diff options
author | Yang Zhang <yang.z.zhang@intel.com> | 2015-08-28 09:58:54 +0800 |
---|---|---|
committer | Yang Zhang <yang.z.zhang@intel.com> | 2015-09-01 12:44:00 +0800 |
commit | e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch) | |
tree | 66b09f592c55df2878107a468a91d21506104d3f /qemu/roms/u-boot/drivers/mtd/nand | |
parent | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff) |
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/roms/u-boot/drivers/mtd/nand')
40 files changed, 21180 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/drivers/mtd/nand/Makefile b/qemu/roms/u-boot/drivers/mtd/nand/Makefile new file mode 100644 index 000000000..4eb354da9 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/Makefile @@ -0,0 +1,72 @@ +# +# (C) Copyright 2006 +# Wolfgang Denk, DENX Software Engineering, wd@denx.de. +# +# SPDX-License-Identifier: GPL-2.0+ +# + +ifdef CONFIG_SPL_BUILD + +ifdef CONFIG_SPL_NAND_DRIVERS +NORMAL_DRIVERS=y +endif + +obj-$(CONFIG_SPL_NAND_AM33XX_BCH) += am335x_spl_bch.o +obj-$(CONFIG_SPL_NAND_DOCG4) += docg4_spl.o +obj-$(CONFIG_SPL_NAND_SIMPLE) += nand_spl_simple.o +obj-$(CONFIG_SPL_NAND_LOAD) += nand_spl_load.o +obj-$(CONFIG_SPL_NAND_ECC) += nand_ecc.o +obj-$(CONFIG_SPL_NAND_BASE) += nand_base.o +obj-$(CONFIG_SPL_NAND_INIT) += nand.o +ifeq ($(CONFIG_SPL_ENV_SUPPORT),y) +obj-$(CONFIG_ENV_IS_IN_NAND) += nand_util.o +endif + +else # not spl + +NORMAL_DRIVERS=y + +obj-y += nand.o +obj-y += nand_bbt.o +obj-y += nand_ids.o +obj-y += nand_util.o +obj-y += nand_ecc.o +obj-y += nand_base.o + +endif # not spl + +ifdef NORMAL_DRIVERS + +obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o + +obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o +obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o +obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o +obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o +obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o +obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_NAND_FSMC) += fsmc_nand.o +obj-$(CONFIG_NAND_JZ4740) += jz4740_nand.o +obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o +obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o +obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o +obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o +obj-$(CONFIG_NAND_MXC) += mxc_nand.o +obj-$(CONFIG_NAND_MXS) += mxs_nand.o +obj-$(CONFIG_NAND_NDFC) += ndfc.o +obj-$(CONFIG_NAND_NOMADIK) += nomadik.o +obj-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o +obj-$(CONFIG_NAND_SPEAR) += spr_nand.o +obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o +obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o +obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o +obj-$(CONFIG_NAND_PLAT) += nand_plat.o +obj-$(CONFIG_NAND_DOCG4) += docg4.o + +else # minimal SPL drivers + +obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_spl.o +obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_spl.o +obj-$(CONFIG_NAND_MXC) += mxc_nand_spl.o + +endif # drivers diff --git a/qemu/roms/u-boot/drivers/mtd/nand/am335x_spl_bch.c b/qemu/roms/u-boot/drivers/mtd/nand/am335x_spl_bch.c new file mode 100644 index 000000000..bd89b067d --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/am335x_spl_bch.c @@ -0,0 +1,226 @@ +/* + * (C) Copyright 2012 + * Konstantin Kozhevnikov, Cogent Embedded + * + * based on nand_spl_simple code + * + * (C) Copyright 2006-2008 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/io.h> +#include <linux/mtd/nand_ecc.h> + +static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; +nand_info_t nand_info[1]; +static struct nand_chip nand_chip; + +#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ + CONFIG_SYS_NAND_ECCSIZE) +#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) + + +/* + * NAND command for large page NAND devices (2k) + */ +static int nand_command(int block, int page, uint32_t offs, + u8 cmd) +{ + struct nand_chip *this = nand_info[0].priv; + int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + void (*hwctrl)(struct mtd_info *mtd, int cmd, + unsigned int ctrl) = this->cmd_ctrl; + + while (!this->dev_ready(&nand_info[0])) + ; + + /* Emulate NAND_CMD_READOOB */ + if (cmd == NAND_CMD_READOOB) { + offs += CONFIG_SYS_NAND_PAGE_SIZE; + cmd = NAND_CMD_READ0; + } + + /* Begin command latch cycle */ + hwctrl(&nand_info[0], cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + + if (cmd == NAND_CMD_RESET) { + hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + while (!this->dev_ready(&nand_info[0])) + ; + return 0; + } + + /* Shift the offset from byte addressing to word addressing. */ + if (this->options & NAND_BUSWIDTH_16) + offs >>= 1; + + /* Set ALE and clear CLE to start address cycle */ + /* Column address */ + hwctrl(&nand_info[0], offs & 0xff, + NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */ + hwctrl(&nand_info[0], (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */ + /* Row address */ + hwctrl(&nand_info[0], (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */ + hwctrl(&nand_info[0], ((page_addr >> 8) & 0xff), + NAND_CTRL_ALE); /* A[27:20] */ +#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE + /* One more address cycle for devices > 128MiB */ + hwctrl(&nand_info[0], (page_addr >> 16) & 0x0f, + NAND_CTRL_ALE); /* A[31:28] */ +#endif + hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + if (cmd == NAND_CMD_READ0) { + /* Latch in address */ + hwctrl(&nand_info[0], NAND_CMD_READSTART, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Wait a while for the data to be ready + */ + while (!this->dev_ready(&nand_info[0])) + ; + } else if (cmd == NAND_CMD_RNDOUT) { + hwctrl(&nand_info[0], NAND_CMD_RNDOUTSTART, NAND_CTRL_CLE | + NAND_CTRL_CHANGE); + hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + } + + return 0; +} + +static int nand_is_bad_block(int block) +{ + struct nand_chip *this = nand_info[0].priv; + + nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, + NAND_CMD_READOOB); + + /* + * Read one byte (or two if it's a 16 bit chip). + */ + if (this->options & NAND_BUSWIDTH_16) { + if (readw(this->IO_ADDR_R) != 0xffff) + return 1; + } else { + if (readb(this->IO_ADDR_R) != 0xff) + return 1; + } + + return 0; +} + +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = nand_info[0].priv; + u_char ecc_calc[ECCTOTAL]; + u_char ecc_code[ECCTOTAL]; + u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; + int i; + int eccsize = CONFIG_SYS_NAND_ECCSIZE; + int eccbytes = CONFIG_SYS_NAND_ECCBYTES; + int eccsteps = ECCSTEPS; + uint8_t *p = dst; + uint32_t data_pos = 0; + uint8_t *oob = &oob_data[0] + nand_ecc_pos[0]; + uint32_t oob_pos = eccsize * eccsteps + nand_ecc_pos[0]; + + nand_command(block, page, 0, NAND_CMD_READ0); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + this->ecc.hwctl(&nand_info[0], NAND_ECC_READ); + nand_command(block, page, data_pos, NAND_CMD_RNDOUT); + + this->read_buf(&nand_info[0], p, eccsize); + + nand_command(block, page, oob_pos, NAND_CMD_RNDOUT); + + this->read_buf(&nand_info[0], oob, eccbytes); + this->ecc.calculate(&nand_info[0], p, &ecc_calc[i]); + + data_pos += eccsize; + oob_pos += eccbytes; + oob += eccbytes; + } + + /* Pick the ECC bytes out of the oob data */ + for (i = 0; i < ECCTOTAL; i++) + ecc_code[i] = oob_data[nand_ecc_pos[i]]; + + eccsteps = ECCSTEPS; + p = dst; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + /* No chance to do something with the possible error message + * from correct_data(). We just hope that all possible errors + * are corrected by this routine. + */ + this->ecc.correct(&nand_info[0], p, &ecc_code[i], &ecc_calc[i]); + } + + return 0; +} + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + unsigned int block, lastblock; + unsigned int page; + + /* + * offs has to be aligned to a page address! + */ + block = offs / CONFIG_SYS_NAND_BLOCK_SIZE; + lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE; + page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE; + + while (block <= lastblock) { + if (!nand_is_bad_block(block)) { + /* + * Skip bad blocks + */ + while (page < CONFIG_SYS_NAND_PAGE_COUNT) { + nand_read_page(block, page, dst); + dst += CONFIG_SYS_NAND_PAGE_SIZE; + page++; + } + + page = 0; + } else { + lastblock++; + } + + block++; + } + + return 0; +} + +/* nand_init() - initialize data to make nand usable by SPL */ +void nand_init(void) +{ + /* + * Init board specific nand support + */ + nand_info[0].priv = &nand_chip; + nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = + (void __iomem *)CONFIG_SYS_NAND_BASE; + board_nand_init(&nand_chip); + + if (nand_chip.select_chip) + nand_chip.select_chip(&nand_info[0], 0); + + /* NAND chip may require reset after power-on */ + nand_command(0, 0, 0, NAND_CMD_RESET); +} + +/* Unselect after operation */ +void nand_deselect(void) +{ + if (nand_chip.select_chip) + nand_chip.select_chip(&nand_info[0], -1); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand.c new file mode 100644 index 000000000..e1fc48fca --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand.c @@ -0,0 +1,1437 @@ +/* + * (C) Copyright 2007-2008 + * Stelian Pop <stelian@popies.net> + * Lead Tech Design <www.leadtechdesign.com> + * + * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * (C) Copyright 2012 ATMEL, Hong Xu + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/gpio.h> +#include <asm/arch/gpio.h> + +#include <malloc.h> +#include <nand.h> +#include <watchdog.h> + +#ifdef CONFIG_ATMEL_NAND_HWECC + +/* Register access macros */ +#define ecc_readl(add, reg) \ + readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg) +#define ecc_writel(add, reg, value) \ + writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg) + +#include "atmel_nand_ecc.h" /* Hardware ECC registers */ + +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + +#ifdef CONFIG_SPL_BUILD +#undef CONFIG_SYS_NAND_ONFI_DETECTION +#endif + +struct atmel_nand_host { + struct pmecc_regs __iomem *pmecc; + struct pmecc_errloc_regs __iomem *pmerrloc; + void __iomem *pmecc_rom_base; + + u8 pmecc_corr_cap; + u16 pmecc_sector_size; + u32 pmecc_index_table_offset; + + int pmecc_bytes_per_sector; + int pmecc_sector_number; + int pmecc_degree; /* Degree of remainders */ + int pmecc_cw_len; /* Length of codeword */ + + /* lookup table for alpha_to and index_of */ + void __iomem *pmecc_alpha_to; + void __iomem *pmecc_index_of; + + /* data for pmecc computation */ + int16_t *pmecc_smu; + int16_t *pmecc_partial_syn; + int16_t *pmecc_si; + int16_t *pmecc_lmu; /* polynomal order */ + int *pmecc_mu; + int *pmecc_dmu; + int *pmecc_delta; +}; + +static struct atmel_nand_host pmecc_host; +static struct nand_ecclayout atmel_pmecc_oobinfo; + +/* + * Return number of ecc bytes per sector according to sector size and + * correction capability + * + * Following table shows what at91 PMECC supported: + * Correction Capability Sector_512_bytes Sector_1024_bytes + * ===================== ================ ================= + * 2-bits 4-bytes 4-bytes + * 4-bits 7-bytes 7-bytes + * 8-bits 13-bytes 14-bytes + * 12-bits 20-bytes 21-bytes + * 24-bits 39-bytes 42-bytes + */ +static int pmecc_get_ecc_bytes(int cap, int sector_size) +{ + int m = 12 + sector_size / 512; + return (m * cap + 7) / 8; +} + +static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, + int oobsize, int ecc_len) +{ + int i; + + layout->eccbytes = ecc_len; + + /* ECC will occupy the last ecc_len bytes continuously */ + for (i = 0; i < ecc_len; i++) + layout->eccpos[i] = oobsize - ecc_len + i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = + oobsize - ecc_len - layout->oobfree[0].offset; +} + +static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) +{ + int table_size; + + table_size = host->pmecc_sector_size == 512 ? + PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024; + + /* the ALPHA lookup table is right behind the INDEX lookup table. */ + return host->pmecc_rom_base + host->pmecc_index_table_offset + + table_size * sizeof(int16_t); +} + +static void pmecc_data_free(struct atmel_nand_host *host) +{ + free(host->pmecc_partial_syn); + free(host->pmecc_si); + free(host->pmecc_lmu); + free(host->pmecc_smu); + free(host->pmecc_mu); + free(host->pmecc_dmu); + free(host->pmecc_delta); +} + +static int pmecc_data_alloc(struct atmel_nand_host *host) +{ + const int cap = host->pmecc_corr_cap; + int size; + + size = (2 * cap + 1) * sizeof(int16_t); + host->pmecc_partial_syn = malloc(size); + host->pmecc_si = malloc(size); + host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t)); + host->pmecc_smu = malloc((cap + 2) * size); + + size = (cap + 1) * sizeof(int); + host->pmecc_mu = malloc(size); + host->pmecc_dmu = malloc(size); + host->pmecc_delta = malloc(size); + + if (host->pmecc_partial_syn && + host->pmecc_si && + host->pmecc_lmu && + host->pmecc_smu && + host->pmecc_mu && + host->pmecc_dmu && + host->pmecc_delta) + return 0; + + /* error happened */ + pmecc_data_free(host); + return -ENOMEM; + +} + +static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i; + uint32_t value; + + /* Fill odd syndromes */ + for (i = 0; i < host->pmecc_corr_cap; i++) { + value = readl(&host->pmecc->rem_port[sector].rem[i / 2]); + if (i & 1) + value >>= 16; + value &= 0xffff; + host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; + } +} + +static void pmecc_substitute(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t *partial_syn = host->pmecc_partial_syn; + const int cap = host->pmecc_corr_cap; + int16_t *si; + int i, j; + + /* si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = host->pmecc_si; + + memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * cap; i += 2) { + for (j = 0; j < host->pmecc_degree; j++) { + if (partial_syn[i] & (0x1 << j)) + si[i] = readw(alpha_to + i * j) ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= cap; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + int16_t tmp; + + tmp = readw(index_of + si[j]); + tmp = (tmp * 2) % host->pmecc_cw_len; + si[i] = readw(alpha_to + tmp); + } + } +} + +/* + * This function defines a Berlekamp iterative procedure for + * finding the value of the error location polynomial. + * The input is si[], initialize by pmecc_substitute(). + * The output is smu[][]. + * + * This function is written according to chip datasheet Chapter: + * Find the Error Location Polynomial Sigma(x) of Section: + * Programmable Multibit ECC Control (PMECC). + */ +static void pmecc_get_sigma(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + int16_t *lmu = host->pmecc_lmu; + int16_t *si = host->pmecc_si; + int *mu = host->pmecc_mu; + int *dmu = host->pmecc_dmu; /* Discrepancy */ + int *delta = host->pmecc_delta; /* Delta order */ + int cw_len = host->pmecc_cw_len; + const int16_t cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int i, j, k; + uint32_t dmu_0_count, tmp; + int16_t *smu = host->pmecc_smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + /* Init the Sigma(x) */ + memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu)); + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */ + delta[0] = -1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */ + delta[1] = 0; + + for (i = 1; i <= cap; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((cap - (lmu[i] >> 1) - 1) / 2); + if ((cap - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(cap + 1) * num + j] = + smu[i * num + j]; + + lmu[cap + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + int16_t a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + a = readw(index_of + dmu[i]); + b = readw(index_of + dmu[ro]); + c = readw(index_of + smu[ro * num + k]); + tmp = a + (cw_len - b) + c; + a = readw(alpha_to + tmp % cw_len); + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= cap) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + int16_t a, b, c; + a = readw(index_of + + smu[(i + 1) * num + k]); + b = si[2 * (i - 1) + 3 - k]; + c = readw(index_of + b); + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = readw(alpha_to + tmp) ^ + dmu[i + 1]; + } + } + } +} + +static int pmecc_err_location(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + const int cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int sector_size = host->pmecc_sector_size; + int err_nbr = 0; /* number of error */ + int roots_nbr; /* number of roots */ + int i; + uint32_t val; + int16_t *smu = host->pmecc_smu; + int timeout = PMECC_MAX_TIMEOUT_US; + + writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis); + + for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { + writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]); + err_nbr++; + } + + val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1); + if (sector_size == 1024) + val |= PMERRLOC_ELCFG_SECTOR_1024; + + writel(val, &host->pmerrloc->elcfg); + writel(sector_size * 8 + host->pmecc_degree * cap, + &host->pmerrloc->elen); + + while (--timeout) { + if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n"); + return -1; + } + + roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK) + >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) + return err_nbr - 1; + + /* Number of roots does not match the degree of smu + * unable to correct error */ + return -1; +} + +static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, + int sector_num, int extra_bytes, int err_nbr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i = 0; + int byte_pos, bit_pos, sector_size, pos; + uint32_t tmp; + uint8_t err_byte; + + sector_size = host->pmecc_sector_size; + + while (err_nbr) { + tmp = readl(&host->pmerrloc->el[i]) - 1; + byte_pos = tmp / 8; + bit_pos = tmp % 8; + + if (byte_pos >= (sector_size + extra_bytes)) + BUG(); /* should never happen */ + + if (byte_pos < sector_size) { + err_byte = *(buf + byte_pos); + *(buf + byte_pos) ^= (1 << bit_pos); + + pos = sector_num * host->pmecc_sector_size + byte_pos; + dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, *(buf + byte_pos)); + } else { + /* Bit flip in OOB area */ + tmp = sector_num * host->pmecc_bytes_per_sector + + (byte_pos - sector_size); + err_byte = ecc[tmp]; + ecc[tmp] ^= (1 << bit_pos); + + pos = tmp + nand_chip->ecc.layout->eccpos[0]; + dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, ecc[tmp]); + } + + i++; + err_nbr--; + } + + return; +} + +static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, + u8 *ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i, err_nbr, eccbytes; + uint8_t *buf_pos; + + eccbytes = nand_chip->ecc.bytes; + for (i = 0; i < eccbytes; i++) + if (ecc[i] != 0xff) + goto normal_check; + /* Erased page, return OK */ + return 0; + +normal_check: + for (i = 0; i < host->pmecc_sector_number; i++) { + err_nbr = 0; + if (pmecc_stat & 0x1) { + buf_pos = buf + i * host->pmecc_sector_size; + + pmecc_gen_syndrome(mtd, i); + pmecc_substitute(mtd); + pmecc_get_sigma(mtd); + + err_nbr = pmecc_err_location(mtd); + if (err_nbr == -1) { + dev_err(host->dev, "PMECC: Too many errors\n"); + mtd->ecc_stats.failed++; + return -EIO; + } else { + pmecc_correct_data(mtd, buf_pos, ecc, i, + host->pmecc_bytes_per_sector, err_nbr); + mtd->ecc_stats.corrected += err_nbr; + } + } + pmecc_stat >>= 1; + } + + return 0; +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + struct atmel_nand_host *host = chip->priv; + int eccsize = chip->ecc.size; + uint8_t *oob = chip->oob_poi; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t stat; + int timeout = PMECC_MAX_TIMEOUT_US; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg)) + & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); + + chip->read_buf(mtd, buf, eccsize); + chip->read_buf(mtd, oob, mtd->oobsize); + + while (--timeout) { + if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n"); + return -1; + } + + stat = pmecc_readl(host->pmecc, isr); + if (stat != 0) + if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) + return -EIO; + + return 0; +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required) +{ + struct atmel_nand_host *host = chip->priv; + uint32_t *eccpos = chip->ecc.layout->eccpos; + int i, j; + int timeout = PMECC_MAX_TIMEOUT_US; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + + pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) | + PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); + + chip->write_buf(mtd, (u8 *)buf, mtd->writesize); + + while (--timeout) { + if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n"); + goto out; + } + + for (i = 0; i < host->pmecc_sector_number; i++) { + for (j = 0; j < host->pmecc_bytes_per_sector; j++) { + int pos; + + pos = i * host->pmecc_bytes_per_sector + j; + chip->oob_poi[eccpos[pos]] = + readb(&host->pmecc->ecc_port[i].ecc[j]); + } + } + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); +out: + return 0; +} + +static void atmel_pmecc_core_init(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + uint32_t val = 0; + struct nand_ecclayout *ecc_layout; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + + switch (host->pmecc_corr_cap) { + case 2: + val = PMECC_CFG_BCH_ERR2; + break; + case 4: + val = PMECC_CFG_BCH_ERR4; + break; + case 8: + val = PMECC_CFG_BCH_ERR8; + break; + case 12: + val = PMECC_CFG_BCH_ERR12; + break; + case 24: + val = PMECC_CFG_BCH_ERR24; + break; + } + + if (host->pmecc_sector_size == 512) + val |= PMECC_CFG_SECTOR512; + else if (host->pmecc_sector_size == 1024) + val |= PMECC_CFG_SECTOR1024; + + switch (host->pmecc_sector_number) { + case 1: + val |= PMECC_CFG_PAGE_1SECTOR; + break; + case 2: + val |= PMECC_CFG_PAGE_2SECTORS; + break; + case 4: + val |= PMECC_CFG_PAGE_4SECTORS; + break; + case 8: + val |= PMECC_CFG_PAGE_8SECTORS; + break; + } + + val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE + | PMECC_CFG_AUTO_DISABLE); + pmecc_writel(host->pmecc, cfg, val); + + ecc_layout = nand_chip->ecc.layout; + pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1); + pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]); + pmecc_writel(host->pmecc, eaddr, + ecc_layout->eccpos[ecc_layout->eccbytes - 1]); + /* See datasheet about PMECC Clock Control Register */ + pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ); + pmecc_writel(host->pmecc, idr, 0xff); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); +} + +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION +/* + * get_onfi_ecc_param - Get ECC requirement from ONFI parameters + * @ecc_bits: store the ONFI ECC correct bits capbility + * @sector_size: in how many bytes that ONFI require to correct @ecc_bits + * + * Returns -1 if ONFI parameters is not supported. In this case @ecc_bits, + * @sector_size are initialize to 0. + * Return 0 if success to get the ECC requirement. + */ +static int get_onfi_ecc_param(struct nand_chip *chip, + int *ecc_bits, int *sector_size) +{ + *ecc_bits = *sector_size = 0; + + if (chip->onfi_params.ecc_bits == 0xff) + /* TODO: the sector_size and ecc_bits need to be find in + * extended ecc parameter, currently we don't support it. + */ + return -1; + + *ecc_bits = chip->onfi_params.ecc_bits; + + /* The default sector size (ecc codeword size) is 512 */ + *sector_size = 512; + + return 0; +} + +/* + * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If + * pmecc_corr_cap or pmecc_sector_size is 0, then set it as + * ONFI ECC parameters. + * @host: point to an atmel_nand_host structure. + * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits. + * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size. + * @chip: point to an nand_chip structure. + * @cap: store the ONFI ECC correct bits capbility + * @sector_size: in how many bytes that ONFI require to correct @ecc_bits + * + * Return 0 if success. otherwise return the error code. + */ +static int pmecc_choose_ecc(struct atmel_nand_host *host, + struct nand_chip *chip, + int *cap, int *sector_size) +{ + /* Get ECC requirement from ONFI parameters */ + *cap = *sector_size = 0; + if (chip->onfi_version) { + if (!get_onfi_ecc_param(chip, cap, sector_size)) { + MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n", + *cap, *sector_size); + } else { + dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n"); + } + } else { + dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes"); + } + if (*cap == 0 && *sector_size == 0) { + /* Non-ONFI compliant or use extended ONFI parameters */ + *cap = 2; + *sector_size = 512; + } + + /* If head file doesn't specify then use the one in ONFI parameters */ + if (host->pmecc_corr_cap == 0) { + /* use the most fitable ecc bits (the near bigger one ) */ + if (*cap <= 2) + host->pmecc_corr_cap = 2; + else if (*cap <= 4) + host->pmecc_corr_cap = 4; + else if (*cap <= 8) + host->pmecc_corr_cap = 8; + else if (*cap <= 12) + host->pmecc_corr_cap = 12; + else if (*cap <= 24) + host->pmecc_corr_cap = 24; + else + return -EINVAL; + } + if (host->pmecc_sector_size == 0) { + /* use the most fitable sector size (the near smaller one ) */ + if (*sector_size >= 1024) + host->pmecc_sector_size = 1024; + else if (*sector_size >= 512) + host->pmecc_sector_size = 512; + else + return -EINVAL; + } + return 0; +} +#endif + +static int atmel_pmecc_nand_init_params(struct nand_chip *nand, + struct mtd_info *mtd) +{ + struct atmel_nand_host *host; + int cap, sector_size; + + host = nand->priv = &pmecc_host; + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.calculate = NULL; + nand->ecc.correct = NULL; + nand->ecc.hwctl = NULL; + +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION + host->pmecc_corr_cap = host->pmecc_sector_size = 0; + +#ifdef CONFIG_PMECC_CAP + host->pmecc_corr_cap = CONFIG_PMECC_CAP; +#endif +#ifdef CONFIG_PMECC_SECTOR_SIZE + host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; +#endif + /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or + * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size + * from ONFI. + */ + if (pmecc_choose_ecc(host, nand, &cap, §or_size)) { + dev_err(host->dev, "The NAND flash's ECC requirement(ecc_bits: %d, sector_size: %d) are not support!", + cap, sector_size); + return -EINVAL; + } + + if (cap > host->pmecc_corr_cap) + dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n", + host->pmecc_corr_cap, cap); + if (sector_size < host->pmecc_sector_size) + dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n", + host->pmecc_sector_size, sector_size); +#else /* CONFIG_SYS_NAND_ONFI_DETECTION */ + host->pmecc_corr_cap = CONFIG_PMECC_CAP; + host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; +#endif + + cap = host->pmecc_corr_cap; + sector_size = host->pmecc_sector_size; + + /* TODO: need check whether cap & sector_size is validate */ + + if (host->pmecc_sector_size == 512) + host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512; + else + host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024; + + MTDDEBUG(MTD_DEBUG_LEVEL1, + "Initialize PMECC params, cap: %d, sector: %d\n", + cap, sector_size); + + host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC; + host->pmerrloc = (struct pmecc_errloc_regs __iomem *) + ATMEL_BASE_PMERRLOC; + host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM; + + /* ECC is calculated for the whole page (1 step) */ + nand->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 2048: + case 4096: + case 8192: + host->pmecc_degree = (sector_size == 512) ? + PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; + host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; + host->pmecc_sector_number = mtd->writesize / sector_size; + host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( + cap, sector_size); + host->pmecc_alpha_to = pmecc_get_alpha_to(host); + host->pmecc_index_of = host->pmecc_rom_base + + host->pmecc_index_table_offset; + + nand->ecc.steps = 1; + nand->ecc.bytes = host->pmecc_bytes_per_sector * + host->pmecc_sector_number; + + if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) { + dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n", + MTD_MAX_ECCPOS_ENTRIES_LARGE); + return -EINVAL; + } + + if (nand->ecc.bytes > mtd->oobsize - 2) { + dev_err(host->dev, "No room for ECC bytes\n"); + return -EINVAL; + } + pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, + mtd->oobsize, + nand->ecc.bytes); + nand->ecc.layout = &atmel_pmecc_oobinfo; + break; + case 512: + case 1024: + /* TODO */ + dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n"); + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand->ecc.mode = NAND_ECC_SOFT; + nand->ecc.read_page = NULL; + nand->ecc.postpad = 0; + nand->ecc.prepad = 0; + nand->ecc.bytes = 0; + return 0; + } + + /* Allocate data for PMECC computation */ + if (pmecc_data_alloc(host)) { + dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n"); + return -ENOMEM; + } + + nand->ecc.read_page = atmel_nand_pmecc_read_page; + nand->ecc.write_page = atmel_nand_pmecc_write_page; + nand->ecc.strength = cap; + + atmel_pmecc_core_init(mtd); + + return 0; +} + +#else + +/* oob layout for large page size + * bad block info is on bytes 0 and 1 + * the bytes have to be consecutives to avoid + * several NAND_CMD_RNDOUT during read + */ +static struct nand_ecclayout atmel_oobinfo_large = { + .eccbytes = 4, + .eccpos = {60, 61, 62, 63}, + .oobfree = { + {2, 58} + }, +}; + +/* oob layout for small page size + * bad block info is on bytes 4 and 5 + * the bytes have to be consecutives to avoid + * several NAND_CMD_RNDOUT during read + */ +static struct nand_ecclayout atmel_oobinfo_small = { + .eccbytes = 4, + .eccpos = {0, 1, 2, 3}, + .oobfree = { + {6, 10} + }, +}; + +/* + * Calculate HW ECC + * + * function called after a write + * + * mtd: MTD block structure + * dat: raw data (unused) + * ecc_code: buffer for ECC + */ +static int atmel_nand_calculate(struct mtd_info *mtd, + const u_char *dat, unsigned char *ecc_code) +{ + unsigned int ecc_value; + + /* get the first 2 ECC bytes */ + ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR); + + ecc_code[0] = ecc_value & 0xFF; + ecc_code[1] = (ecc_value >> 8) & 0xFF; + + /* get the last 2 ECC bytes */ + ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY; + + ecc_code[2] = ecc_value & 0xFF; + ecc_code[3] = (ecc_value >> 8) & 0xFF; + + return 0; +} + +/* + * HW ECC read page function + * + * mtd: mtd info structure + * chip: nand chip info structure + * buf: buffer to store read data + * oob_required: caller expects OOB data read to chip->oob_poi + */ +static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + uint8_t *ecc_pos; + int stat; + + /* read the page */ + chip->read_buf(mtd, p, eccsize); + + /* move to ECC position if needed */ + if (eccpos[0] != 0) { + /* This only works on large pages + * because the ECC controller waits for + * NAND_CMD_RNDOUTSTART after the + * NAND_CMD_RNDOUT. + * anyway, for small pages, the eccpos[0] == 0 + */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + eccpos[0], -1); + } + + /* the ECC controller needs to read the ECC just after the data */ + ecc_pos = oob + eccpos[0]; + chip->read_buf(mtd, ecc_pos, eccbytes); + + /* check if there's an error */ + stat = chip->ecc.correct(mtd, p, oob, NULL); + + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + /* get back to oob start (end of page) */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); + + /* read the oob */ + chip->read_buf(mtd, oob, mtd->oobsize); + + return 0; +} + +/* + * HW ECC Correction + * + * function called after a read + * + * mtd: MTD block structure + * dat: raw data read from the chip + * read_ecc: ECC from the chip (unused) + * isnull: unused + * + * Detect and correct a 1 bit error for a page + */ +static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *isnull) +{ + struct nand_chip *nand_chip = mtd->priv; + unsigned int ecc_status; + unsigned int ecc_word, ecc_bit; + + /* get the status from the Status Register */ + ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR); + + /* if there's no error */ + if (likely(!(ecc_status & ATMEL_ECC_RECERR))) + return 0; + + /* get error bit offset (4 bits) */ + ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR; + /* get word address (12 bits) */ + ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR; + ecc_word >>= 4; + + /* if there are multiple errors */ + if (ecc_status & ATMEL_ECC_MULERR) { + /* check if it is a freshly erased block + * (filled with 0xff) */ + if ((ecc_bit == ATMEL_ECC_BITADDR) + && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { + /* the block has just been erased, return OK */ + return 0; + } + /* it doesn't seems to be a freshly + * erased block. + * We can't correct so many errors */ + dev_warn(host->dev, "atmel_nand : multiple errors detected." + " Unable to correct.\n"); + return -EIO; + } + + /* if there's a single bit error : we can correct it */ + if (ecc_status & ATMEL_ECC_ECCERR) { + /* there's nothing much to do here. + * the bit error is on the ECC itself. + */ + dev_warn(host->dev, "atmel_nand : one bit error on ECC code." + " Nothing to correct\n"); + return 0; + } + + dev_warn(host->dev, "atmel_nand : one bit error on data." + " (word offset in the page :" + " 0x%x bit offset : 0x%x)\n", + ecc_word, ecc_bit); + /* correct the error */ + if (nand_chip->options & NAND_BUSWIDTH_16) { + /* 16 bits words */ + ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); + } else { + /* 8 bits words */ + dat[ecc_word] ^= (1 << ecc_bit); + } + dev_warn(host->dev, "atmel_nand : error corrected\n"); + return 1; +} + +/* + * Enable HW ECC : unused on most chips + */ +static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) +{ +} + +int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd) +{ + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.calculate = atmel_nand_calculate; + nand->ecc.correct = atmel_nand_correct; + nand->ecc.hwctl = atmel_nand_hwctl; + nand->ecc.read_page = atmel_nand_read_page; + nand->ecc.bytes = 4; + + if (nand->ecc.mode == NAND_ECC_HW) { + /* ECC is calculated for the whole page (1 step) */ + nand->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 512: + nand->ecc.layout = &atmel_oobinfo_small; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_528); + break; + case 1024: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_1056); + break; + case 2048: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_2112); + break; + case 4096: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_4224); + break; + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand->ecc.mode = NAND_ECC_SOFT; + nand->ecc.calculate = NULL; + nand->ecc.correct = NULL; + nand->ecc.hwctl = NULL; + nand->ecc.read_page = NULL; + nand->ecc.postpad = 0; + nand->ecc.prepad = 0; + nand->ecc.bytes = 0; + break; + } + } + + return 0; +} + +#endif /* CONFIG_ATMEL_NAND_HW_PMECC */ + +#endif /* CONFIG_ATMEL_NAND_HWECC */ + +static void at91_nand_hwcontrol(struct mtd_info *mtd, + int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + + if (ctrl & NAND_CTRL_CHANGE) { + ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; + IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE + | CONFIG_SYS_NAND_MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE; + +#ifdef CONFIG_SYS_NAND_ENABLE_PIN + gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE)); +#endif + this->IO_ADDR_W = (void *) IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +#ifdef CONFIG_SYS_NAND_READY_PIN +static int at91_nand_ready(struct mtd_info *mtd) +{ + return gpio_get_value(CONFIG_SYS_NAND_READY_PIN); +} +#endif + +#ifdef CONFIG_SPL_BUILD +/* The following code is for SPL */ +static nand_info_t mtd; +static struct nand_chip nand_chip; + +static int nand_command(int block, int page, uint32_t offs, u8 cmd) +{ + struct nand_chip *this = mtd.priv; + int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + void (*hwctrl)(struct mtd_info *mtd, int cmd, + unsigned int ctrl) = this->cmd_ctrl; + + while (this->dev_ready(&mtd)) + ; + + if (cmd == NAND_CMD_READOOB) { + offs += CONFIG_SYS_NAND_PAGE_SIZE; + cmd = NAND_CMD_READ0; + } + + hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + + if (this->options & NAND_BUSWIDTH_16) + offs >>= 1; + + hwctrl(&mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE); + hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); + hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE); + hwctrl(&mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE); +#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE + hwctrl(&mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE); +#endif + hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + hwctrl(&mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + while (this->dev_ready(&mtd)) + ; + + return 0; +} + +static int nand_is_bad_block(int block) +{ + struct nand_chip *this = mtd.priv; + + nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); + + if (this->options & NAND_BUSWIDTH_16) { + if (readw(this->IO_ADDR_R) != 0xffff) + return 1; + } else { + if (readb(this->IO_ADDR_R) != 0xff) + return 1; + } + + return 0; +} + +#ifdef CONFIG_SPL_NAND_ECC +static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; +#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ + CONFIG_SYS_NAND_ECCSIZE) +#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) + +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = mtd.priv; + u_char ecc_calc[ECCTOTAL]; + u_char ecc_code[ECCTOTAL]; + u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; + int eccsize = CONFIG_SYS_NAND_ECCSIZE; + int eccbytes = CONFIG_SYS_NAND_ECCBYTES; + int eccsteps = ECCSTEPS; + int i; + uint8_t *p = dst; + nand_command(block, page, 0, NAND_CMD_READ0); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + if (this->ecc.mode != NAND_ECC_SOFT) + this->ecc.hwctl(&mtd, NAND_ECC_READ); + this->read_buf(&mtd, p, eccsize); + this->ecc.calculate(&mtd, p, &ecc_calc[i]); + } + this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); + + for (i = 0; i < ECCTOTAL; i++) + ecc_code[i] = oob_data[nand_ecc_pos[i]]; + + eccsteps = ECCSTEPS; + p = dst; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]); + + return 0; +} +#else +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = mtd.priv; + + nand_command(block, page, 0, NAND_CMD_READ0); + atmel_nand_pmecc_read_page(&mtd, this, dst, 0, page); + + return 0; +} +#endif /* CONFIG_SPL_NAND_ECC */ + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + unsigned int block, lastblock; + unsigned int page; + + block = offs / CONFIG_SYS_NAND_BLOCK_SIZE; + lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE; + page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE; + + while (block <= lastblock) { + if (!nand_is_bad_block(block)) { + while (page < CONFIG_SYS_NAND_PAGE_COUNT) { + nand_read_page(block, page, dst); + dst += CONFIG_SYS_NAND_PAGE_SIZE; + page++; + } + + page = 0; + } else { + lastblock++; + } + + block++; + } + + return 0; +} + +int at91_nand_wait_ready(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + udelay(this->chip_delay); + + return 0; +} + +int board_nand_init(struct nand_chip *nand) +{ + int ret = 0; + + nand->ecc.mode = NAND_ECC_SOFT; +#ifdef CONFIG_SYS_NAND_DBW_16 + nand->options = NAND_BUSWIDTH_16; + nand->read_buf = nand_read_buf16; +#else + nand->read_buf = nand_read_buf; +#endif + nand->cmd_ctrl = at91_nand_hwcontrol; +#ifdef CONFIG_SYS_NAND_READY_PIN + nand->dev_ready = at91_nand_ready; +#else + nand->dev_ready = at91_nand_wait_ready; +#endif + nand->chip_delay = 20; + +#ifdef CONFIG_ATMEL_NAND_HWECC +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + ret = atmel_pmecc_nand_init_params(nand, &mtd); +#endif +#endif + + return ret; +} + +void nand_init(void) +{ + mtd.writesize = CONFIG_SYS_NAND_PAGE_SIZE; + mtd.oobsize = CONFIG_SYS_NAND_OOBSIZE; + mtd.priv = &nand_chip; + nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE; + nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE; + board_nand_init(&nand_chip); + +#ifdef CONFIG_SPL_NAND_ECC + if (nand_chip.ecc.mode == NAND_ECC_SOFT) { + nand_chip.ecc.calculate = nand_calculate_ecc; + nand_chip.ecc.correct = nand_correct_data; + } +#endif + + if (nand_chip.select_chip) + nand_chip.select_chip(&mtd, 0); +} + +void nand_deselect(void) +{ + if (nand_chip.select_chip) + nand_chip.select_chip(&mtd, -1); +} + +#else + +#ifndef CONFIG_SYS_NAND_BASE_LIST +#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } +#endif +static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; +static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; + +int atmel_nand_chip_init(int devnum, ulong base_addr) +{ + int ret; + struct mtd_info *mtd = &nand_info[devnum]; + struct nand_chip *nand = &nand_chip[devnum]; + + mtd->priv = nand; + nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; + +#ifdef CONFIG_NAND_ECC_BCH + nand->ecc.mode = NAND_ECC_SOFT_BCH; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif +#ifdef CONFIG_SYS_NAND_DBW_16 + nand->options = NAND_BUSWIDTH_16; +#endif + nand->cmd_ctrl = at91_nand_hwcontrol; +#ifdef CONFIG_SYS_NAND_READY_PIN + nand->dev_ready = at91_nand_ready; +#endif + nand->chip_delay = 75; + + ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); + if (ret) + return ret; + +#ifdef CONFIG_ATMEL_NAND_HWECC +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + ret = atmel_pmecc_nand_init_params(nand, mtd); +#else + ret = atmel_hwecc_nand_init_param(nand, mtd); +#endif + if (ret) + return ret; +#endif + + ret = nand_scan_tail(mtd); + if (!ret) + nand_register(devnum); + + return ret; +} + +void board_nand_init(void) +{ + int i; + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + if (atmel_nand_chip_init(i, base_addr[i])) + dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip", + i); +} +#endif /* CONFIG_SPL_BUILD */ diff --git a/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand_ecc.h b/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand_ecc.h new file mode 100644 index 000000000..55d7711c8 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/atmel_nand_ecc.h @@ -0,0 +1,146 @@ +/* + * Error Corrected Code Controller (ECC) - System peripherals regsters. + * Based on AT91SAM9260 datasheet revision B. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#ifndef ATMEL_NAND_ECC_H +#define ATMEL_NAND_ECC_H + +#define ATMEL_ECC_CR 0x00 /* Control register */ +#define ATMEL_ECC_RST (1 << 0) /* Reset parity */ + +#define ATMEL_ECC_MR 0x04 /* Mode register */ +#define ATMEL_ECC_PAGESIZE (3 << 0) /* Page Size */ +#define ATMEL_ECC_PAGESIZE_528 (0) +#define ATMEL_ECC_PAGESIZE_1056 (1) +#define ATMEL_ECC_PAGESIZE_2112 (2) +#define ATMEL_ECC_PAGESIZE_4224 (3) + +#define ATMEL_ECC_SR 0x08 /* Status register */ +#define ATMEL_ECC_RECERR (1 << 0) /* Recoverable Error */ +#define ATMEL_ECC_ECCERR (1 << 1) /* ECC Single Bit Error */ +#define ATMEL_ECC_MULERR (1 << 2) /* Multiple Errors */ + +#define ATMEL_ECC_PR 0x0c /* Parity register */ +#define ATMEL_ECC_BITADDR (0xf << 0) /* Bit Error Address */ +#define ATMEL_ECC_WORDADDR (0xfff << 4) /* Word Error Address */ + +#define ATMEL_ECC_NPR 0x10 /* NParity register */ +#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ + +/* Register access macros for PMECC */ +#define pmecc_readl(addr, reg) \ + readl(&addr->reg) + +#define pmecc_writel(addr, reg, value) \ + writel((value), &addr->reg) + +/* PMECC Register Definitions */ +#define PMECC_MAX_SECTOR_NUM 8 +struct pmecc_regs { + u32 cfg; /* 0x00 PMECC Configuration Register */ + u32 sarea; /* 0x04 PMECC Spare Area Size Register */ + u32 saddr; /* 0x08 PMECC Start Address Register */ + u32 eaddr; /* 0x0C PMECC End Address Register */ + u32 clk; /* 0x10 PMECC Clock Control Register */ + u32 ctrl; /* 0x14 PMECC Control Register */ + u32 sr; /* 0x18 PMECC Status Register */ + u32 ier; /* 0x1C PMECC Interrupt Enable Register */ + u32 idr; /* 0x20 PMECC Interrupt Disable Register */ + u32 imr; /* 0x24 PMECC Interrupt Mask Register */ + u32 isr; /* 0x28 PMECC Interrupt Status Register */ + u32 reserved0[5]; /* 0x2C-0x3C Reserved */ + + /* 0x40 + sector_num * (0x40), Redundancy Registers */ + struct { + u8 ecc[44]; /* PMECC Generated Redundancy Byte Per Sector */ + u32 reserved1[5]; + } ecc_port[PMECC_MAX_SECTOR_NUM]; + + /* 0x240 + sector_num * (0x40) Remainder Registers */ + struct { + u32 rem[12]; + u32 reserved2[4]; + } rem_port[PMECC_MAX_SECTOR_NUM]; + u32 reserved3[16]; /* 0x440-0x47C Reserved */ +}; + +/* For PMECC Configuration Register */ +#define PMECC_CFG_BCH_ERR2 (0 << 0) +#define PMECC_CFG_BCH_ERR4 (1 << 0) +#define PMECC_CFG_BCH_ERR8 (2 << 0) +#define PMECC_CFG_BCH_ERR12 (3 << 0) +#define PMECC_CFG_BCH_ERR24 (4 << 0) + +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) + +#define PMECC_CFG_PAGE_1SECTOR (0 << 8) +#define PMECC_CFG_PAGE_2SECTORS (1 << 8) +#define PMECC_CFG_PAGE_4SECTORS (2 << 8) +#define PMECC_CFG_PAGE_8SECTORS (3 << 8) + +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) + +#define PMECC_CFG_SPARE_ENABLE (1 << 16) +#define PMECC_CFG_SPARE_DISABLE (0 << 16) + +#define PMECC_CFG_AUTO_ENABLE (1 << 20) +#define PMECC_CFG_AUTO_DISABLE (0 << 20) + +/* For PMECC Clock Control Register */ +#define PMECC_CLK_133MHZ (2 << 0) + +/* For PMECC Control Register */ +#define PMECC_CTRL_RST (1 << 0) +#define PMECC_CTRL_DATA (1 << 1) +#define PMECC_CTRL_USER (1 << 2) +#define PMECC_CTRL_ENABLE (1 << 4) +#define PMECC_CTRL_DISABLE (1 << 5) + +/* For PMECC Status Register */ +#define PMECC_SR_BUSY (1 << 0) +#define PMECC_SR_ENABLE (1 << 4) + +/* PMERRLOC Register Definitions */ +struct pmecc_errloc_regs { + u32 elcfg; /* 0x00 Error Location Configuration Register */ + u32 elprim; /* 0x04 Error Location Primitive Register */ + u32 elen; /* 0x08 Error Location Enable Register */ + u32 eldis; /* 0x0C Error Location Disable Register */ + u32 elsr; /* 0x10 Error Location Status Register */ + u32 elier; /* 0x14 Error Location Interrupt Enable Register */ + u32 elidr; /* 0x08 Error Location Interrupt Disable Register */ + u32 elimr; /* 0x0C Error Location Interrupt Mask Register */ + u32 elisr; /* 0x20 Error Location Interrupt Status Register */ + u32 reserved0; /* 0x24 Reserved */ + u32 sigma[25]; /* 0x28-0x88 Error Location Sigma Registers */ + u32 el[24]; /* 0x8C-0xE8 Error Location Registers */ + u32 reserved1[5]; /* 0xEC-0xFC Reserved */ +}; + +/* For Error Location Configuration Register */ +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +/* For Error Location Disable Register */ +#define PMERRLOC_DISABLE (1 << 0) + +/* For Error Location Interrupt Status Register */ +#define PMERRLOC_ERR_NUM_MASK (0x1f << 8) +#define PMERRLOC_CALC_DONE (1 << 0) + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +#define PMECC_INDEX_TABLE_SIZE_512 0x2000 +#define PMECC_INDEX_TABLE_SIZE_1024 0x4000 + +#define PMECC_MAX_TIMEOUT_US (100 * 1000) + +#endif diff --git a/qemu/roms/u-boot/drivers/mtd/nand/bfin_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/bfin_nand.c new file mode 100644 index 000000000..7e755e896 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/bfin_nand.c @@ -0,0 +1,393 @@ +/* + * Driver for Blackfin on-chip NAND controller. + * + * Enter bugs at http://blackfin.uclinux.org/ + * + * Copyright (c) 2007-2008 Analog Devices Inc. + * + * Licensed under the GPL-2 or later. + */ + +/* TODO: + * - move bit defines into mach-common/bits/nand.h + * - try and replace all IRQSTAT usage with STAT polling + * - have software ecc mode use same algo as hw ecc ? + */ + +#include <common.h> +#include <asm/io.h> + +#ifdef DEBUG +# define pr_stamp() printf("%s:%s:%i: here i am\n", __FILE__, __func__, __LINE__) +#else +# define pr_stamp() +#endif + +#include <nand.h> + +#include <asm/blackfin.h> +#include <asm/portmux.h> + +/* Bit masks for NFC_CTL */ + +#define WR_DLY 0xf /* Write Strobe Delay */ +#define RD_DLY 0xf0 /* Read Strobe Delay */ +#define NWIDTH 0x100 /* NAND Data Width */ +#define PG_SIZE 0x200 /* Page Size */ + +/* Bit masks for NFC_STAT */ + +#define NBUSY 0x1 /* Not Busy */ +#define WB_FULL 0x2 /* Write Buffer Full */ +#define PG_WR_STAT 0x4 /* Page Write Pending */ +#define PG_RD_STAT 0x8 /* Page Read Pending */ +#define WB_EMPTY 0x10 /* Write Buffer Empty */ + +/* Bit masks for NFC_IRQSTAT */ + +#define NBUSYIRQ 0x1 /* Not Busy IRQ */ +#define WB_OVF 0x2 /* Write Buffer Overflow */ +#define WB_EDGE 0x4 /* Write Buffer Edge Detect */ +#define RD_RDY 0x8 /* Read Data Ready */ +#define WR_DONE 0x10 /* Page Write Done */ + +#define NAND_IS_512() (CONFIG_BFIN_NFC_CTL_VAL & 0x200) + +/* + * hardware specific access to control-lines + */ +static void bfin_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + pr_stamp(); + + if (cmd == NAND_CMD_NONE) + return; + + while (bfin_read_NFC_STAT() & WB_FULL) + continue; + + if (ctrl & NAND_CLE) + bfin_write_NFC_CMD(cmd); + else + bfin_write_NFC_ADDR(cmd); + SSYNC(); +} + +static int bfin_nfc_devready(struct mtd_info *mtd) +{ + pr_stamp(); + return (bfin_read_NFC_STAT() & NBUSY) ? 1 : 0; +} + +/* + * PIO mode for buffer writing and reading + */ +static void bfin_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + pr_stamp(); + + int i; + + /* + * Data reads are requested by first writing to NFC_DATA_RD + * and then reading back from NFC_READ. + */ + for (i = 0; i < len; ++i) { + while (bfin_read_NFC_STAT() & WB_FULL) + if (ctrlc()) + return; + + /* Contents do not matter */ + bfin_write_NFC_DATA_RD(0x0000); + SSYNC(); + + while (!(bfin_read_NFC_IRQSTAT() & RD_RDY)) + if (ctrlc()) + return; + + buf[i] = bfin_read_NFC_READ(); + + bfin_write_NFC_IRQSTAT(RD_RDY); + } +} + +static uint8_t bfin_nfc_read_byte(struct mtd_info *mtd) +{ + pr_stamp(); + + uint8_t val; + bfin_nfc_read_buf(mtd, &val, 1); + return val; +} + +static void bfin_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + pr_stamp(); + + int i; + + for (i = 0; i < len; ++i) { + while (bfin_read_NFC_STAT() & WB_FULL) + if (ctrlc()) + return; + + bfin_write_NFC_DATA_WR(buf[i]); + } + + /* Wait for the buffer to drain before we return */ + while (!(bfin_read_NFC_STAT() & WB_EMPTY)) + if (ctrlc()) + return; +} + +/* + * ECC functions + * These allow the bfin to use the controller's ECC + * generator block to ECC the data as it passes through + */ + +/* + * ECC error correction function + */ +static int bfin_nfc_correct_data_256(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + u32 syndrome[5]; + u32 calced, stored; + unsigned short failing_bit, failing_byte; + u_char data; + + pr_stamp(); + + calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); + stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); + + syndrome[0] = (calced ^ stored); + + /* + * syndrome 0: all zero + * No error in data + * No action + */ + if (!syndrome[0] || !calced || !stored) + return 0; + + /* + * sysdrome 0: only one bit is one + * ECC data was incorrect + * No action + */ + if (hweight32(syndrome[0]) == 1) + return 1; + + syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF); + syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF); + syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF); + syndrome[4] = syndrome[2] ^ syndrome[3]; + + /* + * sysdrome 0: exactly 11 bits are one, each parity + * and parity' pair is 1 & 0 or 0 & 1. + * 1-bit correctable error + * Correct the error + */ + if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) { + failing_bit = syndrome[1] & 0x7; + failing_byte = syndrome[1] >> 0x3; + data = *(dat + failing_byte); + data = data ^ (0x1 << failing_bit); + *(dat + failing_byte) = data; + + return 0; + } + + /* + * sysdrome 0: random data + * More than 1-bit error, non-correctable error + * Discard data, mark bad block + */ + + return 1; +} + +static int bfin_nfc_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + int ret; + + pr_stamp(); + + ret = bfin_nfc_correct_data_256(mtd, dat, read_ecc, calc_ecc); + + /* If