diff options
author | RajithaY <rajithax.yerrumsetty@intel.com> | 2017-04-25 03:31:15 -0700 |
---|---|---|
committer | Rajitha Yerrumchetty <rajithax.yerrumsetty@intel.com> | 2017-05-22 06:48:08 +0000 |
commit | bb756eebdac6fd24e8919e2c43f7d2c8c4091f59 (patch) | |
tree | ca11e03542edf2d8f631efeca5e1626d211107e3 /qemu/target-arm/cpu.h | |
parent | a14b48d18a9ed03ec191cf16b162206998a895ce (diff) |
Adding qemu as a submodule of KVMFORNFV
This Patch includes the changes to add qemu as a submodule to
kvmfornfv repo and make use of the updated latest qemu for the
execution of all testcase
Change-Id: I1280af507a857675c7f81d30c95255635667bdd7
Signed-off-by:RajithaY<rajithax.yerrumsetty@intel.com>
Diffstat (limited to 'qemu/target-arm/cpu.h')
-rw-r--r-- | qemu/target-arm/cpu.h | 2196 |
1 files changed, 0 insertions, 2196 deletions
diff --git a/qemu/target-arm/cpu.h b/qemu/target-arm/cpu.h deleted file mode 100644 index 066ff678d..000000000 --- a/qemu/target-arm/cpu.h +++ /dev/null @@ -1,2196 +0,0 @@ -/* - * ARM virtual CPU header - * - * Copyright (c) 2003 Fabrice Bellard - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, see <http://www.gnu.org/licenses/>. - */ -#ifndef CPU_ARM_H -#define CPU_ARM_H - - -#include "kvm-consts.h" - -#if defined(TARGET_AARCH64) - /* AArch64 definitions */ -# define TARGET_LONG_BITS 64 -#else -# define TARGET_LONG_BITS 32 -#endif - -#define TARGET_IS_BIENDIAN 1 - -#define CPUArchState struct CPUARMState - -#include "qemu-common.h" -#include "exec/cpu-defs.h" - -#include "fpu/softfloat.h" - -#define EXCP_UDEF 1 /* undefined instruction */ -#define EXCP_SWI 2 /* software interrupt */ -#define EXCP_PREFETCH_ABORT 3 -#define EXCP_DATA_ABORT 4 -#define EXCP_IRQ 5 -#define EXCP_FIQ 6 -#define EXCP_BKPT 7 -#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ -#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ -#define EXCP_STREX 10 -#define EXCP_HVC 11 /* HyperVisor Call */ -#define EXCP_HYP_TRAP 12 -#define EXCP_SMC 13 /* Secure Monitor Call */ -#define EXCP_VIRQ 14 -#define EXCP_VFIQ 15 -#define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */ - -#define ARMV7M_EXCP_RESET 1 -#define ARMV7M_EXCP_NMI 2 -#define ARMV7M_EXCP_HARD 3 -#define ARMV7M_EXCP_MEM 4 -#define ARMV7M_EXCP_BUS 5 -#define ARMV7M_EXCP_USAGE 6 -#define ARMV7M_EXCP_SVC 11 -#define ARMV7M_EXCP_DEBUG 12 -#define ARMV7M_EXCP_PENDSV 14 -#define ARMV7M_EXCP_SYSTICK 15 - -/* ARM-specific interrupt pending bits. */ -#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 -#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 -#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 - -/* The usual mapping for an AArch64 system register to its AArch32 - * counterpart is for the 32 bit world to have access to the lower - * half only (with writes leaving the upper half untouched). It's - * therefore useful to be able to pass TCG the offset of the least - * significant half of a uint64_t struct member. - */ -#ifdef HOST_WORDS_BIGENDIAN -#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) -#define offsetofhigh32(S, M) offsetof(S, M) -#else -#define offsetoflow32(S, M) offsetof(S, M) -#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) -#endif - -/* Meanings of the ARMCPU object's four inbound GPIO lines */ -#define ARM_CPU_IRQ 0 -#define ARM_CPU_FIQ 1 -#define ARM_CPU_VIRQ 2 -#define ARM_CPU_VFIQ 3 - -struct arm_boot_info; - -#define NB_MMU_MODES 7 -#define TARGET_INSN_START_EXTRA_WORDS 1 - -/* We currently assume float and double are IEEE single and double - precision respectively. - Doing runtime conversions is tricky because VFP registers may contain - integer values (eg. as the result of a FTOSI instruction). - s<2n> maps to the least significant half of d<n> - s<2n+1> maps to the most significant half of d<n> - */ - -/* CPU state for each instance of a generic timer (in cp15 c14) */ -typedef struct ARMGenericTimer { - uint64_t cval; /* Timer CompareValue register */ - uint64_t ctl; /* Timer Control register */ -} ARMGenericTimer; - -#define GTIMER_PHYS 0 -#define GTIMER_VIRT 1 -#define GTIMER_HYP 2 -#define GTIMER_SEC 3 -#define NUM_GTIMERS 4 - -typedef struct { - uint64_t raw_tcr; - uint32_t mask; - uint32_t base_mask; -} TCR; - -typedef struct CPUARMState { - /* Regs for current mode. */ - uint32_t regs[16]; - - /* 32/64 switch only happens when taking and returning from - * exceptions so the overlap semantics are taken care of then - * instead of having a complicated union. - */ - /* Regs for A64 mode. */ - uint64_t xregs[32]; - uint64_t pc; - /* PSTATE isn't an architectural register for ARMv8. However, it is - * convenient for us to assemble the underlying state into a 32 bit format - * identical to the architectural format used for the SPSR. (This is also - * what the Linux kernel's 'pstate' field in signal handlers and KVM's - * 'pstate' register are.) Of the PSTATE bits: - * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same - * semantics as for AArch32, as described in the comments on each field) - * nRW (also known as M[4]) is kept, inverted, in env->aarch64 - * DAIF (exception masks) are kept in env->daif - * all other bits are stored in their correct places in env->pstate - */ - uint32_t pstate; - uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ - - /* Frequently accessed CPSR bits are stored separately for efficiency. - This contains all the other bits. Use cpsr_{read,write} to access - the whole CPSR. */ - uint32_t uncached_cpsr; - uint32_t spsr; - - /* Banked registers. */ - uint64_t banked_spsr[8]; - uint32_t banked_r13[8]; - uint32_t banked_r14[8]; - - /* These hold r8-r12. */ - uint32_t usr_regs[5]; - uint32_t fiq_regs[5]; - - /* cpsr flag cache for faster execution */ - uint32_t CF; /* 0 or 1 */ - uint32_t VF; /* V is the bit 31. All other bits are undefined */ - uint32_t NF; /* N is bit 31. All other bits are undefined. */ - uint32_t ZF; /* Z set if zero. */ - uint32_t QF; /* 0 or 1 */ - uint32_t GE; /* cpsr[19:16] */ - uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ - uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ - uint64_t daif; /* exception masks, in the bits they are in PSTATE */ - - uint64_t elr_el[4]; /* AArch64 exception link regs */ - uint64_t sp_el[4]; /* AArch64 banked stack pointers */ - - /* System control coprocessor (cp15) */ - struct { - uint32_t c0_cpuid; - union { /* Cache size selection */ - struct { - uint64_t _unused_csselr0; - uint64_t csselr_ns; - uint64_t _unused_csselr1; - uint64_t csselr_s; - }; - uint64_t csselr_el[4]; - }; - union { /* System control register. */ - struct { - uint64_t _unused_sctlr; - uint64_t sctlr_ns; - uint64_t hsctlr; - uint64_t sctlr_s; - }; - uint64_t sctlr_el[4]; - }; - uint64_t cpacr_el1; /* Architectural feature access control register */ - uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ - uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ - uint64_t sder; /* Secure debug enable register. */ - uint32_t nsacr; /* Non-secure access control register. */ - union { /* MMU translation table base 0. */ - struct { - uint64_t _unused_ttbr0_0; - uint64_t ttbr0_ns; - uint64_t _unused_ttbr0_1; - uint64_t ttbr0_s; - }; - uint64_t ttbr0_el[4]; - }; - union { /* MMU translation table base 1. */ - struct { - uint64_t _unused_ttbr1_0; - uint64_t ttbr1_ns; - uint64_t _unused_ttbr1_1; - uint64_t ttbr1_s; - }; - uint64_t ttbr1_el[4]; - }; - uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ - /* MMU translation table base control. */ - TCR tcr_el[4]; - TCR vtcr_el2; /* Virtualization Translation Control. */ - uint32_t c2_data; /* MPU data cacheable bits. */ - uint32_t c2_insn; /* MPU instruction cacheable bits. */ - union { /* MMU domain access control register - * MPU write buffer control. - */ - struct { - uint64_t dacr_ns; - uint64_t dacr_s; - }; - struct { - uint64_t dacr32_el2; - }; - }; - uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ - uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ - uint64_t hcr_el2; /* Hypervisor configuration register */ - uint64_t scr_el3; /* Secure configuration register. */ - union { /* Fault status registers. */ - struct { - uint64_t ifsr_ns; - uint64_t ifsr_s; - }; - struct { - uint64_t ifsr32_el2; - }; - }; - union { - struct { - uint64_t _unused_dfsr; - uint64_t dfsr_ns; - uint64_t hsr; - uint64_t dfsr_s; - }; - uint64_t esr_el[4]; - }; - uint32_t c6_region[8]; /* MPU base/size registers. */ - union { /* Fault address registers. */ - struct { - uint64_t _unused_far0; -#ifdef HOST_WORDS_BIGENDIAN - uint32_t ifar_ns; - uint32_t dfar_ns; - uint32_t ifar_s; - uint32_t dfar_s; -#else - uint32_t dfar_ns; - uint32_t ifar_ns; - uint32_t dfar_s; - uint32_t ifar_s; -#endif - uint64_t _unused_far3; - }; - uint64_t far_el[4]; - }; - uint64_t hpfar_el2; - union { /* Translation result. */ - struct { - uint64_t _unused_par_0; - uint64_t par_ns; - uint64_t _unused_par_1; - uint64_t par_s; - }; - uint64_t par_el[4]; - }; - - uint32_t c6_rgnr; - - uint32_t c9_insn; /* Cache lockdown registers. */ - uint32_t