summaryrefslogtreecommitdiffstats
path: root/qemu/scripts/dump-guest-memory.py
diff options
context:
space:
mode:
authorDon Dugger <n0ano@n0ano.com>2016-06-03 03:33:22 +0000
committerGerrit Code Review <gerrit@172.30.200.206>2016-06-03 03:33:23 +0000
commitda27230f80795d0028333713f036d44c53cb0e68 (patch)
treeb3d379eaf000adf72b36cb01cdf4d79c3e3f064c /qemu/scripts/dump-guest-memory.py
parent0e68cb048bb8aadb14675f5d4286d8ab2fc35449 (diff)
parent437fd90c0250dee670290f9b714253671a990160 (diff)
Merge "These changes are the raw update to qemu-2.6."
Diffstat (limited to 'qemu/scripts/dump-guest-memory.py')
-rw-r--r--qemu/scripts/dump-guest-memory.py762
1 files changed, 476 insertions, 286 deletions
diff --git a/qemu/scripts/dump-guest-memory.py b/qemu/scripts/dump-guest-memory.py
index dc8e44acf..c0a2e99f4 100644
--- a/qemu/scripts/dump-guest-memory.py
+++ b/qemu/scripts/dump-guest-memory.py
@@ -1,39 +1,456 @@
-# This python script adds a new gdb command, "dump-guest-memory". It
-# should be loaded with "source dump-guest-memory.py" at the (gdb)
-# prompt.
-#
-# Copyright (C) 2013, Red Hat, Inc.
-#
-# Authors:
-# Laszlo Ersek <lersek@redhat.com>
-#
-# This work is licensed under the terms of the GNU GPL, version 2 or later. See
-# the COPYING file in the top-level directory.
-#
+"""
+This python script adds a new gdb command, "dump-guest-memory". It
+should be loaded with "source dump-guest-memory.py" at the (gdb)
+prompt.
+
+Copyright (C) 2013, Red Hat, Inc.
+
+Authors:
+ Laszlo Ersek <lersek@redhat.com>
+ Janosch Frank <frankja@linux.vnet.ibm.com>
+
+This work is licensed under the terms of the GNU GPL, version 2 or later. See
+the COPYING file in the top-level directory.
+"""
+
+import ctypes
+
+UINTPTR_T = gdb.lookup_type("uintptr_t")
+
+TARGET_PAGE_SIZE = 0x1000
+TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000
+
+# Special value for e_phnum. This indicates that the real number of
+# program headers is too large to fit into e_phnum. Instead the real
+# value is in the field sh_info of section 0.
+PN_XNUM = 0xFFFF
+
+EV_CURRENT = 1
+
+ELFCLASS32 = 1
+ELFCLASS64 = 2
+
+ELFDATA2LSB = 1
+ELFDATA2MSB = 2
+
+ET_CORE = 4
+
+PT_LOAD = 1
+PT_NOTE = 4
+
+EM_386 = 3
+EM_PPC = 20
+EM_PPC64 = 21
+EM_S390 = 22
+EM_AARCH = 183
+EM_X86_64 = 62
+
+class ELF(object):
+ """Representation of a ELF file."""
+
+ def __init__(self, arch):
+ self.ehdr = None
+ self.notes = []
+ self.segments = []
+ self.notes_size = 0
+ self.endianess = None
+ self.elfclass = ELFCLASS64
+
+ if arch == 'aarch64-le':
+ self.endianess = ELFDATA2LSB
+ self.elfclass = ELFCLASS64
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_AARCH
+
+ elif arch == 'aarch64-be':
+ self.endianess = ELFDATA2MSB
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_AARCH
+
+ elif arch == 'X86_64':
+ self.endianess = ELFDATA2LSB
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_X86_64
+
+ elif arch == '386':
+ self.endianess = ELFDATA2LSB
+ self.elfclass = ELFCLASS32
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_386
+
+ elif arch == 's390':
+ self.endianess = ELFDATA2MSB
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_S390
+
+ elif arch == 'ppc64-le':
+ self.endianess = ELFDATA2LSB
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_PPC64
+
+ elif arch == 'ppc64-be':
+ self.endianess = ELFDATA2MSB
+ self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
+ self.ehdr.e_machine = EM_PPC64
+
+ else:
+ raise gdb.GdbError("No valid arch type specified.\n"
+ "Currently supported types:\n"
+ "aarch64-be, aarch64-le, X86_64, 386, s390, "
+ "ppc64-be, ppc64-le")
+
+ self.add_segment(PT_NOTE, 0, 0)
+
+ def add_note(self, n_name, n_desc, n_type):
+ """Adds a note to the ELF."""
