 2015-08-28 09:58:54 +0800 |
---|---|---|
committer | Yang Zhang <yang.z.zhang@intel.com> | 2015-09-01 12:44:00 +0800 |
commit | e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch) | |
tree | 66b09f592c55df2878107a468a91d21506104d3f /qemu/target-ppc/kvm.c | |
parent | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff) |
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/target-ppc/kvm.c')
-rw-r--r-- | qemu/target-ppc/kvm.c | 2486 |
1 files changed, 2486 insertions, 0 deletions
diff --git a/qemu/target-ppc/kvm.c b/qemu/target-ppc/kvm.c new file mode 100644 index 000000000..110436d08 --- /dev/null +++ b/qemu/target-ppc/kvm.c @@ -0,0 +1,2486 @@ +/* + * PowerPC implementation of KVM hooks + * + * Copyright IBM Corp. 2007 + * Copyright (C) 2011 Freescale Semiconductor, Inc. + * + * Authors: + * Jerone Young <jyoung5@us.ibm.com> + * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> + * Hollis Blanchard <hollisb@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include <dirent.h> +#include <sys/types.h> +#include <sys/ioctl.h> +#include <sys/mman.h> +#include <sys/vfs.h> + +#include <linux/kvm.h> + +#include "qemu-common.h" +#include "qemu/timer.h" +#include "sysemu/sysemu.h" +#include "sysemu/kvm.h" +#include "kvm_ppc.h" +#include "cpu.h" +#include "sysemu/cpus.h" +#include "sysemu/device_tree.h" +#include "mmu-hash64.h" + +#include "hw/sysbus.h" +#include "hw/ppc/spapr.h" +#include "hw/ppc/spapr_vio.h" +#include "hw/ppc/ppc.h" +#include "sysemu/watchdog.h" +#include "trace.h" +#include "exec/gdbstub.h" +#include "exec/memattrs.h" +#include "sysemu/hostmem.h" + +//#define DEBUG_KVM + +#ifdef DEBUG_KVM +#define DPRINTF(fmt, ...) \ + do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) +#else +#define DPRINTF(fmt, ...) \ + do { } while (0) +#endif + +#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" + +const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_LAST_INFO +}; + +static int cap_interrupt_unset = false; +static int cap_interrupt_level = false; +static int cap_segstate; +static int cap_booke_sregs; +static int cap_ppc_smt; +static int cap_ppc_rma; +static int cap_spapr_tce; +static int cap_spapr_multitce; +static int cap_spapr_vfio; +static int cap_hior; +static int cap_one_reg; +static int cap_epr; +static int cap_ppc_watchdog; +static int cap_papr; +static int cap_htab_fd; +static int cap_fixup_hcalls; + +static uint32_t debug_inst_opcode; + +/* XXX We have a race condition where we actually have a level triggered + * interrupt, but the infrastructure can't expose that yet, so the guest + * takes but ignores it, goes to sleep and never gets notified that there's + * still an interrupt pending. + * + * As a quick workaround, let's just wake up again 20 ms after we injected + * an interrupt. That way we can assure that we're always reinjecting + * interrupts in case the guest swallowed them. + */ +static QEMUTimer *idle_timer; + +static void kvm_kick_cpu(void *opaque) +{ + PowerPCCPU *cpu = opaque; + + qemu_cpu_kick(CPU(cpu)); +} + +static int kvm_ppc_register_host_cpu_type(void); + +int kvm_arch_init(MachineState *ms, KVMState *s) +{ + cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); + cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); + cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); + cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); + cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT); + cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA); + cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); + cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); + cap_spapr_vfio = false; + cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); + cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); + cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); + cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); + /* Note: we don't set cap_papr here, because this capability is + * only activated after this by kvmppc_set_papr() */ + cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD); + cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); + + if (!cap_interrupt_level) { + fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " + "VM to stall at times!\n"); + } + + kvm_ppc_register_host_cpu_type(); + + return 0; +} + +static int kvm_arch_sync_sregs(PowerPCCPU *cpu) +{ + CPUPPCState *cenv = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_sregs sregs; + int ret; + + if (cenv->excp_model == POWERPC_EXCP_BOOKE) { + /* What we're really trying to say is "if we're on BookE, we use + the native PVR for now". This is the only sane way to check + it though, so we potentially confuse users that they can run + BookE guests on BookS. Let's hope nobody dares enough :) */ + return 0; + } else { + if (!cap_segstate) { + fprintf(stderr, "kvm error: missing PVR setting capability\n"); + return -ENOSYS; + } + } + + ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); + if (ret) { + return ret; + } + + sregs.pvr = cenv->spr[SPR_PVR]; + return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); +} + +/* Set up a shared TLB array with KVM */ +static int kvm_booke206_tlb_init(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_book3e_206_tlb_params params = {}; + struct kvm_config_tlb cfg = {}; + unsigned int entries = 0; + int ret, i; + + if (!kvm_enabled() || + !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { + return 0; + } + + assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); + + for (i = 0; i < BOOKE206_MAX_TLBN; i++) { + params.tlb_sizes[i] = booke206_tlb_size(env, i); + params.tlb_ways[i] = booke206_tlb_ways(env, i); + entries += params.tlb_sizes[i]; + } + + assert(entries == env->nb_tlb); + assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); + + env->tlb_dirty = true; + + cfg.array = (uintptr_t)env->tlb.tlbm; + cfg.array_len = sizeof(ppcmas_tlb_t) * entries; + cfg.params = (uintptr_t)¶ms; + cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); + if (ret < 0) { + fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", + __func__, strerror(-ret)); + return ret; + } + + env->kvm_sw_tlb = true; + return 0; +} + + +#if defined(TARGET_PPC64) +static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu, + struct kvm_ppc_smmu_info *info) +{ + CPUPPCState *env = &cpu->env; + CPUState *cs = CPU(cpu); + + memset(info, 0, sizeof(*info)); + + /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so + * need to "guess" what the supported page sizes are. + * + * For that to work we make a few assumptions: + * + * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR" + * KVM which only supports 4K and 16M pages, but supports them + * regardless of the backing store characteritics. We also don't + * support 1T segments. + * + * This is safe as if HV KVM ever supports that capability or PR + * KVM grows supports for more page/segment sizes, those versions + * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we + * will not hit this fallback + * + * - Else we are running HV KVM. This means we only support page + * sizes that fit in the backing store. Additionally we only + * advertize 64K pages if the processor is ARCH 2.06 and we assume + * P7 encodings for the SLB and hash table. Here too, we assume + * support for any newer processor will mean a kernel that + * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit + * this fallback. + */ + if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) { + /* No