c9_data; - uint64_t c9_pmcr; /* performance monitor control register */ - uint64_t c9_pmcnten; /* perf monitor counter enables */ - uint32_t c9_pmovsr; /* perf monitor overflow status */ - uint32_t c9_pmxevtyper; /* perf monitor event type */ - uint32_t c9_pmuserenr; /* perf monitor user enable */ - uint32_t c9_pminten; /* perf monitor interrupt enables */ - union { /* Memory attribute redirection */ - struct { -#ifdef HOST_WORDS_BIGENDIAN - uint64_t _unused_mair_0; - uint32_t mair1_ns; - uint32_t mair0_ns; - uint64_t _unused_mair_1; - uint32_t mair1_s; - uint32_t mair0_s; -#else - uint64_t _unused_mair_0; - uint32_t mair0_ns; - uint32_t mair1_ns; - uint64_t _unused_mair_1; - uint32_t mair0_s; - uint32_t mair1_s; -#endif - }; - uint64_t mair_el[4]; - }; - union { /* vector base address register */ - struct { - uint64_t _unused_vbar; - uint64_t vbar_ns; - uint64_t hvbar; - uint64_t vbar_s; - }; - uint64_t vbar_el[4]; - }; - uint32_t mvbar; /* (monitor) vector base address register */ - struct { /* FCSE PID. */ - uint32_t fcseidr_ns; - uint32_t fcseidr_s; - }; - union { /* Context ID. */ - struct { - uint64_t _unused_contextidr_0; - uint64_t contextidr_ns; - uint64_t _unused_contextidr_1; - uint64_t contextidr_s; - }; - uint64_t contextidr_el[4]; - }; - union { /* User RW Thread register. */ - struct { - uint64_t tpidrurw_ns; - uint64_t tpidrprw_ns; - uint64_t htpidr; - uint64_t _tpidr_el3; - }; - uint64_t tpidr_el[4]; - }; - /* The secure banks of these registers don't map anywhere */ - uint64_t tpidrurw_s; - uint64_t tpidrprw_s; - uint64_t tpidruro_s; - - union { /* User RO Thread register. */ - uint64_t tpidruro_ns; - uint64_t tpidrro_el[1]; - }; - uint64_t c14_cntfrq; /* Counter Frequency register */ - uint64_t c14_cntkctl; /* Timer Control register */ - uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ - uint64_t cntvoff_el2; /* Counter Virtual Offset register */ - ARMGenericTimer c14_timer[NUM_GTIMERS]; - uint32_t c15_cpar; /* XScale Coprocessor Access Register */ - uint32_t c15_ticonfig; /* TI925T configuration byte. */ - uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ - uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ - uint32_t c15_threadid; /* TI debugger thread-ID. */ - uint32_t c15_config_base_address; /* SCU base address. */ - uint32_t c15_diagnostic; /* diagnostic register */ - uint32_t c15_power_diagnostic; - uint32_t c15_power_control; /* power control */ - uint64_t dbgbvr[16]; /* breakpoint value registers */ - uint64_t dbgbcr[16]; /* breakpoint control registers */ - uint64_t dbgwvr[16]; /* watchpoint value registers */ - uint64_t dbgwcr[16]; /* watchpoint control registers */ - uint64_t mdscr_el1; - uint64_t oslsr_el1; /* OS Lock Status */ - uint64_t mdcr_el2; - uint64_t mdcr_el3; - /* If the counter is enabled, this stores the last time the counter - * was reset. Otherwise it stores the counter value - */ - uint64_t c15_ccnt; - uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ - uint64_t vpidr_el2; /* Virtualization Processor ID Register */ - uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ - } cp15; - - struct { - uint32_t other_sp; - uint32_t vecbase; - uint32_t basepri; - uint32_t control; - int current_sp; - int exception; - } v7m; - - /* Information associated with an exception about to be taken: - * code which raises an exception must set cs->exception_index and - * the relevant parts of this structure; the cpu_do_interrupt function - * will then set the guest-visible registers as part of the exception - * entry process. - */ - struct { - uint32_t syndrome; /* AArch64 format syndrome register */ - uint32_t fsr; /* AArch32 format fault status register info */ - uint64_t vaddress; /* virtual addr associated with exception, if any */ - uint32_t target_el; /* EL the exception should be targeted for */ - /* If we implement EL2 we will also need to store information - * about the intermediate physical address for stage 2 faults. - */ - } exception; - - /* Thumb-2 EE state. */ - uint32_t teecr; - uint32_t teehbr; - - /* VFP coprocessor state. */ - struct { - /* VFP/Neon register state. Note that the mapping between S, D and Q - * views of the register bank differs between AArch64 and AArch32: - * In AArch32: - * Qn = regs[2n+1]:regs[2n] - * Dn = regs[n] - * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n - * (and regs[32] to regs[63] are inaccessible) - * In AArch64: - * Qn = regs[2n+1]:regs[2n] - * Dn = regs[2n] - * Sn = regs[2n] bits 31..0 - * This corresponds to the architecturally defined mapping between - * the two execution states, and means we do not need to explicitly - * map these registers when changing states. - */ - float64 regs[64]; - - uint32_t xregs[16]; - /* We store these fpcsr fields separately for convenience. */ - int vec_len; - int vec_stride; - - /* scratch space when Tn are not sufficient. */ - uint32_t scratch[8]; - - /* fp_status is the "normal" fp status. standard_fp_status retains - * values corresponding to the ARM "Standard FPSCR Value", ie - * default-NaN, flush-to-zero, round-to-nearest and is used by - * any operations (generally Neon) which the architecture defines - * as controlled by the standard FPSCR value rather than the FPSCR. - * - * To avoid having to transfer exception bits around, we simply - * say that the FPSCR cumulative exception flags are the logical - * OR of the flags in the two fp statuses. This relies on the - * only thing which needs to read the exception flags being - * an explicit FPSCR read. - */ - float_status fp_status; - float_status standard_fp_status; - } vfp; - uint64_t exclusive_addr; - uint64_t exclusive_val; - uint64_t exclusive_high; -#if defined(CONFIG_USER_ONLY) - uint64_t exclusive_test; - uint32_t exclusive_info; -#endif - - /* iwMMXt coprocessor state. */ - struct { - uint64_t regs[16]; - uint64_t val; - - uint32_t cregs[16]; - } iwmmxt; - -#if defined(CONFIG_USER_ONLY) - /* For usermode syscall translation. */ - int eabi; -#endif - - struct CPUBreakpoint *cpu_breakpoint[16]; - struct CPUWatchpoint *cpu_watchpoint[16]; - - CPU_COMMON - - /* These fields after the common ones so they are preserved on reset. */ - - /* Internal CPU feature flags. */ - uint64_t features; - - /* PMSAv7 MPU */ - struct { - uint32_t *drbar; - uint32_t *drsr; - uint32_t *dracr; - } pmsav7; - - void *nvic; - const struct arm_boot_info *boot_info; -} CPUARMState; - -#include "cpu-qom.h" - -ARMCPU *cpu_arm_init(const char *cpu_model); -int cpu_arm_exec(CPUState *cpu); -target_ulong do_arm_semihosting(CPUARMState *env); -void aarch64_sync_32_to_64(CPUARMState *env); -void aarch64_sync_64_to_32(CPUARMState *env); - -static inline bool is_a64(CPUARMState *env) -{ - return env->aarch64; -} - -/* you can call this signal handler from your SIGBUS and SIGSEGV - signal handlers to inform the virtual CPU of exceptions. non zero - is returned if the signal was handled by the virtual CPU. */ -int cpu_arm_signal_handler(int host_signum, void *pinfo, - void *puc); - -/** - * pmccntr_sync - * @env: CPUARMState - * - * Synchronises the counter in the PMCCNTR. This must always be called twice, - * once before any action that might affect the timer and again afterwards. - * The function is used to swap the state of the register if required. - * This only happens when not in user mode (!CONFIG_USER_ONLY) - */ -void pmccntr_sync(CPUARMState *env); - -/* SCTLR bit meanings. Several bits have been reused in newer - * versions of the architecture; in that case we define constants - * for both old and new bit meanings. Code which tests against those - * bits should probably check or otherwise arrange that the CPU - * is the architectural version it expects. - */ -#define SCTLR_M (1U << 0) -#define SCTLR_A (1U << 1) -#define SCTLR_C (1U << 2) -#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ -#define SCTLR_SA (1U << 3) -#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ -#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ -#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ -#define SCTLR_CP15BEN (1U << 5) /* v7 onward */ -#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ -#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ -#define SCTLR_ITD (1U << 7) /* v8 onward */ -#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ -#define SCTLR_SED (1U << 8) /* v8 onward */ -#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ -#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ -#define SCTLR_F (1U << 10) /* up to v6 */ -#define SCTLR_SW (1U << 10) /* v7 onward */ -#define SCTLR_Z (1U << 11) -#define SCTLR_I (1U << 12) -#define SCTLR_V (1U << 13) -#define SCTLR_RR (1U << 14) /* up to v7 */ -#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ -#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ -#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ -#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ -#define SCTLR_nTWI (1U << 16) /* v8 onward */ -#define SCTLR_HA (1U << 17) -#define SCTLR_BR (1U << 17) /* PMSA only */ -#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ -#define SCTLR_nTWE (1U << 18) /* v8 onward */ -#define SCTLR_WXN (1U << 19) -#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ -#define SCTLR_UWXN (1U << 20) /* v7 onward */ -#define SCTLR_FI (1U << 21) -#define SCTLR_U (1U << 22) -#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ -#define SCTLR_VE (1U << 24) /* up to v7 */ -#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ -#define SCTLR_EE (1U << 25) -#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ -#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ -#define SCTLR_NMFI (1U << 27) -#define SCTLR_TRE (1U << 28) -#define SCTLR_AFE (1U << 29) -#define SCTLR_TE (1U << 30) - -#define CPTR_TCPAC (1U << 31) -#define CPTR_TTA (1U << 20) -#define CPTR_TFP (1U << 10) - -#define MDCR_EPMAD (1U << 21) -#define MDCR_EDAD (1U << 20) -#define MDCR_SPME (1U << 17) -#define MDCR_SDD (1U << 16) -#define MDCR_SPD (3U << 14) -#define MDCR_TDRA (1U << 11) -#define MDCR_TDOSA (1U << 10) -#define MDCR_TDA (1U << 9) -#define MDCR_TDE (1U << 8) -#define MDCR_HPME (1U << 7) -#define MDCR_TPM (1U << 6) -#define MDCR_TPMCR (1U << 5) - -/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ -#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) - -#define CPSR_M (0x1fU) -#define CPSR_T (1U << 5) -#define CPSR_F (1U << 6) -#define CPSR_I (1U << 7) -#define CPSR_A (1U << 8) -#define CPSR_E (1U << 9) -#define CPSR_IT_2_7 (0xfc00U) -#define CPSR_GE (0xfU << 16) -#define CPSR_IL (1U << 20) -/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in - * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use - * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, - * where it is live state but not accessible to the AArch32 code. - */ -#define CPSR_RESERVED (0x7U << 21) -#define CPSR_J (1U << 24) -#define CPSR_IT_0_1 (3U << 25) -#define CPSR_Q (1U << 27) -#define CPSR_V (1U << 28) -#define CPSR_C (1U << 29) -#define CPSR_Z (1U << 30) -#define CPSR_N (1U << 31) -#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) -#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) - -#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) -#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ - | CPSR_NZCV) -/* Bits writable in user mode. */ -#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) -/* Execution state bits. MRS read as zero, MSR writes ignored. */ -#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) -/* Mask of bits which may be set by exception return copying them from SPSR */ -#define CPSR_ERET_MASK (~CPSR_RESERVED) - -#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ -#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ -#define TTBCR_PD0 (1U << 4) -#define TTBCR_PD1 (1U << 5) -#define TTBCR_EPD0 (1U << 7) -#define TTBCR_IRGN0 (3U << 8) -#define TTBCR_ORGN0 (3U << 10) -#define TTBCR_SH0 (3U << 12) -#define TTBCR_T1SZ (3U << 16) -#define TTBCR_A1 (1U << 22) -#define TTBCR_EPD1 (1U << 23) -#define TTBCR_IRGN1 (3U << 24) -#define TTBCR_ORGN1 (3U << 26) -#define TTBCR_SH1 (1U << 28) -#define TTBCR_EAE (1U << 31) - -/* Bit definitions for ARMv8 SPSR (PSTATE) format. - * Only these are valid when in AArch64 mode; in - * AArch32 mode SPSRs are basically CPSR-format. - */ -#define PSTATE_SP (1U) -#define PSTATE_M (0xFU) -#define PSTATE_nRW (1U << 4) -#define PSTATE_F (1U << 6) -#define PSTATE_I (1U << 7) -#define PSTATE_A (1U << 8) -#define PSTATE_D (1U << 9) -#define PSTATE_IL (1U << 20) -#define PSTATE_SS (1U << 21) -#define PSTATE_V (1U << 28) -#define PSTATE_C (1U << 29) -#define PSTATE_Z (1U << 30) -#define PSTATE_N (1U << 31) -#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) -#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) -#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) -/* Mode values for AArch64 */ -#define PSTATE_MODE_EL3h 13 -#define PSTATE_MODE_EL3t 12 -#define PSTATE_MODE_EL2h 9 -#define PSTATE_MODE_EL2t 8 -#define PSTATE_MODE_EL1h 5 -#define PSTATE_MODE_EL1t 4 -#define PSTATE_MODE_EL0t 0 - -/* Map EL and handler into a PSTATE_MODE. */ -static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) -{ - return (el << 2) | handler; -} - -/* Return the current PSTATE value. For the moment we don't support 32<->64 bit - * interprocessing, so we don't attempt to sync with the cpsr state used by - * the 32 bit decoder. - */ -static inline uint32_t pstate_read(CPUARMState *env) -{ - int ZF; - - ZF = (env->ZF == 0); - return (env->NF & 0x80000000) | (ZF << 30) - | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) - | env->pstate | env->daif; -} - -static inline void pstate_write(CPUARMState *env, uint32_t val) -{ - env->ZF = (~val) & PSTATE_Z; - env->NF = val; - env->CF = (val >> 29) & 1; - env->VF = (val << 3) & 0x80000000; - env->daif = val & PSTATE_DAIF; - env->pstate = val & ~CACHED_PSTATE_BITS; -} - -/* Return the current CPSR value. */ -uint32_t cpsr_read(CPUARMState *env); - -typedef enum CPSRWriteType { - CPSRWriteByInstr = 0, /* from guest MSR or CPS */ - CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ - CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ - CPSRWriteByGDBStub = 3, /* from the GDB stub */ -} CPSRWriteType; - -/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ -void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, - CPSRWriteType write_type); - -/* Return the current xPSR value. */ -static inline uint32_t xpsr_read(CPUARMState *env) -{ - int ZF; - ZF = (env->ZF == 0); - return (env->NF & 0x80000000) | (ZF << 30) - | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) - | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) - | ((env->condexec_bits & 0xfc) << 8) - | env->v7m.exception; -} - -/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ -static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) -{ - if (mask & CPSR_NZCV) { - env->ZF = (~val) & CPSR_Z; - env->NF = val; - env->CF = (val >> 29) & 1; - env->VF = (val << 3) & 0x80000000; - } - if (mask & CPSR_Q) - env->QF = ((val & CPSR_Q) != 0); - if (mask & (1 << 24)) - env->thumb = ((val & (1 << 24)) != 0); - if (mask & CPSR_IT_0_1) { - env->condexec_bits &= ~3; - env->condexec_bits |= (val >> 25) & 3; - } - if (mask & CPSR_IT_2_7) { - env->condexec_bits &= 3; - env->condexec_bits |= (val >> 8) & 0xfc; - } - if (mask & 0x1ff) { - env->v7m.exception = val & 0x1ff; - } -} - -#define HCR_VM (1ULL << 0) -#define HCR_SWIO (1ULL << 1) -#define HCR_PTW (1ULL << 2) -#define HCR_FMO (1ULL << 3) -#define HCR_IMO (1ULL << 4) -#define HCR_AMO (1ULL << 5) -#define HCR_VF (1ULL << 6) -#define HCR_VI (1ULL << 7) -#define HCR_VSE (1ULL << 8) -#define HCR_FB (1ULL << 9) -#define HCR_BSU_MASK (3ULL << 10) -#define HCR_DC (1ULL << 12) -#define HCR_TWI (1ULL << 13) -#define HCR_TWE (1ULL << 14) -#define HCR_TID0 (1ULL << 15) -#define HCR_TID1 (1ULL << 16) -#define HCR_TID2 (1ULL << 17) -#define HCR_TID3 (1ULL << 18) -#define HCR_TSC (1ULL << 19) -#define HCR_TIDCP (1ULL << 20) -#define HCR_TACR (1ULL << 21) -#define HCR_TSW (1ULL << 22) -#define HCR_TPC (1ULL << 23) -#define HCR_TPU (1ULL << 24) -#define HCR_TTLB (1ULL << 25) -#define HCR_TVM (1ULL << 26) -#define HCR_TGE (1ULL << 27) -#define HCR_TDZ (1ULL << 28) -#define HCR_HCD (1ULL << 29) -#define HCR_TRVM (1ULL << 30) -#define HCR_RW (1ULL << 31) -#define HCR_CD (1ULL << 32) -#define HCR_ID (1ULL << 33) -#define HCR_MASK ((1ULL << 34) - 1) - -#define SCR_NS (1U << 0) -#define SCR_IRQ (1U << 1) -#define SCR_FIQ (1U << 2) -#define SCR_EA (1U << 3) -#define SCR_FW (1U << 4) -#define SCR_AW (1U << 5) -#define SCR_NET (1U << 6) -#define SCR_SMD (1U << 7) -#define SCR_HCE (1U << 8) -#define SCR_SIF (1U << 9) -#define SCR_RW (1U << 10) -#define SCR_ST (1U << 11) -#define SCR_TWI (1U << 12) -#define SCR_TWE (1U << 13) -#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) -#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) - -/* Return the current FPSCR value. */ -uint32_t vfp_get_fpscr(CPUARMState *env); -void vfp_set_fpscr(CPUARMState *env, uint32_t val); - -/* For A64 the FPSCR is split into two logically distinct registers, - * FPCR and FPSR. However since they still use non-overlapping bits - * we store the underlying state in fpscr and just mask on read/write. - */ -#define FPSR_MASK 0xf800009f -#define FPCR_MASK 0x07f79f00 -static inline uint32_t vfp_get_fpsr(CPUARMState *env) -{ - return vfp_get_fpscr(env) & FPSR_MASK; -} - -static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) -{ - uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); - vfp_set_fpscr(env, new_fpscr); -} - -static inline uint32_t vfp_get_fpcr(CPUARMState *env) -{ - return vfp_get_fpscr(env) & FPCR_MASK; -} - -static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) -{ - uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); - vfp_set_fpscr(env, new_fpscr); -} - -enum arm_cpu_mode { - ARM_CPU_MODE_USR = 0x10, - ARM_CPU_MODE_FIQ = 0x11, - ARM_CPU_MODE_IRQ = 0x12, - ARM_CPU_MODE_SVC = 0x13, - ARM_CPU_MODE_MON = 0x16, - ARM_CPU_MODE_ABT = 0x17, - ARM_CPU_MODE_HYP = 0x1a, - ARM_CPU_MODE_UND = 