+
+ note = get_arch_note(self.endianess, len(n_name), len(n_desc))
+ note.n_namesz = len(n_name) + 1
+ note.n_descsz = len(n_desc)
+ note.n_name = n_name.encode()
+ note.n_type = n_type
+
+ # Desc needs to be 4 byte aligned (although the 64bit spec
+ # specifies 8 byte). When defining n_desc as uint32 it will be
+ # automatically aligned but we need the memmove to copy the
+ # string into it.
+ ctypes.memmove(note.n_desc, n_desc.encode(), len(n_desc))
+
+ self.notes.append(note)
+ self.segments[0].p_filesz += ctypes.sizeof(note)
+ self.segments[0].p_memsz += ctypes.sizeof(note)
+
+ def add_segment(self, p_type, p_paddr, p_size):
+ """Adds a segment to the elf."""
+
+ phdr = get_arch_phdr(self.endianess, self.elfclass)
+ phdr.p_type = p_type
+ phdr.p_paddr = p_paddr
+ phdr.p_filesz = p_size
+ phdr.p_memsz = p_size
+ self.segments.append(phdr)
+ self.ehdr.e_phnum += 1
+
+ def to_file(self, elf_file):
+ """Writes all ELF structures to the the passed file.
+
+ Structure:
+ Ehdr
+ Segment 0:PT_NOTE
+ Segment 1:PT_LOAD
+ Segment N:PT_LOAD
+ Note 0..N
+ Dump contents
+ """
+ elf_file.write(self.ehdr)
+ off = ctypes.sizeof(self.ehdr) + \
+ len(self.segments) * ctypes.sizeof(self.segments[0])
+
+ for phdr in self.segments:
+ phdr.p_offset = off
+ elf_file.write(phdr)
+ off += phdr.p_filesz
+
+ for note in self.notes:
+ elf_file.write(note)
+
+
+def get_arch_note(endianess, len_name, len_desc):
+ """Returns a Note class with the specified endianess."""
+
+ if endianess == ELFDATA2LSB:
+ superclass = ctypes.LittleEndianStructure
+ else:
+ superclass = ctypes.BigEndianStructure
+
+ len_name = len_name + 1
+
+ class Note(superclass):
+ """Represents an ELF note, includes the content."""
+
+ _fields_ = [("n_namesz", ctypes.c_uint32),
+ ("n_descsz", ctypes.c_uint32),
+ ("n_type", ctypes.c_uint32),
+ ("n_name", ctypes.c_char * len_name),
+ ("n_desc", ctypes.c_uint32 * ((len_desc + 3) // 4))]
+ return Note()
+
+
+class Ident(ctypes.Structure):
+ """Represents the ELF ident array in the ehdr structure."""
+
+ _fields_ = [('ei_mag0', ctypes.c_ubyte),
+ ('ei_mag1', ctypes.c_ubyte),
+ ('ei_mag2', ctypes.c_ubyte),
+ ('ei_mag3', ctypes.c_ubyte),
+ ('ei_class', ctypes.c_ubyte),
+ ('ei_data', ctypes.c_ubyte),
+ ('ei_version', ctypes.c_ubyte),
+ ('ei_osabi', ctypes.c_ubyte),
+ ('ei_abiversion', ctypes.c_ubyte),
+ ('ei_pad', ctypes.c_ubyte * 7)]
+
+ def __init__(self, endianess, elfclass):
+ self.ei_mag0 = 0x7F
+ self.ei_mag1 = ord('E')
+ self.ei_mag2 = ord('L')
+ self.ei_mag3 = ord('F')
+ self.ei_class = elfclass
+ self.ei_data = endianess
+ self.ei_version = EV_CURRENT
+
+
+def get_arch_ehdr(endianess, elfclass):
+ """Returns a EHDR64 class with the specified endianess."""
+
+ if endianess == ELFDATA2LSB:
+ superclass = ctypes.LittleEndianStructure
+ else:
+ superclass = ctypes.BigEndianStructure
+
+ class EHDR64(superclass):
+ """Represents the 64 bit ELF header struct."""