flags */ + info->flags = 0; + info->slb_size = 64; + + /* Standard 4k base page size segment */ + info->sps[0].page_shift = 12; + info->sps[0].slb_enc = 0; + info->sps[0].enc[0].page_shift = 12; + info->sps[0].enc[0].pte_enc = 0; + + /* Standard 16M large page size segment */ + info->sps[1].page_shift = 24; + info->sps[1].slb_enc = SLB_VSID_L; + info->sps[1].enc[0].page_shift = 24; + info->sps[1].enc[0].pte_enc = 0; + } else { + int i = 0; + + /* HV KVM has backing store size restrictions */ + info->flags = KVM_PPC_PAGE_SIZES_REAL; + + if (env->mmu_model & POWERPC_MMU_1TSEG) { + info->flags |= KVM_PPC_1T_SEGMENTS; + } + + if (env->mmu_model == POWERPC_MMU_2_06) { + info->slb_size = 32; + } else { + info->slb_size = 64; + } + + /* Standard 4k base page size segment */ + info->sps[i].page_shift = 12; + info->sps[i].slb_enc = 0; + info->sps[i].enc[0].page_shift = 12; + info->sps[i].enc[0].pte_enc = 0; + i++; + + /* 64K on MMU 2.06 */ + if (env->mmu_model == POWERPC_MMU_2_06) { + info->sps[i].page_shift = 16; + info->sps[i].slb_enc = 0x110; + info->sps[i].enc[0].page_shift = 16; + info->sps[i].enc[0].pte_enc = 1; + i++; + } + + /* Standard 16M large page size segment */ + info->sps[i].page_shift = 24; + info->sps[i].slb_enc = SLB_VSID_L; + info->sps[i].enc[0].page_shift = 24; + info->sps[i].enc[0].pte_enc = 0; + } +} + +static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info) +{ + CPUState *cs = CPU(cpu); + int ret; + + if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { + ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info); + if (ret == 0) { + return; + } + } + + kvm_get_fallback_smmu_info(cpu, info); +} + +static long gethugepagesize(const char *mem_path) +{ + struct statfs fs; + int ret; + + do { + ret = statfs(mem_path, &fs); + } while (ret != 0 && errno == EINTR); + + if (ret != 0) { + fprintf(stderr, "Couldn't statfs() memory path: %s\n", + strerror(errno)); + exit(1); + } + +#define HUGETLBFS_MAGIC 0x958458f6 + + if (fs.f_type != HUGETLBFS_MAGIC) { + /* Explicit mempath, but it's ordinary pages */ + return getpagesize(); + } + + /* It's hugepage, return the huge page size */ + return fs.f_bsize; +} + +static int find_max_supported_pagesize(Object *obj, void *opaque) +{ + char *mem_path; + long *hpsize_min = opaque; + + if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { + mem_path = object_property_get_str(obj, "mem-path", NULL); + if (mem_path) { + long hpsize = gethugepagesize(mem_path); + if (hpsize < *hpsize_min) { + *hpsize_min = hpsize; + } + } else { + *hpsize_min = getpagesize(); + } + } + + return 0; +} + +static long getrampagesize(void) +{ + long hpsize = LONG_MAX; + Object *memdev_root; + + if (mem_path) { + return gethugepagesize(mem_path); + } + + /* it's possible we have memory-backend objects with + * hugepage-backed RAM. these may get mapped into system + * address space via -numa parameters or memory hotplug + * hooks. we want to take these into account, but we + * also want to make sure these supported hugepage + * sizes are applicable across the entire range of memory + * we may boot from, so we take the min across all + * backends, and assume normal pages in cases where a + * backend isn't backed by hugepages. + */ + memdev_root = object_resolve_path("/objects", NULL); + if (!memdev_root) { + return getpagesize(); + } + + object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); + + return (hpsize == LONG_MAX) ? getpagesize() : hpsize; +} + +static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift) +{ + if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) { + return true; + } + + return (1ul << shift) <= rampgsize; +} + +static void kvm_fixup_page_sizes(PowerPCCPU *cpu) +{ + static struct kvm_ppc_smmu_info smmu_info; + static bool has_smmu_info; + CPUPPCState *env = &cpu->env; + long rampagesize; + int iq, ik, jq, jk; + + /* We only handle page sizes for 64-bit server guests for now */ + if (!(env->mmu_model & POWERPC_MMU_64)) { + return; + } + + /* Collect MMU info from kernel if not already */ + if (!has_smmu_info) { + kvm_get_smmu_info(cpu, &smmu_info); + has_smmu_info = true; + } + + rampagesize = getrampagesize(); + + /* Convert to QEMU form */ + memset(&env->sps, 0, sizeof(env->sps)); + + /* + * XXX This loop should be an entry wide AND of the capabilities that + * the selected CPU has with the capabilities that KVM supports. + */ + for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) { + struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq]; + struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik]; + + if (!kvm_valid_page_size(smmu_info.flags, rampagesize, + ksps->page_shift)) { + continue; + } + qsps->page_shift = ksps->page_shift; + qsps->slb_enc = ksps->slb_enc; + for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) { + if (!kvm_valid_page_size(smmu_info.flags, rampagesize, + ksps->enc[jk].page_shift)) { + continue; + } + qsps->enc[jq].page_shift = ksps->enc[jk].page_shift; + qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc; + if (++jq >= PPC_PAGE_SIZES_MAX_SZ) { + break; + } + } + if (++iq >= PPC_PAGE_SIZES_MAX_SZ) { + break; + } + } + env->slb_nr = smmu_info.slb_size; + if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { + env->mmu_model &= ~POWERPC_MMU_1TSEG; + } +} +#else /* defined (TARGET_PPC64) */ + +static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu) +{ +} + +#endif /* !defined (TARGET_PPC64) */ + +unsigned long kvm_arch_vcpu_id(CPUState *cpu) +{ + return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); +} + +/* e500 supports 2 h/w breakpoint and 2 watchpoint. + * book3s supports only 1 watchpoint, so array size + * of 4 is sufficient for now. + */ +#define MAX_HW_BKPTS 4 + +static struct HWBreakpoint { + target_ulong addr; + int type; +} hw_debug_points[MAX_HW_BKPTS]; + +static CPUWatchpoint hw_watchpoint; + +/* Default there is no breakpoint and watchpoint supported */ +static int max_hw_breakpoint; +static int max_hw_watchpoint; +static int nb_hw_breakpoint; +static int nb_hw_watchpoint; + +static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) +{ + if (cenv->excp_model == POWERPC_EXCP_BOOKE) { + max_hw_breakpoint = 2; + max_hw_watchpoint = 2; + } + + if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { + fprintf(stderr, "Error initializing h/w breakpoints\n"); + return; + } +} + +int kvm_arch_init_vcpu(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *cenv = &cpu->env; + int ret; + + /* Gather server mmu info from KVM and update the CPU state */ + kvm_fixup_page_sizes(cpu); + + /* Synchronize sregs with kvm */ + ret = kvm_arch_sync_sregs(cpu); + if (ret) { + return ret; + } + + idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); + + /* Some targets support access to KVM's guest TLB. */ + switch (cenv->mmu_model) { + case POWERPC_MMU_BOOKE206: + ret = kvm_booke206_tlb_init(cpu); + break; + default: + break; + } + + kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); + kvmppc_hw_debug_points_init(cenv); + + return ret; +} + +static void kvm_sw_tlb_put(PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + CPUState *cs = CPU(cpu); + struct kvm_dirty_tlb dirty_tlb; + unsigned char *bitmap; + int ret; + + if (!env->kvm_sw_tlb) { + return; + } + + bitmap = g_malloc((env->nb_tlb + 7) / 8); + memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); + + dirty_tlb.bitmap = (uintptr_t)bitmap; + dirty_tlb.num_dirty = env->nb_tlb; + + ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); + if (ret) { + fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", + __func__, strerror(-ret)); + } + + g_free(bitmap); +} + +static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + union { + uint32_t u32; + uint64_t u64; + } val; + struct kvm_one_reg reg = { + .id = id, + .addr = (uintptr_t) &val, + }; + int ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret != 0) { + trace_kvm_failed_spr_get(spr, strerror(errno)); + } else { + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + env->spr[spr] = val.u32; + break; + + case KVM_REG_SIZE_U64: + env->spr[spr] = val.u64; + break; + + default: + /* Don't handle this size yet */ + abort(); + } + } +} + +static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + union { + uint32_t u32; + uint64_t u64; + } val; + struct kvm_one_reg reg = { + .id = id, + .addr = (uintptr_t) &val, + }; + int ret; + + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + val.u32 = env->spr[spr]; + break; + + case KVM_REG_SIZE_U64: + val.u64 = env->spr[spr]; + break; + + default: + /* Don't handle this size yet */ + abort(); + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret != 0) { + trace_kvm_failed_spr_set(spr, strerror(errno)); + } +} + +static int kvm_put_fp(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int i; + int ret; + + if (env->insns_flags & PPC_FLOAT) { + uint64_t fpscr = env->fpscr; + bool vsx = !!(env->insns_flags2 & PPC2_VSX); + + reg.id = KVM_REG_PPC_FPSCR; + reg.addr = (uintptr_t)&fpscr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + uint64_t vsr[2]; + + vsr[0] = float64_val(env->fpr[i]); + vsr[1] = env->vsr[i]; + reg.addr = (uintptr_t) &vsr; + reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); + + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", + i, strerror(errno)); + return ret; + } + } + } + + if (env->insns_flags & PPC_ALTIVEC) { + reg.id = KVM_REG_PPC_VSCR; + reg.addr = (uintptr_t)&env->vscr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + reg.id = KVM_REG_PPC_VR(i); + reg.addr = (uintptr_t)&env->avr[i]; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); + return ret; + } + } + } + + return 0; +} + +static int kvm_get_fp(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int i; + int ret; + + if (env->insns_flags & PPC_FLOAT) { + uint64_t fpscr; + bool vsx = !!(env->insns_flags2 & PPC2_VSX); + + reg.id = KVM_REG_PPC_FPSCR; + reg.addr = (uintptr_t)&fpscr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); + return ret; + } else { + env->fpscr = fpscr; + } + + for (i = 0; i < 32; i++) { + uint64_t vsr[2]; + + reg.addr = (uintptr_t) &vsr; + reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); + + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get %s%d from KVM: %s\n", + vsx ? "VSR" : "FPR", i, strerror(errno)); + return ret; + } else { + env->fpr[i] = vsr[0]; + if (vsx) { + env->vsr[i] = vsr[1]; + } + } + } + } + + if (env->insns_flags & PPC_ALTIVEC) { + reg.id = KVM_REG_PPC_VSCR; + reg.addr = (uintptr_t)&env->vscr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); + return ret; + } + + for (i = 0; i < 32; i++) { + reg.id = KVM_REG_PPC_VR(i); + reg.addr = (uintptr_t)&env->avr[i]; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get VR%d from KVM: %s\n", + i, strerror(errno)); + return ret; + } + } + } + + return 0; +} + +#if defined(TARGET_PPC64) +static int kvm_get_vpa(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int ret; + + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&env->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); + return ret; + } + + assert((uintptr_t)&env->slb_shadow_size + == ((uintptr_t)&env->slb_shadow_addr + 8)); + reg.id = KVM_REG_PPC_VPA_SLB; + reg.addr = (uintptr_t)&env->slb_shadow_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get SLB shadow state from KVM: %s\n", + strerror(errno)); + return ret; + } + + assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); + reg.id = KVM_REG_PPC_VPA_DTL; + reg.addr = (uintptr_t)&env->dtl_addr; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", + strerror(errno)); + return ret; + } + + return 0; +} + +static int kvm_put_vpa(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_one_reg reg; + int ret; + + /* SLB shadow or DTL can't be registered unless a master VPA is + * registered. That means when restoring state, if a VPA *is* + * registered, we need to set that up first. If not, we need to + * deregister the others before deregistering the master VPA */ + assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); + + if (env->vpa_addr) { + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&env->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); + return ret; + } + } + + assert((uintptr_t)&env->slb_shadow_size + == ((uintptr_t)&env->slb_shadow_addr + 8)); + reg.id = KVM_REG_PPC_VPA_SLB; + reg.addr = (uintptr_t)&env->slb_shadow_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); + return ret; + } + + assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); + reg.id = KVM_REG_PPC_VPA_DTL; + reg.addr = (uintptr_t)&env->dtl_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", + strerror(errno)); + return ret; + } + + if (!env->vpa_addr) { + reg.id = KVM_REG_PPC_VPA_ADDR; + reg.addr = (uintptr_t)&env->vpa_addr; + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret < 0) { + DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); + return ret; + } + } + + return 0; +} +#endif /* TARGET_PPC64 */ + +int kvm_arch_put_registers(CPUState *cs, int level) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_regs regs; + int ret; + int i; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); + if (ret < 0) { + return ret; + } + + regs.ctr = env->ctr; + regs.lr = env->lr; + regs.xer = cpu_read_xer(env); + regs.msr = env->msr; + regs.pc = env->nip; + + regs.srr0 = env->spr[SPR_SRR0]; + regs.srr1 = env->spr[SPR_SRR1]; + + regs.sprg0 = env->spr[SPR_SPRG0]; + regs.sprg1 = env->spr[SPR_SPRG1]; + regs.sprg2 = env->spr[SPR_SPRG2]; + regs.sprg3 = env->spr[SPR_SPRG3]; + regs.sprg4 = env->spr[SPR_SPRG4]; + regs.sprg5 = env->spr[SPR_SPRG5]; + regs.sprg6 = env->spr[SPR_SPRG6]; + regs.sprg7 = env->spr[SPR_SPRG7]; + + regs.pid = env->spr[SPR_BOOKE_PID]; + + for (i = 0;i < 32; i++) + regs.gpr[i] = env->gpr[i]; + + regs.cr = 0; + for (i = 0; i < 8; i++) { + regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); + if (ret < 0) + return ret; + + kvm_put_fp(cs); + + if (env->tlb_dirty) { + kvm_sw_tlb_put(cpu); + env->tlb_dirty = false; + } + + if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { + struct kvm_sregs sregs; + + sregs.pvr = env->spr[SPR_PVR]; + + sregs.u.s.sdr1 = env->spr[SPR_SDR1]; + + /* Sync SLB */ +#ifdef TARGET_PPC64 + for (i = 0; i < ARRAY_SIZE(env->slb); i++) { + sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; + if (env->slb[i].esid & SLB_ESID_V) { + sregs.u.s.ppc64.slb[i].slbe |= i; + } + sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; + } +#endif + + /* Sync SRs */ + for (i = 0; i < 16; i++) { + sregs.u.s.ppc32.sr[i] = env->sr[i]; + } + + /* Sync BATs */ + for (i = 0; i < 8; i++) { + /* Beware. We have to swap upper and lower bits here */ + sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) + | env->DBAT[1][i]; + sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) + | env->IBAT[1][i]; + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); + if (ret) { + return ret; + } + } + + if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { + kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); + } + + if (cap_one_reg) { + int i; + + /* We deliberately ignore errors here, for kernels which have + * the ONE_REG calls, but don't support the specific + * registers, there's a reasonable chance things will still + * work, at least until we try to migrate. */ + for (i = 0; i < 1024; i++) { + uint64_t id = env->spr_cb[i].one_reg_id; + + if (id != 0) { + kvm_put_one_spr(cs, id, i); + } + } + +#ifdef TARGET_PPC64 + if (msr_ts) { + for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { + kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); + } + for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); + } + kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); + kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); + } + + if (cap_papr) { + if (kvm_put_vpa(cs) < 0) { + DPRINTF("Warning: Unable to set VPA information to KVM\n"); + } + } + + kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); +#endif /* TARGET_PPC64 */ + } + + return ret; +} + +static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) +{ + env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; +} + +int kvm_arch_get_registers(CPUState *cs) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + struct kvm_regs regs; + struct kvm_sregs sregs; + uint32_t cr; + int i, ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); + if (ret < 0) + return ret; + + cr = regs.cr; + for (i = 7; i >= 0; i--) { + env->crf[i] = cr & 15; + cr >>= 4; + } + + env->ctr = regs.ctr; + env->lr = regs.lr; + cpu_write_xer(env, regs.xer); + env->msr = regs.msr; + env->nip = regs.pc; + + env->spr[SPR_SRR0] = regs.srr0; + env->spr[SPR_SRR1] = regs.srr1; + + env->spr[SPR_SPRG0] = regs.sprg0; + env->spr[SPR_SPRG1] = regs.sprg1; + env->spr[SPR_SPRG2] = regs.sprg2; + env->spr[SPR_SPRG3] = regs.sprg3; + env->spr[SPR_SPRG4] = regs.sprg4; + env->spr[SPR_SPRG5] = regs.sprg5; + env->spr[SPR_SPRG6] = regs.sprg6; + env->spr[SPR_SPRG7] = regs.sprg7; + + env->spr[SPR_BOOKE_PID] = regs.pid; + + for (i = 0;i < 32; i++) + env->gpr[i] = regs.gpr[i]; + + kvm_get_fp(cs); + + if (cap_booke_sregs) { + ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + if (sregs.u.e.features & KVM_SREGS_E_BASE) { + env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; + env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; + env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; + env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; + env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; + env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; + env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; + env->spr[SPR_DECR] = sregs.u.e.dec; + env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; + env->spr[SPR_TBU] = sregs.u.e.tb >> 32; + env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; + } + + if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { + env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; + env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; + env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; + env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; + env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; + } + + if (sregs.u.e.features & KVM_SREGS_E_64) { + env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; + } + + if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { + env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; + } + + if (sregs.u.e.features & KVM_SREGS_E_IVOR) { + env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; + kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); + env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; + kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); + env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; + kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); + env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; + kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); + env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; + kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); + env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; + kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); + env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; + kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); + env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; + kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); + env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; + kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); + env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; + kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); + env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; + kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); + env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; + kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); + env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; + kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); + env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; + kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); + env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; + kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); + env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; + kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); + + if (sregs.u.e.features & KVM_SREGS_E_SPE) { + env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; + kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); + env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; + kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); + env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; + kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); + } + + if (sregs.u.e.features & KVM_SREGS_E_PM) { + env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; + kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); + } + + if (sregs.u.e.features & KVM_SREGS_E_PC) { + env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; + kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); + env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; + kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); + } + } + + if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { + env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; + env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; + env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; + env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; + env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; + env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; + env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; + env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; + env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; + env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; + } + + if (sregs.u.e.features & KVM_SREGS_EXP) { + env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; + } + + if (sregs.u.e.features & KVM_SREGS_E_PD) { + env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; + env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; + } + + if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { + env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; + env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; + env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; + + if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { + env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; + env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; + } + } + } + + if (cap_segstate) { + ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + if (!env->external_htab) { + ppc_store_sdr1(env, sregs.u.s.sdr1); + } + + /* Sync SLB */ +#ifdef TARGET_PPC64 + /* + * The packed SLB array we get from KVM_GET_SREGS only contains + * information about valid entries. So we flush our internal + * copy to get rid of stale ones, then put all valid SLB entries + * back in. + */ + memset(env->slb, 0, sizeof(env->slb)); + for (i = 0; i < ARRAY_SIZE(env->slb); i++) { + target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; + target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; + /* + * Only restore valid entries + */ + if (rb & SLB_ESID_V) { + ppc_store_slb(env, rb, rs); + } + } +#endif + + /* Sync SRs */ + for (i = 0; i < 16; i++) { + env->sr[i] = sregs.u.s.ppc32.sr[i]; + } + + /* Sync BATs */ + for (i = 0; i < 8; i++) { + env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; + env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; + env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; + env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; + } + } + + if (cap_hior) { + kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); + } + + if (cap_one_reg) { + int i; + + /* We deliberately ignore errors here, for kernels which have + * the ONE_REG calls, but don't support the specific + * registers, there's a reasonable chance things will still + * work, at least until we try to migrate. */ + for (i = 0; i < 1024; i++) { + uint64_t id = env->spr_cb[i].one_reg_id; + + if (id != 0) { + kvm_get_one_spr(cs, id, i); + } + } + +#ifdef TARGET_PPC64 + if (msr_ts) { + for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { + kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); + } + for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); + } + kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); + kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); + } + + if (cap_papr) { + if (kvm_get_vpa(cs) < 0) { + DPRINTF("Warning: Unable to get VPA information from KVM\n"); + } + } + + kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); +#endif + } + + return 0; +} + +int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) +{ + unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; + + if (irq != PPC_INTERRUPT_EXT) { + return 0; + } + + if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { + return 0; + } + + kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); + + return 0; +} + +#if defined(TARGET_PPCEMB) +#define PPC_INPUT_INT PPC40x_INPUT_INT +#elif defined(TARGET_PPC64) +#define PPC_INPUT_INT PPC970_INPUT_INT +#else +#define PPC_INPUT_INT PPC6xx_INPUT_INT +#endif + +void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + int r; + unsigned irq; + + qemu_mutex_lock_iothread(); + + /* PowerPC QEMU tracks the various core input pins (interrupt, critical + * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ + if (!cap_interrupt_level && + run->ready_for_interrupt_injection && + (cs->interrupt_request & CPU_INTERRUPT_HARD) && + (env->irq_input_state & (1<<PPC_INPUT_INT))) + { + /* For now KVM disregards the 'irq' argument. However, in the + * future KVM could cache it in-kernel to avoid a heavyweight exit + * when reading the UIC. + */ + irq = KVM_INTERRUPT_SET; + + DPRINTF("injected interrupt %d\n", irq); + r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); + if (r < 0) { + printf("cpu %d fail inject %x\n", cs->cpu_index, irq); + } + + /* Always wake up soon in case the interrupt was level based */ + timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + + (get_ticks_per_sec() / 50)); + } + + /* We don't know if there are more interrupts pending after this. However, + * the guest will return to userspace in the course of handling this one + * anyways, so we will get a chance to deliver the rest. */ + + qemu_mutex_unlock_iothread(); +} + +MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) +{ + return MEMTXATTRS_UNSPECIFIED; +} + +int kvm_arch_process_async_events(CPUState *cs) +{ + return cs->halted; +} + +static int kvmppc_handle_halt(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + + if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { + cs->halted = 1; + cs->exception_index = EXCP_HLT; + } + + return 0; +} + +/* map dcr access to existing qemu dcr emulation */ +static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) +{ + if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) + fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); + + return 0; +} + +static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) +{ + if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) + fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); + + return 0; +} + +int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + /* Mixed endian case is not handled */ + uint32_t sc = debug_inst_opcode; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, + sizeof(sc), 0) || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { + return -EINVAL; + } + + return 0; +} + +int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + uint32_t sc; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || + sc != debug_inst_opcode || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, + sizeof(sc), 1)) { + return -EINVAL; + } + + return 0; +} + +static int find_hw_breakpoint(target_ulong addr, int type) +{ + int n; + + assert((nb_hw_breakpoint + nb_hw_watchpoint) + <= ARRAY_SIZE(hw_debug_points)); + + for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { + if (hw_debug_points[n].addr == addr && + hw_debug_points[n].type == type) { + return n; + } + } + + return -1; +} + +static int find_hw_watchpoint(target_ulong addr, int *flag) +{ + int n; + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); + if (n >= 0) { + *flag = BP_MEM_ACCESS; + return n; + } + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); + if (n >= 0) { + *flag = BP_MEM_WRITE; + return n; + } + + n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); + if (n >= 0) { + *flag = BP_MEM_READ; + return n; + } + + return -1; +} + +int kvm_arch_insert_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { + return -ENOBUFS; + } + + hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; + hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; + + switch (type) { + case GDB_BREAKPOINT_HW: + if (nb_hw_breakpoint >= max_hw_breakpoint) { + return -ENOBUFS; + } + + if (find_hw_breakpoint(addr, type) >= 0) { + return -EEXIST; + } + + nb_hw_breakpoint++; + break; + + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_ACCESS: + if (nb_hw_watchpoint >= max_hw_watchpoint) { + return -ENOBUFS; + } + + if (find_hw_breakpoint(addr, type) >= 0) { + return -EEXIST; + } + + nb_hw_watchpoint++; + break; + + default: + return -ENOSYS; + } + + return 0; +} + +int kvm_arch_remove_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + int n; + + n = find_hw_breakpoint(addr, type); + if (n < 0) { + return -ENOENT; + } + + switch (type) { + case GDB_BREAKPOINT_HW: + nb_hw_breakpoint--; + break; + + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_ACCESS: + nb_hw_watchpoint--; + break; + + default: + return -ENOSYS; + } + hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; + + return 0; +} + +void kvm_arch_remove_all_hw_breakpoints(void) +{ + nb_hw_breakpoint = nb_hw_watchpoint = 0; +} + +void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) +{ + int n; + + /* Software Breakpoint updates */ + if (kvm_sw_breakpoints_active(cs)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; + } + + assert((nb_hw_breakpoint + nb_hw_watchpoint) + <= ARRAY_SIZE(hw_debug_points)); + assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); + + if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; + memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); + for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { + switch (hw_debug_points[n].type) { + case GDB_BREAKPOINT_HW: + dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; + break; + case GDB_WATCHPOINT_WRITE: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; + break; + case GDB_WATCHPOINT_READ: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; + break; + case GDB_WATCHPOINT_ACCESS: + dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | + KVMPPC_DEBUG_WATCH_READ; + break; + default: + cpu_abort(cs, "Unsupported breakpoint type\n"); + } + dbg->arch.bp[n].addr = hw_debug_points[n].addr; + } + } +} + +static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + struct kvm_debug_exit_arch *arch_info = &run->debug.arch; + int handle = 0; + int n; + int flag = 0; + + if (cs->singlestep_enabled) { + handle = 1; + } else if (arch_info->status) { + if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { + if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { + n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); + if (n >= 0) { + handle = 1; + } + } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | + KVMPPC_DEBUG_WATCH_WRITE)) { + n = find_hw_watchpoint(arch_info->address, &flag); + if (n >= 0) { + handle = 1; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_debug_points[n].addr; + hw_watchpoint.flags = flag; + } + } + } + } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) { + handle = 1; + } else { + /* QEMU is not able to handle debug exception, so inject + * program exception to guest; + * Yes program exception NOT debug exception !! + * When QEMU is using debug resources then debug exception must + * be always set. To achieve this we set MSR_DE and also set + * MSRP_DEP so guest cannot change MSR_DE. + * When emulating debug resource for guest we want guest + * to control MSR_DE (enable/disable debug interrupt on need). + * Supporting both configurations are NOT possible. + * So the result is that we cannot share debug resources + * between QEMU and Guest on BOOKE architecture. + * In the current design QEMU gets the priority over guest, + * this means that if QEMU is using debug resources then guest + * cannot use them; + * For software breakpoint QEMU uses a privileged instruction; + * So there cannot be any reason that we are here for guest + * set debug exception, only possibility is guest executed a + * privileged / illegal instruction and that's why we are + * injecting a program interrupt. + */ + + cpu_synchronize_state(cs); + /* env->nip is PC, so increment this by 4 to use + * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. + */ + env->nip += 4; + cs->exception_index = POWERPC_EXCP_PROGRAM; + env->error_code = POWERPC_EXCP_INVAL; + ppc_cpu_do_interrupt(cs); + } + + return handle; +} + +int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) +{ + PowerPCCPU *cpu = POWERPC_CPU(cs); + CPUPPCState *env = &cpu->env; + int ret; + + qemu_mutex_lock_iothread(); + + switch (run->exit_reason) { + case KVM_EXIT_DCR: + if (run->dcr.is_write) { + DPRINTF("handle dcr write\n"); + ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); + } else { + DPRINTF("handle dcr read\n"); + ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); + } + break; + case KVM_EXIT_HLT: + DPRINTF("handle halt\n"); + ret = kvmppc_handle_halt(cpu); + break; +#if defined(TARGET_PPC64) + case KVM_EXIT_PAPR_HCALL: + DPRINTF("handle PAPR hypercall\n"); + run->papr_hcall.ret = spapr_hypercall(cpu, + run->papr_hcall.nr, + run->papr_hcall.args); + ret = 0; + break; +#endif + case KVM_EXIT_EPR: + DPRINTF("handle epr\n"); + run->epr.epr = ldl_phys(cs->as, env->mpic_iack); + ret = 0; + break; + case KVM_EXIT_WATCHDOG: + DPRINTF("handle watchdog expiry\n"); + watchdog_perform_action(); + ret = 0; + break; + + case KVM_EXIT_DEBUG: + DPRINTF("handle debug exception\n"); + if (kvm_handle_debug(cpu, run)) { + ret = EXCP_DEBUG; + break; + } + /* re-enter, this exception was guest-internal */ + ret = 0; + break; + + default: + fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); + ret = -1; + break; + } + + qemu_mutex_unlock_iothread(); + return ret; +} + +int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) +{ + CPUState *cs = CPU(cpu); + uint32_t bits = tsr_bits; + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_OR_TSR, + .addr = (uintptr_t) &bits, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) +{ + + CPUState *cs = CPU(cpu); + uint32_t bits = tsr_bits; + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_CLEAR_TSR, + .addr = (uintptr_t) &bits, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_set_tcr(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + uint32_t tcr = env->spr[SPR_BOOKE_TCR]; + + struct kvm_one_reg reg = { + .id = KVM_REG_PPC_TCR, + .addr = (uintptr_t) &tcr, + }; + + return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); +} + +int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + int ret; + + if (!kvm_enabled()) { + return -1; + } + + if (!cap_ppc_watchdog) { + printf("warning: KVM does not support watchdog"); + return -1; + } + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); + if (ret < 0) { + fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", + __func__, strerror(-ret)); + return ret; + } + + return ret; +} + +static int read_cpuinfo(const char *field, char *value, int len) +{ + FILE *f; + int ret = -1; + int field_len = strlen(field); + char line[512]; + + f = fopen("/proc/cpuinfo", "r"); + if (!f) { + return -1; + } + + do { + if (!fgets(line, sizeof(line), f)) { + break; + } + if (!strncmp(line, field, field_len)) { + pstrcpy(value, len, line); + ret = 0; + break; + } + } while(*line); + + fclose(f); + + return ret; +} + +uint32_t kvmppc_get_tbfreq(void) +{ + char line[512]; + char *ns; + uint32_t retval = get_ticks_per_sec(); + + if (read_cpuinfo("timebase", line, sizeof(line))) { + return retval; + } + + if (!(ns = strchr(line, ':'))) { + return retval; + } + + ns++; + + retval = atoi(ns); + return retval; +} + +bool kvmppc_get_host_serial(char **value) +{ + return g_file_get_contents("/proc/device-tree/system-id", value, NULL, + NULL); +} + +bool kvmppc_get_host_model(char **value) +{ + return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); +} + +/* Try to find a device tree node for a CPU with clock-frequency property */ +static int kvmppc_find_cpu_dt(char *buf, int buf_len) +{ + struct dirent *dirp; + DIR *dp; + + if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { + printf("Can't open directory " PROC_DEVTREE_CPU "\n"); + return -1; + } + + buf[0] = '\0'; + while ((dirp = readdir(dp)) != NULL) { + FILE *f; + snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, + dirp->d_name); + f = fopen(buf, "r"); + if (f) { + snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); + fclose(f); + break; + } + buf[0] = '\0'; + } + closedir(dp); + if (buf[0] == '\0') { + printf("Unknown host!