0x1b, - ARM_CPU_MODE_SYS = 0x1f -}; - -/* VFP system registers. */ -#define ARM_VFP_FPSID 0 -#define ARM_VFP_FPSCR 1 -#define ARM_VFP_MVFR2 5 -#define ARM_VFP_MVFR1 6 -#define ARM_VFP_MVFR0 7 -#define ARM_VFP_FPEXC 8 -#define ARM_VFP_FPINST 9 -#define ARM_VFP_FPINST2 10 - -/* iwMMXt coprocessor control registers. */ -#define ARM_IWMMXT_wCID 0 -#define ARM_IWMMXT_wCon 1 -#define ARM_IWMMXT_wCSSF 2 -#define ARM_IWMMXT_wCASF 3 -#define ARM_IWMMXT_wCGR0 8 -#define ARM_IWMMXT_wCGR1 9 -#define ARM_IWMMXT_wCGR2 10 -#define ARM_IWMMXT_wCGR3 11 - -/* If adding a feature bit which corresponds to a Linux ELF - * HWCAP bit, remember to update the feature-bit-to-hwcap - * mapping in linux-user/elfload.c:get_elf_hwcap(). - */ -enum arm_features { - ARM_FEATURE_VFP, - ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ - ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ - ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ - ARM_FEATURE_V6, - ARM_FEATURE_V6K, - ARM_FEATURE_V7, - ARM_FEATURE_THUMB2, - ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ - ARM_FEATURE_VFP3, - ARM_FEATURE_VFP_FP16, - ARM_FEATURE_NEON, - ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ - ARM_FEATURE_M, /* Microcontroller profile. */ - ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ - ARM_FEATURE_THUMB2EE, - ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ - ARM_FEATURE_V4T, - ARM_FEATURE_V5, - ARM_FEATURE_STRONGARM, - ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ - ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ - ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ - ARM_FEATURE_GENERIC_TIMER, - ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ - ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ - ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ - ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ - ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ - ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ - ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ - ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ - ARM_FEATURE_V8, - ARM_FEATURE_AARCH64, /* supports 64 bit mode */ - ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ - ARM_FEATURE_CBAR, /* has cp15 CBAR */ - ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ - ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ - ARM_FEATURE_EL2, /* has EL2 Virtualization support */ - ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ - ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ - ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ - ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ - ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ -}; - -static inline int arm_feature(CPUARMState *env, int feature) -{ - return (env->features & (1ULL << feature)) != 0; -} - -#if !defined(CONFIG_USER_ONLY) -/* Return true if exception levels below EL3 are in secure state, - * or would be following an exception return to that level. - * Unlike arm_is_secure() (which is always a question about the - * _current_ state of the CPU) this doesn't care about the current - * EL or mode. - */ -static inline bool arm_is_secure_below_el3(CPUARMState *env) -{ - if (arm_feature(env, ARM_FEATURE_EL3)) { - return !(env->cp15.scr_el3 & SCR_NS); - } else { - /* If EL3 is not supported then the secure state is implementation - * defined, in which case QEMU defaults to non-secure. - */ - return false; - } -} - -/* Return true if the processor is in secure state */ -static inline bool arm_is_secure(CPUARMState *env) -{ - if (arm_feature(env, ARM_FEATURE_EL3)) { - if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { - /* CPU currently in AArch64 state and EL3 */ - return true; - } else if (!is_a64(env) && - (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { - /* CPU currently in AArch32 state and monitor mode */ - return true; - } - } - return arm_is_secure_below_el3(env); -} - -#else -static inline bool arm_is_secure_below_el3(CPUARMState *env) -{ - return false; -} - -static inline bool arm_is_secure(CPUARMState *env) -{ - return false; -} -#endif - -/* Return true if the specified exception level is running in AArch64 state. */ -static inline bool arm_el_is_aa64(CPUARMState *env, int el) -{ - /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, - * and if we're not in EL0 then the state of EL0 isn't well defined.) - */ - assert(el >= 1 && el <= 3); - bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); - - /* The highest exception level is always at the maximum supported - * register width, and then lower levels have a register width controlled - * by bits in the SCR or HCR registers. - */ - if (el == 3) { - return aa64; - } - - if (arm_feature(env, ARM_FEATURE_EL3)) { - aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); - } - - if (el == 2) { - return aa64; - } - - if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { - aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); - } - - return aa64; -} - -/* Function for determing whether guest cp register reads and writes should - * access the secure or non-secure bank of a cp register. When EL3 is - * operating in AArch32 state, the NS-bit determines whether the secure - * instance of a cp register should be used. When EL3 is AArch64 (or if - * it doesn't exist at all) then there is no register banking, and all - * accesses are to the non-secure version. - */ -static inline bool access_secure_reg(CPUARMState *env) -{ - bool ret = (arm_feature(env, ARM_FEATURE_EL3) && - !arm_el_is_aa64(env, 3) && - !(env->cp15.scr_el3 & SCR_NS)); - - return ret; -} - -/* Macros for accessing a specified CP register bank */ -#define A32_BANKED_REG_GET(_env, _regname, _secure) \ - ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) - -#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ - do { \ - if (_secure) { \ - (_env)->cp15._regname##_s = (_val); \ - } else { \ - (_env)->cp15._regname##_ns = (_val); \ - } \ - } while (0) - -/* Macros for automatically accessing a specific CP register bank depending on - * the current secure state of the system. These macros are not intended for - * supporting instruction translation reads/writes as these are dependent - * solely on the SCR.NS bit and not the mode. - */ -#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ - A32_BANKED_REG_GET((_env), _regname, \ - (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) - -#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ - A32_BANKED_REG_SET((_env), _regname, \ - (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ - (_val)) - -void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); -uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, - uint32_t cur_el, bool secure); - -/* Interface between CPU and Interrupt controller. */ -void armv7m_nvic_set_pending(void *opaque, int irq); -int armv7m_nvic_acknowledge_irq(void *opaque); -void armv7m_nvic_complete_irq(void *opaque, int irq); - -/* Interface for defining coprocessor registers. - * Registers are defined in tables of arm_cp_reginfo structs - * which are passed to define_arm_cp_regs(). - */ - -/* When looking up a coprocessor register we look for it - * via an integer which encodes all of: - * coprocessor number - * Crn, Crm, opc1, opc2 fields - * 32 or 64 bit register (ie is it accessed via MRC/MCR - * or via MRRC/MCRR?) - * non-secure/secure bank (AArch32 only) - * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. - * (In this case crn and opc2 should be zero.) - * For AArch64, there is no 32/64 bit size distinction; - * instead all registers have a 2 bit op0, 3 bit op1 and op2, - * and 4 bit CRn and CRm. The encoding patterns are chosen - * to be easy to convert to and from the KVM encodings, and also - * so that the hashtable can contain both AArch32 and AArch64 - * registers (to allow for interprocessing where we might run - * 32 bit code on a 64 bit core). - */ -/* This bit is private to our hashtable cpreg; in KVM register - * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 - * in the upper bits of the 64 bit ID. - */ -#define CP_REG_AA64_SHIFT 28 -#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) - -/* To enable banking of coprocessor registers depending on ns-bit we - * add a bit to distinguish between secure and non-secure cpregs in the - * hashtable. - */ -#define CP_REG_NS_SHIFT 29 -#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) - -#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ - ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ - ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) - -#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ - (CP_REG_AA64_MASK | \ - ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ - ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ - ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ - ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ - ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ - ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) - -/* Convert a full 