+
+ _fields_ = [('e_ident', Ident),
+ ('e_type', ctypes.c_uint16),
+ ('e_machine', ctypes.c_uint16),
+ ('e_version', ctypes.c_uint32),
+ ('e_entry', ctypes.c_uint64),
+ ('e_phoff', ctypes.c_uint64),
+ ('e_shoff', ctypes.c_uint64),
+ ('e_flags', ctypes.c_uint32),
+ ('e_ehsize', ctypes.c_uint16),
+ ('e_phentsize', ctypes.c_uint16),
+ ('e_phnum', ctypes.c_uint16),
+ ('e_shentsize', ctypes.c_uint16),
+ ('e_shnum', ctypes.c_uint16),
+ ('e_shstrndx', ctypes.c_uint16)]
+
+ def __init__(self):
+ super(superclass, self).__init__()
+ self.e_ident = Ident(endianess, elfclass)
+ self.e_type = ET_CORE
+ self.e_version = EV_CURRENT
+ self.e_ehsize = ctypes.sizeof(self)
+ self.e_phoff = ctypes.sizeof(self)
+ self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianess, elfclass))
+ self.e_phnum = 0
+
+
+ class EHDR32(superclass):
+ """Represents the 32 bit ELF header struct."""
+
+ _fields_ = [('e_ident', Ident),
+ ('e_type', ctypes.c_uint16),
+ ('e_machine', ctypes.c_uint16),
+ ('e_version', ctypes.c_uint32),
+ ('e_entry', ctypes.c_uint32),
+ ('e_phoff', ctypes.c_uint32),
+ ('e_shoff', ctypes.c_uint32),
+ ('e_flags', ctypes.c_uint32),
+ ('e_ehsize', ctypes.c_uint16),
+ ('e_phentsize', ctypes.c_uint16),
+ ('e_phnum', ctypes.c_uint16),
+ ('e_shentsize', ctypes.c_uint16),
+ ('e_shnum', ctypes.c_uint16),
+ ('e_shstrndx', ctypes.c_uint16)]
+
+ def __init__(self):
+ super(superclass, self).__init__()
+ self.e_ident = Ident(endianess, elfclass)
+ self.e_type = ET_CORE
+ self.e_version = EV_CURRENT
+ self.e_ehsize = ctypes.sizeof(self)
+ self.e_phoff = ctypes.sizeof(self)
+ self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianess, elfclass))
+ self.e_phnum = 0
+
+ # End get_arch_ehdr
+ if elfclass == ELFCLASS64:
+ return EHDR64()
+ else:
+ return EHDR32()
+
+
+def get_arch_phdr(endianess, elfclass):
+ """Returns a 32 or 64 bit PHDR class with the specified endianess."""
+
+ if endianess == ELFDATA2LSB:
+ superclass = ctypes.LittleEndianStructure
+ else:
+ superclass = ctypes.BigEndianStructure
+
+ class PHDR64(superclass):
+ """Represents the 64 bit ELF program header struct."""
+
+ _fields_ = [('p_type', ctypes.c_uint32),
+ ('p_flags', ctypes.c_uint32),
+ ('p_offset', ctypes.c_uint64),
+ ('p_vaddr', ctypes.c_uint64),
+ ('p_paddr', ctypes.c_uint64),
+ ('p_filesz', ctypes.c_uint64),
+ ('p_memsz', ctypes.c_uint64),
+ ('p_align', ctypes.c_uint64)]
+
+ class PHDR32(superclass):
+ """Represents the 32 bit ELF program header struct."""
+
+ _fields_ = [('p_type', ctypes.c_uint32),
+ ('p_offset', ctypes.c_uint32),
+ ('p_vaddr', ctypes.c_uint32),
+ ('p_paddr', ctypes.c_uint32),
+ ('p_filesz', ctypes.c_uint32),
+ ('p_memsz', ctypes.c_uint32),
+ ('p_flags', ctypes.c_uint32),
+ ('p_align', ctypes.c_uint32)]
+
+ # End get_arch_phdr
+ if elfclass == ELFCLASS64:
+ return PHDR64()
+ else:
+ return PHDR32()
+
+
+def int128_get64(val):
+ """Returns low 64bit part of Int128 struct."""