page size is 512, correct second 256 bytes */ + if (NAND_IS_512()) { + dat += 256; + read_ecc += 8; + calc_ecc += 8; + ret |= bfin_nfc_correct_data_256(mtd, dat, read_ecc, calc_ecc); + } + + return ret; +} + +static void reset_ecc(void) +{ + bfin_write_NFC_RST(0x1); + while (bfin_read_NFC_RST() & 1) + continue; +} + +static void bfin_nfc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + reset_ecc(); +} + +static int bfin_nfc_calculate_ecc(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + u16 ecc0, ecc1; + u32 code[2]; + u8 *p; + + pr_stamp(); + + /* first 4 bytes ECC code for 256 page size */ + ecc0 = bfin_read_NFC_ECC0(); + ecc1 = bfin_read_NFC_ECC1(); + + code[0] = (ecc0 & 0x7FF) | ((ecc1 & 0x7FF) << 11); + + /* first 3 bytes in ecc_code for 256 page size */ + p = (u8 *) code; + memcpy(ecc_code, p, 3); + + /* second 4 bytes ECC code for 512 page size */ + if (NAND_IS_512()) { + ecc0 = bfin_read_NFC_ECC2(); + ecc1 = bfin_read_NFC_ECC3(); + code[1] = (ecc0 & 0x7FF) | ((ecc1 & 0x7FF) << 11); + + /* second 3 bytes in ecc_code for second 256 + * bytes of 512 page size + */ + p = (u8 *) (code + 1); + memcpy((ecc_code + 3), p, 3); + } + + reset_ecc(); + + return 0; +} + +#ifdef CONFIG_BFIN_NFC_BOOTROM_ECC +# define BOOTROM_ECC 1 +#else +# define BOOTROM_ECC 0 +#endif + +static uint8_t bbt_pattern[] = { 0xff }; + +static struct nand_bbt_descr bootrom_bbt = { + .options = 0, + .offs = 63, + .len = 1, + .pattern = bbt_pattern, +}; + +static struct nand_ecclayout bootrom_ecclayout = { + .eccbytes = 24, + .eccpos = { + 0x8 * 0, 0x8 * 0 + 1, 0x8 * 0 + 2, + 0x8 * 1, 0x8 * 1 + 1, 0x8 * 1 + 2, + 0x8 * 2, 0x8 * 2 + 1, 0x8 * 2 + 2, + 0x8 * 3, 0x8 * 3 + 1, 0x8 * 3 + 2, + 0x8 * 4, 0x8 * 4 + 1, 0x8 * 4 + 2, + 0x8 * 5, 0x8 * 5 + 1, 0x8 * 5 + 2, + 0x8 * 6, 0x8 * 6 + 1, 0x8 * 6 + 2, + 0x8 * 7, 0x8 * 7 + 1, 0x8 * 7 + 2 + }, + .oobfree = { + { 0x8 * 0 + 3, 5 }, + { 0x8 * 1 + 3, 5 }, + { 0x8 * 2 + 3, 5 }, + { 0x8 * 3 + 3, 5 }, + { 0x8 * 4 + 3, 5 }, + { 0x8 * 5 + 3, 5 }, + { 0x8 * 6 + 3, 5 }, + { 0x8 * 7 + 3, 5 }, + } +}; + +/* + * Board-specific NAND initialization. The following members of the + * argument are board-specific (per include/linux/mtd/nand.h): + * - IO_ADDR_R?: address to read the 8 I/O lines of the flash device + * - IO_ADDR_W?: address to write the 8 I/O lines of the flash device + * - cmd_ctrl: hardwarespecific function for accesing control-lines + * - dev_ready: hardwarespecific function for accesing device ready/busy line + * - enable_hwecc?: function to enable (reset) hardware ecc generator. Must + * only be provided if a hardware ECC is available + * - ecc.mode: mode of ecc, see defines + * - chip_delay: chip dependent delay for transfering data from array to + * read regs (tR) + * - options: various chip options. They can partly be set to inform + * nand_scan about special functionality. See the defines for further + * explanation + * Members with a "?" were not set in the merged testing-NAND branch, + * so they are not set here either. + */ +int board_nand_init(struct nand_chip *chip) +{ + const unsigned short pins[] = { + P_NAND_CE, P_NAND_RB, P_NAND_D0, P_NAND_D1, P_NAND_D2, + P_NAND_D3, P_NAND_D4, P_NAND_D5, P_NAND_D6, P_NAND_D7, + P_NAND_WE, P_NAND_RE, P_NAND_CLE, P_NAND_ALE, 0, + }; + + pr_stamp(); + + /* set width/ecc/timings/etc... */ + bfin_write_NFC_CTL(CONFIG_BFIN_NFC_CTL_VAL); + + /* clear interrupt status */ + bfin_write_NFC_IRQMASK(0x0); + bfin_write_NFC_IRQSTAT(0xffff); + + /* enable GPIO function enable register */ + peripheral_request_list(pins, "bfin_nand"); + + chip->cmd_ctrl = bfin_nfc_cmd_ctrl; + chip->read_buf = bfin_nfc_read_buf; + chip->write_buf = bfin_nfc_write_buf; + chip->read_byte = bfin_nfc_read_byte; + +#ifdef CONFIG_BFIN_NFC_NO_HW_ECC +# define ECC_HW 0 +#else +# define ECC_HW 1 +#endif + if (ECC_HW) { + if (BOOTROM_ECC) { + chip->badblock_pattern = &bootrom_bbt; + chip->ecc.layout = &bootrom_ecclayout; + } + if (!NAND_IS_512()) { + chip->ecc.bytes = 3; + chip->ecc.size = 256; + chip->ecc.strength = 1; + } else { + chip->ecc.bytes = 6; + chip->ecc.size = 512; + chip->ecc.strength = 2; + } + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.calculate = bfin_nfc_calculate_ecc; + chip->ecc.correct = bfin_nfc_correct_data; + chip->ecc.hwctl = bfin_nfc_enable_hwecc; + } else + chip->ecc.mode = NAND_ECC_SOFT; + chip->dev_ready = bfin_nfc_devready; + chip->chip_delay = 0; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/davinci_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/davinci_nand.c new file mode 100644 index 000000000..75b03a74b --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/davinci_nand.c @@ -0,0 +1,653 @@ +/* + * NAND driver for TI DaVinci based boards. + * + * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net> + * + * Based on Linux DaVinci NAND driver by TI. Original copyright follows: + */ + +/* + * + * linux/drivers/mtd/nand/nand_davinci.c + * + * NAND Flash Driver + * + * Copyright (C) 2006 Texas Instruments. + * + * ---------------------------------------------------------------------------- + * + * SPDX-License-Identifier: GPL-2.0+ + * + * ---------------------------------------------------------------------------- + * + * Overview: + * This is a device driver for the NAND flash device found on the + * DaVinci board which utilizes the Samsung k9k2g08 part. + * + Modifications: + ver. 1.0: Feb 2005, Vinod/Sudhakar + - + */ + +#include <common.h> +#include <asm/io.h> +#include <nand.h> +#include <asm/arch/nand_defs.h> +#include <asm/arch/emif_defs.h> + +/* Definitions for 4-bit hardware ECC */ +#define NAND_TIMEOUT 10240 +#define NAND_ECC_BUSY 0xC +#define NAND_4BITECC_MASK 0x03FF03FF +#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 +#define ECC_STATE_NO_ERR 0x0 +#define ECC_STATE_TOO_MANY_ERRS 0x1 +#define ECC_STATE_ERR_CORR_COMP_P 0x2 +#define ECC_STATE_ERR_CORR_COMP_N 0x3 + +/* + * Exploit the little endianness of the ARM to do multi-byte transfers + * per device read. This can perform over twice as quickly as individual + * byte transfers when buffer alignment is conducive. + * + * NOTE: This only works if the NAND is not connected to the 2 LSBs of + * the address bus. On Davinci EVM platforms this has always been true. + */ +static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + const u32 *nand = chip->IO_ADDR_R; + + /* Make sure that buf is 32 bit aligned */ + if (((int)buf & 0x3) != 0) { + if (((int)buf & 0x1) != 0) { + if (len) { + *buf = readb(nand); + buf += 1; + len--; + } + } + + if (((int)buf & 0x3) != 0) { + if (len >= 2) { + *(u16 *)buf = readw(nand); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + *(u32 *)buf = __raw_readl(nand); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + *(u16 *)buf = readw(nand); + buf += 2; + len -= 2; + } + + if (len) + *buf = readb(nand); + } +} + +static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *chip = mtd->priv; + const u32 *nand = chip->IO_ADDR_W; + + /* Make sure that buf is 32 bit aligned */ + if (((int)buf & 0x3) != 0) { + if (((int)buf & 0x1) != 0) { + if (len) { + writeb(*buf, nand); + buf += 1; + len--; + } + } + + if (((int)buf & 0x3) != 0) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + __raw_writel(*(u32 *)buf, nand); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + + if (len) + writeb(*buf, nand); + } +} + +static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; + + if (ctrl & NAND_CTRL_CHANGE) { + IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= MASK_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= MASK_ALE; + this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, IO_ADDR_W); +} + +#ifdef CONFIG_SYS_NAND_HW_ECC + +static u_int32_t nand_davinci_readecc(struct mtd_info *mtd) +{ + u_int32_t ecc = 0; + + ecc = __raw_readl(&(davinci_emif_regs->nandfecc[ + CONFIG_SYS_NAND_CS - 2])); + + return ecc; +} + +static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) +{ + u_int32_t val; + + /* reading the ECC result register resets the ECC calculation */ + nand_davinci_readecc(mtd); + + val = __raw_readl(&davinci_emif_regs->nandfcr); + val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS); + __raw_writel(val, &davinci_emif_regs->nandfcr); +} + +static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + u_int32_t tmp; + + tmp = nand_davinci_readecc(mtd); + + /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits + * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ + tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); + + /* Invert so that erased block ECC is correct */ + tmp = ~tmp; + + *ecc_code++ = tmp; + *ecc_code++ = tmp >> 8; + *ecc_code++ = tmp >> 16; + + /* NOTE: the above code matches mainline Linux: + * .PQR.stu ==> ~PQRstu + * + * MontaVista/TI kernels encode those bytes differently, use + * complicated (and allegedly sometimes-wrong) correction code, + * and usually shipped with U-Boot that uses software ECC: + * .PQR.stu ==> PsQRtu + * + * If you need MV/TI compatible NAND I/O in U-Boot, it should + * be possible to (a) change the mangling above, (b) reverse + * that mangling in nand_davinci_correct_data() below. + */ + + return 0; +} + +static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *this = mtd->priv; + u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | + (read_ecc[2] << 16); + u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | + (calc_ecc[2] << 16); + u_int32_t diff = ecc_calc ^ ecc_nand; + + if (diff) { + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { + /* Correctable error */ + if ((diff >> (12 + 3)) < this->ecc.size) { + uint8_t find_bit = 1 << ((diff >> 12) & 7); + uint32_t find_byte = diff >> (12 + 3); + + dat[find_byte] ^= find_bit; + MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single " + "bit ECC error at offset: %d, bit: " + "%d\n", find_byte, find_bit); + return 1; + } else { + return -1; + } + } else if (!