64 bit KVM register ID to the truncated 32 bit - * version used as a key for the coprocessor register hashtable - */ -static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) -{ - uint32_t cpregid = kvmid; - if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { - cpregid |= CP_REG_AA64_MASK; - } else { - if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { - cpregid |= (1 << 15); - } - - /* KVM is always non-secure so add the NS flag on AArch32 register - * entries. - */ - cpregid |= 1 << CP_REG_NS_SHIFT; - } - return cpregid; -} - -/* Convert a truncated 32 bit hashtable key into the full - * 64 bit KVM register ID. - */ -static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) -{ - uint64_t kvmid; - - if (cpregid & CP_REG_AA64_MASK) { - kvmid = cpregid & ~CP_REG_AA64_MASK; - kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; - } else { - kvmid = cpregid & ~(1 << 15); - if (cpregid & (1 << 15)) { - kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; - } else { - kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; - } - } - return kvmid; -} - -/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a - * special-behaviour cp reg and bits [15..8] indicate what behaviour - * it has. Otherwise it is a simple cp reg, where CONST indicates that - * TCG can assume the value to be constant (ie load at translate time) - * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END - * indicates that the TB should not be ended after a write to this register - * (the default is that the TB ends after cp writes). OVERRIDE permits - * a register definition to override a previous definition for the - * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the - * old must have the OVERRIDE bit set. - * ALIAS indicates that this register is an alias view of some underlying - * state which is also visible via another register, and that the other - * register is handling migration and reset; registers marked ALIAS will not be - * migrated but may have their state set by syncing of register state from KVM. - * NO_RAW indicates that this register has no underlying state and does not - * support raw access for state saving/loading; it will not be used for either - * migration or KVM state synchronization. (Typically this is for "registers" - * which are actually used as instructions for cache maintenance and so on.) - * IO indicates that this register does I/O and therefore its accesses - * need to be surrounded by gen_io_start()/gen_io_end(). In particular, - * registers which implement clocks or timers require this. - */ -#define ARM_CP_SPECIAL 1 -#define ARM_CP_CONST 2 -#define ARM_CP_64BIT 4 -#define ARM_CP_SUPPRESS_TB_END 8 -#define ARM_CP_OVERRIDE 16 -#define ARM_CP_ALIAS 32 -#define ARM_CP_IO 64 -#define ARM_CP_NO_RAW 128 -#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) -#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) -#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) -#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) -#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) -#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA -/* Used only as a terminator for ARMCPRegInfo lists */ -#define ARM_CP_SENTINEL 0xffff -/* Mask of only the flag bits in a type field */ -#define ARM_CP_FLAG_MASK 0xff - -/* Valid values for ARMCPRegInfo state field, indicating which of - * the AArch32 and AArch64 execution states this register is visible in. - * If the reginfo doesn't explicitly specify then it is AArch32 only. - * If the reginfo is declared to be visible in both states then a second - * reginfo is synthesised for the AArch32 view of the AArch64 register, - * such that the AArch32 view is the lower 32 bits of the AArch64 one. - * Note that we rely on the values of these enums as we iterate through - * the various states in some places. - */ -enum { - ARM_CP_STATE_AA32 = 0, - ARM_CP_STATE_AA64 = 1, - ARM_CP_STATE_BOTH = 2, -}; - -/* ARM CP register secure state flags. These flags identify security state - * attributes for a given CP register entry. - * The existence of both or neither secure and non-secure flags indicates that - * the register has both a secure and non-secure hash entry. A single one of - * these flags causes the register to only be hashed for the specified - * security state. - * Although definitions may have any combination of the S/NS bits, each - * registered entry will only have one to identify whether the entry is secure - * or non-secure. - */ -enum { - ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ - ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ -}; - -/* Return true if cptype is a valid type field. This is used to try to - * catch errors where the sentinel has been accidentally left off the end - * of a list of registers. - */ -static inline bool cptype_valid(int cptype) -{ - return ((cptype & ~ARM_CP_FLAG_MASK) == 0) - || ((cptype & ARM_CP_SPECIAL) && - ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); -} - -/* Access rights: - * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM - * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and - * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 - * (ie any of the privileged modes in Secure state, or Monitor mode). - * If a register is accessible in one privilege level it's always accessible - * in higher privilege levels too. Since "Secure PL1" also follows this rule - * (ie anything visible in PL2 is visible in S-PL1, some things are only - * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the - * terminology a little and call this PL3. - * In AArch64 things are somewhat simpler as the PLx bits line up exactly - * with the ELx exception levels. - * - * If access permissions for a register are more complex than can be - * described with these bits, then use a laxer set of restrictions, and - * do the more restrictive/complex check inside a helper function. - */ -#define PL3_R 0x80 -#define PL3_W 0x40 -#define PL2_R (0x20 | PL3_R) -#define PL2_W (0x10 | PL3_W) -#define PL1_R (0x08 | PL2_R) -#define PL1_W (0x04 | PL2_W) -#define PL0_R (0x02 | PL1_R) -#define PL0_W (0x01 | PL1_W) - -#define PL3_RW (PL3_R | PL3_W) -#define PL2_RW (PL2_R | PL2_W) -#define PL1_RW (PL1_R | PL1_W) -#define PL0_RW (PL0_R | PL0_W) - -/* Return the highest implemented Exception Level */ -static inline int arm_highest_el(CPUARMState *env) -{ - if (arm_feature(env, ARM_FEATURE_EL3)) { - return 3; - } - if (arm_feature(env, ARM_FEATURE_EL2)) { - return 2; - } - return 1; -} - -/* Return the current Exception Level (as per ARMv8; note that this differs - * from the ARMv7 Privilege Level). - */ -static inline int arm_current_el(CPUARMState *env) -{ - if (arm_feature(env, ARM_FEATURE_M)) { - return !((env->v7m.exception == 0) && (env->v7m.control & 1)); - } - - if (is_a64(env)) { - return extract32(env->pstate, 2, 2); - } - - switch (env->uncached_cpsr & 0x1f) { - case ARM_CPU_MODE_USR: - return 0; - case ARM_CPU_MODE_HYP: - return 2; - case ARM_CPU_MODE_MON: - return 3; - default: - if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { - /* If EL3 is 32-bit then all secure privileged modes run in - * EL3 - */ - return 3; - } - - return 1; - } -} - -typedef struct ARMCPRegInfo ARMCPRegInfo; - -typedef enum CPAccessResult { - /* Access is permitted */ - CP_ACCESS_OK = 0, - /* Access fails due to a configurable trap or enable which would - * result in a categorized exception syndrome giving information about - * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, - * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or - * PL1 if in EL0, otherwise to the current EL). - */ - CP_ACCESS_TRAP = 1, - /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). - * Note that this is not a catch-all case -- the set of cases which may - * result in this failure is specifically defined by the architecture. - */ - CP_ACCESS_TRAP_UNCATEGORIZED = 2, - /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ - CP_ACCESS_TRAP_EL2 = 3, - CP_ACCESS_TRAP_EL3 = 4, - /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ - CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, - CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, - /* Access fails and results in an exception syndrome for an FP access, - * trapped directly to EL2 or EL3 - */ - CP_ACCESS_TRAP_FP_EL2 = 7, - CP_ACCESS_TRAP_FP_EL3 = 8, -} CPAccessResult; - -/* Access functions for coprocessor registers. These cannot fail and - * may not raise exceptions. - */ -typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); -typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, - uint64_t value); -/* Access permission check functions for coprocessor registers. */ -typedef CPAccessResult CPAccessFn(CPUARMState *env, - const ARMCPRegInfo *opaque, - bool isread); -/* Hook function for register reset */ -typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); - -#define CP_ANY 0xff - -/* Definition of an ARM coprocessor register */ -struct ARMCPRegInfo { - /* Name of register (useful mainly for