+
+ assert val["hi"] == 0
+ return val["lo"]
+
+
+def qlist_foreach(head, field_str):
+ """Generator for qlists."""
+
+ var_p = head["lh_first"]
+ while var_p != 0:
+ var = var_p.dereference()
+ var_p = var[field_str]["le_next"]
+ yield var
+
+
+def qemu_get_ram_block(ram_addr):
+ """Returns the RAMBlock struct to which the given address belongs."""
+
+ ram_blocks = gdb.parse_and_eval("ram_list.blocks")
+
+ for block in qlist_foreach(ram_blocks, "next"):
+ if (ram_addr - block["offset"]) < block["used_length"]:
+ return block
+
+ raise gdb.GdbError("Bad ram offset %x" % ram_addr)
+
+
+def qemu_get_ram_ptr(ram_addr):
+ """Returns qemu vaddr for given guest physical address."""
+
+ block = qemu_get_ram_block(ram_addr)
+ return block["host"] + (ram_addr - block["offset"])
+
+
+def memory_region_get_ram_ptr(memory_region):
+ if memory_region["alias"] != 0:
+ return (memory_region_get_ram_ptr(memory_region["alias"].dereference())
+ + memory_region["alias_offset"])
+
+ return qemu_get_ram_ptr(memory_region["ram_block"]["offset"])
+
+
+def get_guest_phys_blocks():
+ """Returns a list of ram blocks.
+
+ Each block entry contains:
+ 'target_start': guest block phys start address
+ 'target_end': guest block phys end address
+ 'host_addr': qemu vaddr of the block's start
+ """
+
+ guest_phys_blocks = []
+
+ print("guest RAM blocks:")
+ print("target_start target_end host_addr message "
+ "count")
+ print("---------------- ---------------- ---------------- ------- "
+ "-----")
+
+ current_map_p = gdb.parse_and_eval("address_space_memory.current_map")
+ current_map = current_map_p.dereference()
+
+ # Conversion to int is needed for python 3
+ # compatibility. Otherwise range doesn't cast the value itself and
+ # breaks.
+ for cur in range(int(current_map["nr"])):
+ flat_range = (current_map["ranges"] + cur).dereference()
+ memory_region = flat_range["mr"].dereference()
+
+ # we only care about RAM
+ if not memory_region["ram"]:
+ continue
+
+ section_size = int128_get64(flat_range["addr"]["size"])
+ target_start = int128_get64(flat_range["addr"]["start"])
+ target_end = target_start + section_size
+ host_addr = (memory_region_get_ram_ptr(memory_region)
+ + flat_range["offset_in_region"])
+ predecessor = None
+
+ # find continuity in guest physical address space
+ if len(guest_phys_blocks) > 0:
+ predecessor = guest_phys_blocks[-1]
+ predecessor_size = (predecessor["target_end"] -
+ predecessor["target_start"])
+
+ # the memory API guarantees monotonically increasing
+ # traversal
+ assert predecessor["target_end"] <= target_start
+
+ # we want continuity in both guest-physical and
+ # host-virtual memory
+ if (predecessor["target_end"] < target_start or
+ predecessor["host_addr"] + predecessor_size != host_addr):
+ predecessor = None
+
+ if predecessor is None:
+ # isolated mapping, add it to the list
+ guest_phys_blocks.append({"target_start": target_start,
+ "target_end": target_end,
+ "host_addr": host_addr})
+ message = "added"
+ else:
+ # expand predecessor until @target_end; predecessor's
+ # start doesn't change
+ predecessor["target_end"] = target_end
+ message = "joined"
+
+ print("%016x %016x %016x %-7s %5u" %
+ (target_start, target_end, host_addr.cast(UINTPTR_T),
+ message, len(guest_phys_blocks)))
+
+ return guest_phys_blocks
+
+
# The leading docstring doesn't have idiomatic Python formatting. It is
# printed by gdb's "help" command (the first line is printed in the
# "help data" summary), and it should match how other help texts look in
# gdb.
-
-import struct
-
class DumpGuestMemory(gdb.Command):
"""Extract guest vmcore from qemu process coredump.
-The sole argument is FILE, identifying the target file to write the
-guest vmcore to.
+The two required arguments are FILE and ARCH:
+FILE identifies the target file to write the guest vmcore to.