\n"); + return -1; + } + + return 0; +} + +/* Read a CPU node property from the host device tree that's a single + * integer (32-bit or 64-bit). Returns 0 if anything goes wrong + * (can't find or open the property, or doesn't understand the + * format) */ +static uint64_t kvmppc_read_int_cpu_dt(const char *propname) +{ + char buf[PATH_MAX], *tmp; + union { + uint32_t v32; + uint64_t v64; + } u; + FILE *f; + int len; + + if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { + return -1; + } + + tmp = g_strdup_printf("%s/%s", buf, propname); + + f = fopen(tmp, "rb"); + g_free(tmp); + if (!f) { + return -1; + } + + len = fread(&u, 1, sizeof(u), f); + fclose(f); + switch (len) { + case 4: + /* property is a 32-bit quantity */ + return be32_to_cpu(u.v32); + case 8: + return be64_to_cpu(u.v64); + } + + return 0; +} + +uint64_t kvmppc_get_clockfreq(void) +{ + return kvmppc_read_int_cpu_dt("clock-frequency"); +} + +uint32_t kvmppc_get_vmx(void) +{ + return kvmppc_read_int_cpu_dt("ibm,vmx"); +} + +uint32_t kvmppc_get_dfp(void) +{ + return kvmppc_read_int_cpu_dt("ibm,dfp"); +} + +static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) + { + PowerPCCPU *cpu = ppc_env_get_cpu(env); + CPUState *cs = CPU(cpu); + + if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && + !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { + return 0; + } + + return 1; +} + +int kvmppc_get_hasidle(CPUPPCState *env) +{ + struct kvm_ppc_pvinfo pvinfo; + + if (!kvmppc_get_pvinfo(env, &pvinfo) && + (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { + return 1; + } + + return 0; +} + +int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) +{ + uint32_t *hc = (uint32_t*)buf; + struct kvm_ppc_pvinfo pvinfo; + + if (!kvmppc_get_pvinfo(env, &pvinfo)) { + memcpy(buf, pvinfo.hcall, buf_len); + return 0; + } + + /* + * Fallback to always fail hypercalls regardless of endianness: + * + * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) + * li r3, -1 + * b .+8 (becomes nop in wrong endian) + * bswap32(li r3, -1) + */ + + hc[0] = cpu_to_be32(0x08000048); + hc[1] = cpu_to_be32(0x3860ffff); + hc[2] = cpu_to_be32(0x48000008); + hc[3] = cpu_to_be32(bswap32(0x3860ffff)); + + return 0; +} + +static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) +{ + return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); +} + +void kvmppc_enable_logical_ci_hcalls(void) +{ + /* + * FIXME: it would be nice if we could detect the cases where + * we're using a device which requires the in kernel + * implementation of these hcalls, but the kernel lacks them and + * produce a warning. + */ + kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); + kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); +} + +void kvmppc_set_papr(PowerPCCPU *cpu) +{ + CPUState *cs = CPU(cpu); + int ret; + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); + if (ret) { + cpu_abort(cs, "This KVM version does not support PAPR\n"); + } + + /* Update the capability flag so we sync the right information + * with kvm */ + cap_papr = 1; +} + +int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version) +{ + return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version); +} + +void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) +{ + CPUState *cs = CPU(cpu); + int ret; + + ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); + if (ret && mpic_proxy) { + cpu_abort(cs, "This KVM version does not support EPR\n"); + } +} + +int kvmppc_smt_threads(void) +{ + return cap_ppc_smt ? cap_ppc_smt : 1; +} + +#ifdef TARGET_PPC64 +off_t kvmppc_alloc_rma(void **rma) +{ + off_t size; + int fd; + struct kvm_allocate_rma ret; + + /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported + * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but + * not necessary on this hardware + * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware + * + * FIXME: We should allow the user to force contiguous RMA + * allocation in the cap_ppc_rma==1 case. + */ + if (cap_ppc_rma < 2) { + return 0; + } + + fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret); + if (fd < 0) { + fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n", + strerror(errno)); + return -1; + } + + size = MIN(ret.rma_size, 256ul << 20); + + *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); + if (*rma == MAP_FAILED) { + fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno)); + return -1; + }; + + return size; +} + +uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) +{ + struct kvm_ppc_smmu_info info; + long rampagesize, best_page_shift; + int i; + + if (cap_ppc_rma >= 2) { + return current_size; + } + + /* Find the largest hardware supported page size that's less than + * or equal to the (logical) backing page size of guest RAM */ + kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info); + rampagesize = getrampagesize(); + best_page_shift = 0; + + for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { + struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; + + if (!sps->page_shift) { + continue; + } + + if ((sps->page_shift > best_page_shift) + && ((1UL << sps->page_shift) <= rampagesize)) { + best_page_shift = sps->page_shift; + } + } + + return MIN(current_size, + 1ULL << (best_page_shift + hash_shift - 7)); +} +#endif + +bool kvmppc_spapr_use_multitce(void) +{ + return cap_spapr_multitce; +} + +void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd, + bool vfio_accel) +{ + struct kvm_create_spapr_tce args = { + .liobn = liobn, + .window_size = window_size, + }; + long len; + int fd; + void *table; + + /* Must set fd to -1 so we don't try to munmap when called for + * destroying the table, which the upper layers -will- do + */ + *pfd = -1; + if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) { + return NULL; + } + + fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); + if (fd < 0) { + fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", + liobn); + return NULL; + } + + len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t); + /* FIXME: round this up to page size */ + + table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); + if (table == MAP_FAILED) { + fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", + liobn); + close(fd); + return NULL; + } + + *pfd = fd; + return table; +} + +int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) +{ + long len; + + if (fd < 0) { + return -1; + } + + len = nb_table * sizeof(uint64_t); + if ((munmap(table, len) < 0) || + (close(fd) < 0)) { + fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", + strerror(errno)); + /* Leak the table */ + } + + return 0; +} + +int kvmppc_reset_htab(int shift_hint) +{ + uint32_t shift = shift_hint; + + if (!kvm_enabled()) { + /* Full emulation, tell caller to allocate htab itself */ + return 0; + } + if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { + int ret; + ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); + if (ret == -ENOTTY) { + /* At least some versions of PR KVM advertise the + * capability, but don't implement the ioctl(). Oops. + * Return 0 so that we allocate the htab in qemu, as is + * correct for PR. */ + return 0; + } else if (ret < 0) { + return ret; + } + return shift; + } + + /* We have a kernel that predates the htab reset calls. For PR + * KVM, we need to allocate the htab ourselves, for an HV KVM of + * this era, it