debugging, need not be unique) */ - const char *name; - /* Location of register: coprocessor number and (crn,crm,opc1,opc2) - * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a - * 'wildcard' field -- any value of that field in the MRC/MCR insn - * will be decoded to this register. The register read and write - * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 - * used by the program, so it is possible to register a wildcard and - * then behave differently on read/write if necessary. - * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 - * must both be zero. - * For AArch64-visible registers, opc0 is also used. - * Since there are no "coprocessors" in AArch64, cp is purely used as a - * way to distinguish (for KVM's benefit) guest-visible system registers - * from demuxed ones provided to preserve the "no side effects on - * KVM register read/write from QEMU" semantics. cp==0x13 is guest - * visible (to match KVM's encoding); cp==0 will be converted to - * cp==0x13 when the ARMCPRegInfo is registered, for convenience. - */ - uint8_t cp; - uint8_t crn; - uint8_t crm; - uint8_t opc0; - uint8_t opc1; - uint8_t opc2; - /* Execution state in which this register is visible: ARM_CP_STATE_* */ - int state; - /* Register type: ARM_CP_* bits/values */ - int type; - /* Access rights: PL*_[RW] */ - int access; - /* Security state: ARM_CP_SECSTATE_* bits/values */ - int secure; - /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when - * this register was defined: can be used to hand data through to the - * register read/write functions, since they are passed the ARMCPRegInfo*. - */ - void *opaque; - /* Value of this register, if it is ARM_CP_CONST. Otherwise, if - * fieldoffset is non-zero, the reset value of the register. - */ - uint64_t resetvalue; - /* Offset of the field in CPUARMState for this register. - * - * This is not needed if either: - * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs - * 2. both readfn and writefn are specified - */ - ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ - - /* Offsets of the secure and non-secure fields in CPUARMState for the - * register if it is banked. These fields are only used during the static - * registration of a register. During hashing the bank associated - * with a given security state is copied to fieldoffset which is used from - * there on out. - * - * It is expected that register definitions use either fieldoffset or - * bank_fieldoffsets in the definition but not both. It is also expected - * that both bank offsets are set when defining a banked register. This - * use indicates that a register is banked. - */ - ptrdiff_t bank_fieldoffsets[2]; - - /* Function for making any access checks for this register in addition to - * those specified by the 'access' permissions bits. If NULL, no extra - * checks required. The access check is performed at runtime, not at - * translate time. - */ - CPAccessFn *accessfn; - /* Function for handling reads of this register. If NULL, then reads - * will be done by loading from the offset into CPUARMState specified - * by fieldoffset. - */ - CPReadFn *readfn; - /* Function for handling writes of this register. If NULL, then writes - * will be done by writing to the offset into CPUARMState specified - * by fieldoffset. - */ - CPWriteFn *writefn; - /* Function for doing a "raw" read; used when we need to copy - * coprocessor state to the kernel for KVM or out for - * migration. This only needs to be provided if there is also a - * readfn and it has side effects (for instance clear-on-read bits). - */ - CPReadFn *raw_readfn; - /* Function for doing a "raw" write; used when we need to copy KVM - * kernel coprocessor state into userspace, or for inbound - * migration. This only needs to be provided if there is also a - * writefn and it masks out "unwritable" bits or has write-one-to-clear - * or similar behaviour. - */ - CPWriteFn *raw_writefn; - /* Function for resetting the register. If NULL, then reset will be done - * by writing resetvalue to the field specified in fieldoffset. If - * fieldoffset is 0 then no reset will be done. - */ - CPResetFn *resetfn; -}; - -/* Macros which are lvalues for the field in CPUARMState for the - * ARMCPRegInfo *ri. - */ -#define CPREG_FIELD32(env, ri) \ - (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) -#define CPREG_FIELD64(env, ri) \ - (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) - -#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } - -void define_arm_cp_regs_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *regs, void *opaque); -void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *regs, void *opaque); -static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) -{ - define_arm_cp_regs_with_opaque(cpu, regs, 0); -} -static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) -{ - define_one_arm_cp_reg_with_opaque(cpu, regs, 0); -} -const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); - -/* CPWriteFn that can be used to implement writes-ignored behaviour */ -void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value); -/* CPReadFn that can be used for read-as-zero behaviour */ -uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); - -/* CPResetFn that does nothing, for use if no reset is required even - * if fieldoffset is non zero. - */ -void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); - -/* Return true if this reginfo struct's field in the cpu state struct - * is 64 bits wide. - */ -static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) -{ - return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); -} - -static inline bool cp_access_ok(int current_el, - const ARMCPRegInfo *ri, int isread) -{ - return (ri->access >> ((current_el * 2) + isread)) & 1; -} - -/* Raw read of a coprocessor register (as needed for migration, etc) */ -uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); - -/** - * write_list_to_cpustate - * @cpu: ARMCPU - * - * For each register listed in the ARMCPU cpreg_indexes list, write - * its value from the cpreg_values list into the ARMCPUState structure. - * This updates TCG's working data structures from KVM data or - * from incoming migration state. - * - * Returns: true if all register values were updated correctly, - * false if some register was unknown or could not be written. - * Note that we do not stop early on failure -- we will attempt - * writing all registers in the list. - */ -bool write_list_to_cpustate(ARMCPU *cpu); - -/** - * write_cpustate_to_list: - * @cpu: ARMCPU - * - * For each register listed in the ARMCPU cpreg_indexes list, write - * its value from the ARMCPUState structure into the cpreg_values list. - * This is used to copy info from TCG's working data structures into - * KVM or for outbound migration. - * - * Returns: true if all register values were read correctly, - * false if some register was unknown or could not be read. - * Note that we do not stop early on failure -- we will attempt - * reading all registers in the list. - */ -bool write_cpustate_to_list(ARMCPU *cpu); - -/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3. - Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are - conventional cores (ie. Application or Realtime profile). */ - -#define IS_M(env) arm_feature(env, ARM_FEATURE_M) - -#define ARM_CPUID_TI915T 0x54029152 -#define ARM_CPUID_TI925T 0x54029252 - -#if defined(CONFIG_USER_ONLY) -#define TARGET_PAGE_BITS 12 -#else -/* The ARM MMU allows 1k pages. */ -/* ??? Linux doesn't actually use these, and they're deprecated in recent - architecture revisions. Maybe a configure option to disable them. */ -#define TARGET_PAGE_BITS 10 -#endif - -#if defined(TARGET_AARCH64) -# define TARGET_PHYS_ADDR_SPACE_BITS 48 -# define TARGET_VIRT_ADDR_SPACE_BITS 64 -#else -# define TARGET_PHYS_ADDR_SPACE_BITS 40 -# define TARGET_VIRT_ADDR_SPACE_BITS 32 -#endif - -static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, - unsigned int target_el) -{ - CPUARMState *env = cs->env_ptr; - unsigned int cur_el = arm_current_el(env); - bool secure = arm_is_secure(env); - bool pstate_unmasked; - int8_t unmasked = 0; - - /* Don't take exceptions if they target a lower EL. - * This check should catch any exceptions that would not be taken but left - * pending. - */ - if (cur_el > target_el) { - return false; - } - - switch (excp_idx) { - case EXCP_FIQ: - pstate_unmasked = !(env->daif & PSTATE_F); - break; - - case EXCP_IRQ: - pstate_unmasked = !(env->daif & PSTATE_I); - break; - - case EXCP_VFIQ: - if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { - /* VFIQs are only taken when hypervized and non-secure. */ - return false; - } - return !(env->daif & PSTATE_F); - case EXCP_VIRQ: - if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { - /* VIRQs are only taken when hypervized and non-secure. */ - return false; - } - return !