+ARCH specifies the architecture for which the core will be generated.
This GDB command reimplements the dump-guest-memory QMP command in
python, using the representation of guest memory as captured in the qemu
coredump. The qemu process that has been dumped must have had the
-command line option "-machine dump-guest-core=on".
+command line option "-machine dump-guest-core=on" which is the default.
For simplicity, the "paging", "begin" and "end" parameters of the QMP
command are not supported -- no attempt is made to get the guest's
internal paging structures (ie. paging=false is hard-wired), and guest
memory is always fully dumped.
-Only x86_64 guests are supported.
+Currently aarch64-be, aarch64-le, X86_64, 386, s390, ppc64-be,
+ppc64-le guests are supported.
The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are
not written to the vmcore. Preparing these would require context that is
@@ -47,293 +464,66 @@ deliberately called abort(), or it was dumped in response to a signal at
a halfway fortunate point, then its coredump should be in reasonable
shape and this command should mostly work."""
- TARGET_PAGE_SIZE = 0x1000
- TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000
-
- # Various ELF constants
- EM_X86_64 = 62 # AMD x86-64 target machine
- ELFDATA2LSB = 1 # little endian
- ELFCLASS64 = 2
- ELFMAG = "\x7FELF"
- EV_CURRENT = 1
- ET_CORE = 4
- PT_LOAD = 1
- PT_NOTE = 4
-
- # Special value for e_phnum. This indicates that the real number of
- # program headers is too large to fit into e_phnum. Instead the real
- # value is in the field sh_info of section 0.
- PN_XNUM = 0xFFFF
-
- # Format strings for packing and header size calculation.
- ELF64_EHDR = ("4s" # e_ident/magic
- "B" # e_ident/class
- "B" # e_ident/data
- "B" # e_ident/version
- "B" # e_ident/osabi
- "8s" # e_ident/pad
- "H" # e_type
- "H" # e_machine
- "I" # e_version
- "Q" # e_entry
- "Q" # e_phoff
- "Q" # e_shoff
- "I" # e_flags
- "H" # e_ehsize
- "H" # e_phentsize
- "H" # e_phnum
- "H" # e_shentsize
- "H" # e_shnum
- "H" # e_shstrndx
- )
- ELF64_PHDR = ("I" # p_type
- "I" # p_flags
- "Q" # p_offset
- "Q" # p_vaddr
- "Q" # p_paddr
- "Q" # p_filesz
- "Q" # p_memsz
- "Q" # p_align
- )
-
def __init__(self):
super(DumpGuestMemory, self).__init__("dump-guest-memory",
gdb.COMMAND_DATA,
gdb.COMPLETE_FILENAME)
- self.uintptr_t = gdb.lookup_type("uintptr_t")
- self.elf64_ehdr_le = struct.Struct("<%s" % self.ELF64_EHDR)
- self.elf64_phdr_le = struct.Struct("<%s" % self.ELF64_PHDR)
-
- def int128_get64(self, val):
- assert (val["hi"] == 0)
- return val["lo"]
-
- def qlist_foreach(self, head, field_str):
- var_p = head["lh_first"]
- while (var_p != 0):
- var = var_p.dereference()
- yield var
- var_p = var[field_str]["le_next"]
-
- def qemu_get_ram_block(self, ram_addr):
- ram_blocks = gdb.parse_and_eval("ram_list.blocks")
- for block in self.qlist_foreach(ram_blocks, "next"):
- if (ram_addr - block["offset"] < block["length"]):
- return block
- raise gdb.GdbError("Bad ram offset %x" % ram_addr)
-
- def qemu_get_ram_ptr(self, ram_addr):
- block = self.qemu_get_ram_block(ram_addr)
- return block["host"] + (ram_addr - block["offset"])
-
- def memory_region_get_ram_ptr(self, mr):
- if (mr["alias"] != 0):
- return (self.memory_region_get_ram_ptr(mr["alias"].dereference()) +
- mr["alias_offset"])
- return self.qemu_get_ram_ptr(mr["ram_addr"] & self.TARGET_PAGE_MASK)
-
- def guest_phys_blocks_init(self):
- self.guest_phys_blocks = []
-
- def guest_phys_blocks_append(self):
- print "guest RAM blocks:"
- print ("target_start target_end host_addr message "
- "count")
- print ("---------------- ---------------- ---------------- ------- "
- "-----")
-
- current_map_p = gdb.parse_and_eval("address_space_memory.current_map")
- current_map = current_map_p.dereference()