has allocated a 16MB fixed size hash table + * already. Kernels of this era have the GET_PVINFO capability + * only on PR, so we use this hack to determine the right + * answer */ + if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) { + /* PR - tell caller to allocate htab */ + return 0; + } else { + /* HV - assume 16MB kernel allocated htab */ + return 24; + } +} + +static inline uint32_t mfpvr(void) +{ + uint32_t pvr; + + asm ("mfpvr %0" + : "=r"(pvr)); + return pvr; +} + +static void alter_insns(uint64_t *word, uint64_t flags, bool on) +{ + if (on) { + *word |= flags; + } else { + *word &= ~flags; + } +} + +static void kvmppc_host_cpu_initfn(Object *obj) +{ + assert(kvm_enabled()); +} + +static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) +{ + PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); + uint32_t vmx = kvmppc_get_vmx(); + uint32_t dfp = kvmppc_get_dfp(); + uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); + uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); + + /* Now fix up the class with information we can query from the host */ + pcc->pvr = mfpvr(); + + if (vmx != -1) { + /* Only override when we know what the host supports */ + alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0); + alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1); + } + if (dfp != -1) { + /* Only override when we know what the host supports */ + alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp); + } + + if (dcache_size != -1) { + pcc->l1_dcache_size = dcache_size; + } + + if (icache_size != -1) { + pcc->l1_icache_size = icache_size; + } +} + +bool kvmppc_has_cap_epr(void) +{ + return cap_epr; +} + +bool kvmppc_has_cap_htab_fd(void) +{ + return cap_htab_fd; +} + +bool kvmppc_has_cap_fixup_hcalls(void) +{ + return cap_fixup_hcalls; +} + +static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc) +{ + ObjectClass *oc = OBJECT_CLASS(pcc); + + while (oc && !object_class_is_abstract(oc)) { + oc = object_class_get_parent(oc); + } + assert(oc); + + return POWERPC_CPU_CLASS(oc); +} + +static int kvm_ppc_register_host_cpu_type(void) +{ + TypeInfo type_info = { + .name = TYPE_HOST_POWERPC_CPU, + .instance_init = kvmppc_host_cpu_initfn, + .class_init = kvmppc_host_cpu_class_init, + }; + uint32_t host_pvr = mfpvr(); + PowerPCCPUClass *pvr_pcc; + DeviceClass *dc; + + pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); + if (pvr_pcc == NULL) { + pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); + } + if (pvr_pcc == NULL) { + return -1; + } + type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); + type_register(&type_info); + + /* Register generic family CPU class for a family */ + pvr_pcc = ppc_cpu_get_family_class(pvr_pcc); + dc = DEVICE_CLASS(pvr_pcc); + type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); + type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc); + type_register(&type_info); + + return 0; +} + +int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) +{ + struct kvm_rtas_token_args args = { + .token = token, + }; + + if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { + return -ENOENT; + } + + strncpy(args.name, function, sizeof(args.name)); + + return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); +} + +int kvmppc_get_htab_fd(bool write) +{ + struct kvm_get_htab_fd s = { + .flags = write ? KVM_GET_HTAB_WRITE : 0, + .start_index = 0, + }; + + if (!cap_htab_fd) { + fprintf(stderr, "KVM version doesn't support saving the hash table\n"); + return -1; + } + + return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); +} + +int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) +{ + int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); + uint8_t buf[bufsize]; + ssize_t rc; + + do { + rc = read(fd, buf, bufsize); + if (rc < 0) { + fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", + strerror(errno)); + return rc; + } else if (rc) { + uint8_t *buffer = buf; + ssize_t n = rc; + while (n) { + struct kvm_get_htab_header *head = + (struct kvm_get_htab_header *) buffer; + size_t chunksize = sizeof(*head) + + HASH_PTE_SIZE_64 * head->n_valid; + + qemu_put_be32(f, head->index); + qemu_put_be16(f, head->n_valid); + qemu_put_be16(f, head->n_invalid); + qemu_put_buffer(f, (void *)(head + 1), + HASH_PTE_SIZE_64 * head->n_valid); + + buffer += chunksize; + n -= chunksize; + } + } + } while ((rc != 0) + && ((max_ns < 0) + || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); + + return (rc == 0) ? 1 : 0; +} + +int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, + uint16_t n_valid, uint16_t n_invalid) +{ + struct kvm_get_htab_header *buf; + size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; + ssize_t rc; + + buf = alloca(chunksize); + buf->index = index; + buf->n_valid = n_valid; + buf->n_invalid = n_invalid; + + qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); + + rc = write(fd, buf, chunksize); + if (rc < 0) { + fprintf(stderr, "Error writing KVM hash table: %s\n", + strerror(errno)); + return rc; + } + if (rc != chunksize) { + /* We should never get a short write on a single chunk */ + fprintf(stderr, "Short write, restoring KVM hash table\n"); + return -1; + } + return 0; +} + +bool kvm_arch_stop_on_emulation_error(CPUState *cpu) +{ + return true; +} + +int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) +{ + return 1; +} + +int kvm_arch_on_sigbus(int code, void *addr) +{ + return 1; +} + +void kvm_arch_init_irq_routing(KVMState *s) +{ +} + +struct kvm_get_htab_buf { + struct kvm_get_htab_header header; + /* + * We require one extra byte for read + */ + target_ulong hpte[(HPTES_PER_GROUP * 2) + 1]; +}; + +uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index) +{ + int htab_fd; + struct kvm_get_htab_fd ghf; + struct kvm_get_htab_buf *hpte_buf; + + ghf.flags = 0; + ghf.start_index = pte_index; + htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); + if (htab_fd < 0) { + goto error_out; + } + + hpte_buf = g_malloc0(sizeof(*hpte_buf)); + /* + * Read the hpte group + */ + if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) { + goto out_close; + } + + close(htab_fd); + return (uint64_t)(uintptr_t) hpte_buf->hpte; + +out_close: + g_free(hpte_buf); + close(htab_fd); +error_out: + return 0; +} + +void kvmppc_hash64_free_pteg(uint64_t token) +{ + struct kvm_get_htab_buf *htab_buf; + + htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf, + hpte); + g_free(htab_buf); + return; +} + +void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, + target_ulong pte0, target_ulong pte1) +{ + int htab_fd; + struct kvm_get_htab_fd ghf; + struct kvm_get_htab_buf hpte_buf; + + ghf.flags = 0; + ghf.start_index = 0; /* Ignored */ + htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); + if (htab_fd < 0) { + goto error_out; + } + + hpte_buf.header.n_valid = 1; + hpte_buf.header.n_invalid = 0; + hpte_buf.header.index = pte_index; + hpte_buf.hpte[0] = pte0; + hpte_buf.hpte[1] = pte1; + /* + * Write the hpte entry. + * CAUTION: write() has the warn_unused_result attribute. Hence we + * need to check the return value, even though we do nothing. + */ + if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { + goto out_close; + } + +out_close: + close(htab_fd); + return; + +error_out: + return; +} + +int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, + uint64_t address, uint32_t data) +{ + return 0; +} + +int kvm_arch_msi_data_to_gsi(uint32_t data) +{ + return data & 0xffff; +} |