(env->daif & PSTATE_I); - default: - g_assert_not_reached(); - } - - /* Use the target EL, current execution state and SCR/HCR settings to - * determine whether the corresponding CPSR bit is used to mask the - * interrupt. - */ - if ((target_el > cur_el) && (target_el != 1)) { - /* Exceptions targeting a higher EL may not be maskable */ - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - /* 64-bit masking rules are simple: exceptions to EL3 - * can't be masked, and exceptions to EL2 can only be - * masked from Secure state. The HCR and SCR settings - * don't affect the masking logic, only the interrupt routing. - */ - if (target_el == 3 || !secure) { - unmasked = 1; - } - } else { - /* The old 32-bit-only environment has a more complicated - * masking setup. HCR and SCR bits not only affect interrupt - * routing but also change the behaviour of masking. - */ - bool hcr, scr; - - switch (excp_idx) { - case EXCP_FIQ: - /* If FIQs are routed to EL3 or EL2 then there are cases where - * we override the CPSR.F in determining if the exception is - * masked or not. If neither of these are set then we fall back - * to the CPSR.F setting otherwise we further assess the state - * below. - */ - hcr = (env->cp15.hcr_el2 & HCR_FMO); - scr = (env->cp15.scr_el3 & SCR_FIQ); - - /* When EL3 is 32-bit, the SCR.FW bit controls whether the - * CPSR.F bit masks FIQ interrupts when taken in non-secure - * state. If SCR.FW is set then FIQs can be masked by CPSR.F - * when non-secure but only when FIQs are only routed to EL3. - */ - scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); - break; - case EXCP_IRQ: - /* When EL3 execution state is 32-bit, if HCR.IMO is set then - * we may override the CPSR.I masking when in non-secure state. - * The SCR.IRQ setting has already been taken into consideration - * when setting the target EL, so it does not have a further - * affect here. - */ - hcr = (env->cp15.hcr_el2 & HCR_IMO); - scr = false; - break; - default: - g_assert_not_reached(); - } - - if ((scr || hcr) && !secure) { - unmasked = 1; - } - } - } - - /* The PSTATE bits only mask the interrupt if we have not overriden the - * ability above. - */ - return unmasked || pstate_unmasked; -} - -#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) - -#define cpu_exec cpu_arm_exec -#define cpu_signal_handler cpu_arm_signal_handler -#define cpu_list arm_cpu_list - -/* ARM has the following "translation regimes" (as the ARM ARM calls them): - * - * If EL3 is 64-bit: - * + NonSecure EL1 & 0 stage 1 - * + NonSecure EL1 & 0 stage 2 - * + NonSecure EL2 - * + Secure EL1 & EL0 - * + Secure EL3 - * If EL3 is 32-bit: - * + NonSecure PL1 & 0 stage 1 - * + NonSecure PL1 & 0 stage 2 - * + NonSecure PL2 - * + Secure PL0 & PL1 - * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) - * - * For QEMU, an mmu_idx is not quite the same as a translation regime because: - * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they - * may differ in access permissions even if the VA->PA map is the same - * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 - * translation, which means that we have one mmu_idx that deals with two - * concatenated translation regimes [this sort of combined s1+2 TLB is - * architecturally permitted] - * 3. we don't need to allocate an mmu_idx to translations that we won't be - * handling via the TLB. The only way to do a stage 1 translation without - * the immediate stage 2 translation is via the ATS or AT system insns, - * which can be slow-pathed and always do a page table walk. - * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" - * translation regimes, because they map reasonably well to each other - * and they can't both be active at the same time. - * This gives us the following list of mmu_idx values: - * - * NS EL0 (aka NS PL0) stage 1+2 - * NS EL1 (aka NS PL1) stage 1+2 - * NS EL2 (aka NS PL2) - * S EL3 (aka S PL1) - * S EL0 (aka S PL0) - * S EL1 (not used if EL3 is 32 bit) - * NS EL0+1 stage 2 - * - * (The last of these is an mmu_idx because we want to be able to use the TLB - * for the accesses done as part of a stage 1 page table walk, rather than - * having to walk the stage 2 page table over and over.) - * - * Our enumeration includes at the end some entries which are not "true" - * mmu_idx values in that they don't have corresponding TLBs and are only - * valid for doing slow path page table walks. - * - * The constant names here are patterned after the general style of the names - * of the AT/ATS operations. - * The values used are carefully arranged to make mmu_idx => EL lookup easy. - */ -typedef enum ARMMMUIdx { - ARMMMUIdx_S12NSE0 = 0, - ARMMMUIdx_S12NSE1 = 1, - ARMMMUIdx_S1E2 = 2, - ARMMMUIdx_S1E3 = 3, - ARMMMUIdx_S1SE0 = 4, - ARMMMUIdx_S1SE1 = 5, - ARMMMUIdx_S2NS = 6, - /* Indexes below here don't have TLBs and are used only for AT system - * instructions or for the first stage of an S12 page table walk. - */ - ARMMMUIdx_S1NSE0 = 7, - ARMMMUIdx_S1NSE1 = 8, -} ARMMMUIdx; - -#define MMU_USER_IDX 0 - -/* Return the exception level we're running at if this is our mmu_idx */ -static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) -{ - assert(mmu_idx < ARMMMUIdx_S2NS); - return mmu_idx & 3; -} - -/* Determine the current mmu_idx to use for normal loads/stores */ -static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) -{ - int el = arm_current_el(env); - - if (el < 2 && arm_is_secure_below_el3(env)) { - return ARMMMUIdx_S1SE0 + el; - } - return el; -} - -/* Indexes used when registering address spaces with cpu_address_space_init */ -typedef enum ARMASIdx { - ARMASIdx_NS = 0, - ARMASIdx_S = 1, -} ARMASIdx; - -/* Return the Exception Level targeted by debug exceptions. */ -static inline int arm_debug_target_el(CPUARMState *env) -{ - bool secure = arm_is_secure(env); - bool route_to_el2 = false; - - if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { - route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || - env->cp15.mdcr_el2 & (1 << 8); - } - - if (route_to_el2) { - return 2; - } else if (arm_feature(env, ARM_FEATURE_EL3) && - !arm_el_is_aa64(env, 3) && secure) { - return 3; - } else { - return 1; - } -} - -static inline bool aa64_generate_debug_exceptions(CPUARMState *env) -{ - if (arm_is_secure(env)) { - /* MDCR_EL3.SDD disables debug events from Secure state */ - if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 - || arm_current_el(env) == 3) { - return false; - } - } - - if (arm_current_el(env) == arm_debug_target_el(env)) { - if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) - || (env->daif & PSTATE_D)) { - return false; - } - } - return true; -} - -static inline bool aa32_generate_debug_exceptions(CPUARMState *env) -{ - int el = arm_current_el(env); - - if (el == 0 && arm_el_is_aa64(env, 1)) { - return aa64_generate_debug_exceptions(env); - } - - if (arm_is_secure(env)) { - int spd; - - if (el == 0 && (env->cp15.sder & 1)) { - /* SDER.SUIDEN means debug exceptions from Secure EL0 - * are always enabled. Otherwise they are controlled by - * SDCR.SPD like those from other Secure ELs. - */ - return true; - } - - spd = extract32(env->cp15.mdcr_el3, 14, 2); - switch (spd) { - case 1: - /* SPD == 0b01 is reserved, but behaves as 0b00. */ - case 0: - /* For 0b00 we return true if external secure invasive debug - * is enabled. On real hardware this is controlled by external - * signals to the core. QEMU always permits debug, and behaves - * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. - */ - return true; - case 2: - return false; - case 3: - return true; - } - } - - return el != 2; -} - -/* Return true if debugging exceptions are currently enabled. - * This corresponds to what in ARM ARM pseudocode would be - * if UsingAArch32() then - * return AArch32.GenerateDebugExceptions() - * else - * return AArch64.GenerateDebugExceptions() - * We choose to push the if() down into this function for clarity, - * since the pseudocode has it at all callsites except for the one in - * CheckSoftwareStep(), where it is elided because both branches would - * always return the same value. - * - * Parts of the pseudocode relating to EL2 and EL3 are omitted because we - * don't yet implement those exception levels or their associated trap bits. - */ -static inline bool arm_generate_debug_exceptions(CPUARMState *env) -{ - if (env->aarch64) { - return aa64_generate_debug_exceptions(env); - } else { - return aa32_generate_debug_exceptions(env); - } -} - -/* Is single-stepping active? (Note that the "is EL_D AArch64?" check - * implicitly means this always returns false in pre-v8 CPUs.) - */ -static inline bool arm_singlestep_active(CPUARMState *env) -{ - return extract32(env->cp15.mdscr_el1, 0, 1) - && arm_el_is_aa64(env, arm_debug_target_el(env)) - && arm_generate_debug_exceptions(env); -} - -static inline bool arm_sctlr_b(CPUARMState *env) -{ - return - /* We need not implement SCTLR.ITD in user-mode emulation, so - * let linux-user ignore the fact that it conflicts with SCTLR_B. - * This lets people run BE32 binaries with "-cpu any". - */ -#ifndef CONFIG_USER_ONLY - !arm_feature(env, ARM_FEATURE_V7) && -#endif - (env->cp15.sctlr_el[1] & SCTLR_B) != 0; -} - -/* Return true if the processor is in big-endian mode. */ -static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) -{ - int cur_el; - - /* In 32bit endianness is determined by looking at CPSR's E bit */ - if (!is_a64(env)) { - return -#ifdef CONFIG_USER_ONLY - /* In system mode, BE32 is modelled in line with the - * architecture (as word-invariant big-endianness), where loads - * and stores are done little endian but from addresses which - * are adjusted by XORing with the appropriate constant. So the - * endianness to use for the raw data access is not affected by - * SCTLR.B. - * In user mode, however, we model BE32 as byte-invariant - * big-endianness (because user-only code cannot tell the - * difference), and so we need to use a data access endianness - * that depends on SCTLR.B. - */ - arm_sctlr_b(env) || -#endif - ((env->uncached_cpsr & CPSR_E) ? 