- for cur in range(current_map["nr"]):
- flat_range = (current_map["ranges"] + cur).dereference()
- mr = flat_range["mr"].dereference()
-
- # we only care about RAM
- if (not mr["ram"]):
- continue
-
- section_size = self.int128_get64(flat_range["addr"]["size"])
- target_start = self.int128_get64(flat_range["addr"]["start"])
- target_end = target_start + section_size
- host_addr = (self.memory_region_get_ram_ptr(mr) +
- flat_range["offset_in_region"])
- predecessor = None
-
- # find continuity in guest physical address space
- if (len(self.guest_phys_blocks) > 0):
- predecessor = self.guest_phys_blocks[-1]
- predecessor_size = (predecessor["target_end"] -
- predecessor["target_start"])
-
- # the memory API guarantees monotonically increasing
- # traversal
- assert (predecessor["target_end"] <= target_start)
-
- # we want continuity in both guest-physical and
- # host-virtual memory
- if (predecessor["target_end"] < target_start or
- predecessor["host_addr"] + predecessor_size != host_addr):
- predecessor = None
-
- if (predecessor is None):
- # isolated mapping, add it to the list
- self.guest_phys_blocks.append({"target_start": target_start,
- "target_end" : target_end,
- "host_addr" : host_addr})
- message = "added"
- else:
- # expand predecessor until @target_end; predecessor's
- # start doesn't change
- predecessor["target_end"] = target_end
- message = "joined"
-
- print ("%016x %016x %016x %-7s %5u" %
- (target_start, target_end, host_addr.cast(self.uintptr_t),
- message, len(self.guest_phys_blocks)))
-
- def cpu_get_dump_info(self):
- # We can't synchronize the registers with KVM post-mortem, and
- # the bits in (first_x86_cpu->env.hflags) seem to be stale; they
- # may not reflect long mode for example. Hence just assume the
- # most common values. This also means that instruction pointer
- # etc. will be bogus in the dump, but at least the RAM contents
- # should be valid.
- self.dump_info = {"d_machine": self.EM_X86_64,
- "d_endian" : self.ELFDATA2LSB,
- "d_class" : self.ELFCLASS64}
-
- def encode_elf64_ehdr_le(self):
- return self.elf64_ehdr_le.pack(
- self.ELFMAG, # e_ident/magic
- self.dump_info["d_class"], # e_ident/class
- self.dump_info["d_endian"], # e_ident/data
- self.EV_CURRENT, # e_ident/version
- 0, # e_ident/osabi
- "", # e_ident/pad
- self.ET_CORE, # e_type
- self.dump_info["d_machine"], # e_machine
- self.EV_CURRENT, # e_version
- 0, # e_entry
- self.elf64_ehdr_le.size, # e_phoff
- 0, # e_shoff
- 0, # e_flags
- self.elf64_ehdr_le.size, # e_ehsize
- self.elf64_phdr_le.size, # e_phentsize
- self.phdr_num, # e_phnum
- 0, # e_shentsize
- 0, # e_shnum
- 0 # e_shstrndx
- )
-
- def encode_elf64_note_le(self):
- return self.elf64_phdr_le.pack(self.PT_NOTE, # p_type
- 0, # p_flags
- (self.memory_offset -
- len(self.note)), # p_offset
- 0, # p_vaddr
- 0, # p_paddr
- len(self.note), # p_filesz
- len(self.note), # p_memsz
- 0 # p_align
- )
-
- def encode_elf64_load_le(self, offset, start_hwaddr, range_size):
- return self.elf64_phdr_le.pack(self.PT_LOAD, # p_type
- 0, # p_flags
- offset, # p_offset
- 0, # p_vaddr
- start_hwaddr, # p_paddr
- range_size, # p_filesz
- range_size, # p_memsz
- 0 # p_align
- )
-
- def note_init(self, name, desc, type):
- # name must include a trailing NUL
- namesz = (len(name) + 1 + 3) / 4 * 4
- descsz = (len(desc) + 3) / 4 * 4
- fmt = ("<" # little endian
- "I" # n_namesz
- "I" # n_descsz
- "I" # n_type
- "%us" # name
- "%us" # desc
- % (namesz, descsz))
- self.note = struct.pack(fmt,
- len(name) + 1, len(desc), type, name, desc)
-
- def dump_init(self):
- self.guest_phys_blocks_init()
- self.guest_phys_blocks_append()
- self.cpu_get_dump_info()
- # we have no way to retrieve the VCPU status from KVM
- # post-mortem
- self.note_init("NONE", "EMPTY", 0)
-
- # Account for PT_NOTE.