1 : 0); - } - - cur_el = arm_current_el(env); - - if (cur_el == 0) { - return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; - } - - return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; -} - -#include "exec/cpu-all.h" - -/* Bit usage in the TB flags field: bit 31 indicates whether we are - * in 32 or 64 bit mode. The meaning of the other bits depends on that. - * We put flags which are shared between 32 and 64 bit mode at the top - * of the word, and flags which apply to only one mode at the bottom. - */ -#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 -#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) -#define ARM_TBFLAG_MMUIDX_SHIFT 28 -#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) -#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 -#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) -#define ARM_TBFLAG_PSTATE_SS_SHIFT 26 -#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) -/* Target EL if we take a floating-point-disabled exception */ -#define ARM_TBFLAG_FPEXC_EL_SHIFT 24 -#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) - -/* Bit usage when in AArch32 state: */ -#define ARM_TBFLAG_THUMB_SHIFT 0 -#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) -#define ARM_TBFLAG_VECLEN_SHIFT 1 -#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) -#define ARM_TBFLAG_VECSTRIDE_SHIFT 4 -#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) -#define ARM_TBFLAG_VFPEN_SHIFT 7 -#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) -#define ARM_TBFLAG_CONDEXEC_SHIFT 8 -#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) -#define ARM_TBFLAG_SCTLR_B_SHIFT 16 -#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) -/* We store the bottom two bits of the CPAR as TB flags and handle - * checks on the other bits at runtime - */ -#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 -#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) -/* Indicates whether cp register reads and writes by guest code should access - * the secure or nonsecure bank of banked registers; note that this is not - * the same thing as the current security state of the processor! - */ -#define ARM_TBFLAG_NS_SHIFT 19 -#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) -#define ARM_TBFLAG_BE_DATA_SHIFT 20 -#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) - -/* Bit usage when in AArch64 state: currently we have no A64 specific bits */ - -/* some convenience accessor macros */ -#define ARM_TBFLAG_AARCH64_STATE(F) \ - (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) -#define ARM_TBFLAG_MMUIDX(F) \ - (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) -#define ARM_TBFLAG_SS_ACTIVE(F) \ - (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) -#define ARM_TBFLAG_PSTATE_SS(F) \ - (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) -#define ARM_TBFLAG_FPEXC_EL(F) \ - (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) -#define ARM_TBFLAG_THUMB(F) \ - (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) -#define ARM_TBFLAG_VECLEN(F) \ - (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) -#define ARM_TBFLAG_VECSTRIDE(F) \ - (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) -#define ARM_TBFLAG_VFPEN(F) \ - (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) -#define ARM_TBFLAG_CONDEXEC(F) \ - (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) -#define ARM_TBFLAG_SCTLR_B(F) \ - (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) -#define ARM_TBFLAG_XSCALE_CPAR(F) \ - (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) -#define ARM_TBFLAG_NS(F) \ - (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) -#define ARM_TBFLAG_BE_DATA(F) \ - (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) - -static inline bool bswap_code(bool sctlr_b) -{ -#ifdef CONFIG_USER_ONLY - /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. - * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 - * would also end up as a mixed-endian mode with BE code, LE data. - */ - return -#ifdef TARGET_WORDS_BIGENDIAN - 1 ^ -#endif - sctlr_b; -#else - /* All code access in ARM is little endian, and there are no loaders - * doing swaps that need to be reversed - */ - return 0; -#endif -} - -/* Return the exception level to which FP-disabled exceptions should - * be taken, or 0 if FP is enabled. - */ -static inline int fp_exception_el(CPUARMState *env) -{ - int fpen; - int cur_el = arm_current_el(env); - - /* CPACR and the CPTR registers don't exist before v6, so FP is - * always accessible - */ - if (!arm_feature(env, ARM_FEATURE_V6)) { - return 0; - } - - /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: - * 0, 2 : trap EL0 and EL1/PL1 accesses - * 1 : trap only EL0 accesses - * 3 : trap no accesses - */ - fpen = extract32(env->cp15.cpacr_el1, 20, 2); - switch (fpen) { - case 0: - case 2: - if (cur_el == 0 || cur_el == 1) { - /* Trap to PL1, which might be EL1 or EL3 */ - if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { - return 3; - } - return 1; - } - if (cur_el == 3 && !is_a64(env)) { - /* Secure PL1 running at EL3 */ - return 3; - } - break; - case 1: - if (cur_el == 0) { - return 1; - } - break; - case 3: - break; - } - - /* For the CPTR registers we don't need to guard with an ARM_FEATURE - * check because zero bits in the registers mean "don't trap". - */ - - /* CPTR_EL2 : present in v7VE or v8 */ - if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) - && !arm_is_secure_below_el3(env)) { - /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ - return 2; - } - - /* CPTR_EL3 : present in v8 */ - if (extract32(env->cp15.cptr_el[3], 10, 1)) { - /* Trap all FP ops to EL3 */ - return 3; - } - - return 0; -} - -#ifdef CONFIG_USER_ONLY -static inline bool arm_cpu_bswap_data(CPUARMState *env) -{ - return -#ifdef TARGET_WORDS_BIGENDIAN - 1 ^ -#endif - arm_cpu_data_is_big_endian(env); -} -#endif - -static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, - target_ulong *cs_base, int *flags) -{ - if (is_a64(env)) { - *pc = env->pc; - *flags = ARM_TBFLAG_AARCH64_STATE_MASK; - } else { - *pc = env->regs[15]; - *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) - | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) - | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) - | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) - | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); - if (!(access_secure_reg(env))) { - *flags |= ARM_TBFLAG_NS_MASK; - } - if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) - || arm_el_is_aa64(env, 1)) { - *flags |= ARM_TBFLAG_VFPEN_MASK; - } - *flags |= (extract32(env->cp15.c15_cpar, 0, 2) - << ARM_TBFLAG_XSCALE_CPAR_SHIFT); - } - - *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT); - /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine - * states defined in the ARM ARM for software singlestep: - * SS_ACTIVE PSTATE.SS State - * 0 x Inactive (the TB flag for SS is always 0) - * 1 0 Active-pending - * 1 1 Active-not-pending - */ - if (arm_singlestep_active(env)) { - *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; - if (is_a64(env)) { - if (env->pstate & PSTATE_SS) { - *flags |= ARM_TBFLAG_PSTATE_SS_MASK; - } - } else { - if (env->uncached_cpsr & PSTATE_SS) { - *flags |= ARM_TBFLAG_PSTATE_SS_MASK; - } - } - } - if (arm_cpu_data_is_big_endian(env)) { - *flags |= ARM_TBFLAG_BE_DATA_MASK; - } - *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; - - *cs_base = 0; -} - -#include "exec/exec-all.h" - -enum { - QEMU_PSCI_CONDUIT_DISABLED = 0, - QEMU_PSCI_CONDUIT_SMC = 1, - QEMU_PSCI_CONDUIT_HVC = 2, -}; - -#ifndef CONFIG_USER_ONLY -/* Return the address space index to use for a memory access */ -static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) -{ - return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; -} - -/* Return the AddressSpace to use for a memory access - * (which depends on whether the access is S or NS, and whether - * the board gave us a separate AddressSpace for S accesses). - */ -static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) -{ - return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); -} -#endif - -#endif |