- self.phdr_num = 1
-
- # We should never reach PN_XNUM for paging=false dumps: there's
- # just a handful of discontiguous ranges after merging.
- self.phdr_num += len(self.guest_phys_blocks)
- assert (self.phdr_num < self.PN_XNUM)
-
- # Calculate the ELF file offset where the memory dump commences:
- #
- # ELF header
- # PT_NOTE
- # PT_LOAD: 1
- # PT_LOAD: 2
- # ...
- # PT_LOAD: len(self.guest_phys_blocks)
- # ELF note
- # memory dump
- self.memory_offset = (self.elf64_ehdr_le.size +
- self.elf64_phdr_le.size * self.phdr_num +
- len(self.note))
-
- def dump_begin(self, vmcore):
- vmcore.write(self.encode_elf64_ehdr_le())
- vmcore.write(self.encode_elf64_note_le())
- running = self.memory_offset
+ self.elf = None
+ self.guest_phys_blocks = None
+
+ def dump_init(self, vmcore):
+ """Prepares and writes ELF structures to core file."""
+
+ # Needed to make crash happy, data for more useful notes is
+ # not available in a qemu core.
+ self.elf.add_note("NONE", "EMPTY", 0)
+
+ # We should never reach PN_XNUM for paging=false dumps,
+ # there's just a handful of discontiguous ranges after
+ # merging.
+ # The constant is needed to account for the PT_NOTE segment.
+ phdr_num = len(self.guest_phys_blocks) + 1
+ assert phdr_num < PN_XNUM
+
for block in self.guest_phys_blocks:
- range_size = block["target_end"] - block["target_start"]
- vmcore.write(self.encode_elf64_load_le(running,
- block["target_start"],
- range_size))
- running += range_size
- vmcore.write(self.note)
+ block_size = block["target_end"] - block["target_start"]
+ self.elf.add_segment(PT_LOAD, block["target_start"], block_size)
+
+ self.elf.to_file(vmcore)
def dump_iterate(self, vmcore):
+ """Writes guest core to file."""
+
qemu_core = gdb.inferiors()[0]
for block in self.guest_phys_blocks:
- cur = block["host_addr"]
+ cur = block["host_addr"]
left = block["target_end"] - block["target_start"]
- print ("dumping range at %016x for length %016x" %
- (cur.cast(self.uintptr_t), left))
- while (left > 0):
- chunk_size = min(self.TARGET_PAGE_SIZE, left)
+ print("dumping range at %016x for length %016x" %
+ (cur.cast(UINTPTR_T), left))
+
+ while left > 0:
+ chunk_size = min(TARGET_PAGE_SIZE, left)
chunk = qemu_core.read_memory(cur, chunk_size)
vmcore.write(chunk)
- cur += chunk_size
+ cur += chunk_size
left -= chunk_size
- def create_vmcore(self, filename):
- vmcore = open(filename, "wb")
- self.dump_begin(vmcore)
- self.dump_iterate(vmcore)
- vmcore.close()
-
def invoke(self, args, from_tty):
+ """Handles command invocation from gdb."""
+
# Unwittingly pressing the Enter key after the command should
# not dump the same multi-gig coredump to the same file.
self.dont_repeat()
argv = gdb.string_to_argv(args)
- if (len(argv) != 1):
- raise gdb.GdbError("usage: dump-guest-memory FILE")
+ if len(argv) != 2:
+ raise gdb.GdbError("usage: dump-guest-memory FILE ARCH")
+
+ self.elf = ELF(argv[1])
+ self.guest_phys_blocks = get_guest_phys_blocks()
- self.dump_init()
- self.create_vmcore(argv[0])
+ with open(argv[0], "wb") as vmcore:
+ self.dump_init(vmcore)
+ self.dump_iterate(vmcore)
DumpGuestMemory()