(diff & (diff - 1))) { + /* Single bit ECC error in the ECC itself, + nothing to fix */ + MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in " + "ECC.\n"); + return 1; + } else { + /* Uncorrectable error */ + MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); + return -1; + } + } + return 0; +} +#endif /* CONFIG_SYS_NAND_HW_ECC */ + +#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST +static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = { +#if defined(CONFIG_SYS_NAND_PAGE_2K) + .eccbytes = 40, +#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + }, + .oobfree = { + {2, 4}, {16, 6}, {32, 6}, {48, 6}, + }, +#else + .eccpos = { + 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, + 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, + 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, + 59, 60, 61, 62, 63, + }, + .oobfree = { + {.offset = 2, .length = 22, }, + }, +#endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */ +#elif defined(CONFIG_SYS_NAND_PAGE_4K) + .eccbytes = 80, + .eccpos = { + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, + 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, + 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, + 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, + 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, + 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, + 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + }, + .oobfree = { + {.offset = 2, .length = 46, }, + }, +#endif +}; + +static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode) +{ + u32 val; + + switch (mode) { + case NAND_ECC_WRITE: + case NAND_ECC_READ: + /* + * Start a new ECC calculation for reading or writing 512 bytes + * of data. + */ + val = __raw_readl(&davinci_emif_regs->nandfcr); + val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK; + val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_4BIT_ECC_START; + __raw_writel(val, &davinci_emif_regs->nandfcr); + break; + case NAND_ECC_READSYN: + val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]); + break; + default: + break; + } +} + +static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) +{ + int i; + + for (i = 0; i < 4; i++) { + ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) & + NAND_4BITECC_MASK; + } + + return 0; +} + +static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd, + const uint8_t *dat, + uint8_t *ecc_code) +{ + unsigned int hw_4ecc[4]; + unsigned int i; + + nand_davinci_4bit_readecc(mtd, hw_4ecc); + + /*Convert 10 bit ecc value to 8 bit */ + for (i = 0; i < 2; i++) { + unsigned int hw_ecc_low = hw_4ecc[i * 2]; + unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1]; + + /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ + *ecc_code++ = hw_ecc_low & 0xFF; + + /* + * Take 2 bits as LSB bits from val1 (count1=0) or val5 + * (count1=1) and 6 bits from val2 (count1=0) or + * val5 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC); + + /* + * Take 4 bits from val2 (count1=0) or val5 (count1=1) and + * 4 bits from val3 (count1=0) or val6 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0); + + /* + * Take 6 bits from val3(count1=0) or val6 (count1=1) and + * 2 bits from val4 (count1=0) or val7 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0); + + /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ + *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF; + } + + return 0; +} + +static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + int i; + unsigned int hw_4ecc[4]; + unsigned int iserror; + unsigned short *ecc16; + unsigned int numerrors, erroraddress, errorvalue; + u32 val; + + /* + * Check for an ECC where all bytes are 0xFF. If this is the case, we + * will assume we are looking at an erased page and we should ignore + * the ECC. + */ + for (i = 0; i < 10; i++) { + if (read_ecc[i] != 0xFF) + break; + } + if (i == 10) + return 0; + + /* Convert 8 bit in to 10 bit */ + ecc16 = (unsigned short *)&read_ecc[0]; + + /* + * Write the parity values in the NAND Flash 4-bit ECC Load register. + * Write each parity value one at a time starting from 4bit_ecc_val8 + * to 4bit_ecc_val1. + */ + + /*Take 2 bits from 8th byte and 8 bits from 9th byte */ + __raw_writel(((ecc16[4]) >> 6) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 4 bits from 7th byte and 6 bits from 8th byte */ + __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0), + &davinci_emif_regs->nand4biteccload); + + /* Take 6 bits from 6th byte and 4 bits from 7th byte */ + __raw_writel((ecc16[3] >> 2) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 8 bits from 5th byte and 2 bits from 6th byte */ + __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300), + &davinci_emif_regs->nand4biteccload); + + /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ + __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC), + &davinci_emif_regs->nand4biteccload); + + /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ + __raw_writel(((ecc16[1]) >> 4) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ + __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0), + &davinci_emif_regs->nand4biteccload); + + /* Take 10 bits from 0th and 1st bytes */ + __raw_writel((ecc16[0]) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* + * Perform a dummy read to the EMIF Revision Code and Status register. + * This is required to ensure time for syndrome calculation after + * writing the ECC values in previous step. + */ + + val = __raw_readl(&davinci_emif_regs->nandfsr); + + /* + * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. + * A syndrome value of 0 means no bit errors. If the syndrome is + * non-zero then go further otherwise return. + */ + nand_davinci_4bit_readecc(mtd, hw_4ecc); + + if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3])) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + val = __raw_readl(&davinci_emif_regs->nanderradd1); + + /* + * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control + * register to 1. + */ + __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START, + &davinci_emif_regs->nandfcr); + + /* + * Wait for the corr_state field (bits 8 to 11) in the + * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3. + * Otherwise ECC calculation has not even begun and the next loop might + * fail because of a false positive! + */ + i = NAND_TIMEOUT; + do { + val = __raw_readl(&davinci_emif_regs->nandfsr); + val &= 0xc00; + i--; + } while ((i > 0) && !val); + + /* + * Wait for the corr_state field (bits 8 to 11) in the + * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. + */ + i = NAND_TIMEOUT; + do { + val = __raw_readl(&davinci_emif_regs->nandfsr); + val &= 0xc00; + i--; + } while ((i > 0) && val); + + iserror = __raw_readl(&davinci_emif_regs->nandfsr); + iserror &= EMIF_NANDFSR_ECC_STATE_MASK; + iserror = iserror >> 8; + + /* + * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be + * corrected (five or more errors). The number of errors + * calculated (err_num field) differs from the number of errors + * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error + * correction complete (errors on bit 8 or 9). + * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction + * complete (error exists). + */ + + if (iserror == ECC_STATE_NO_ERR) { + val = __raw_readl(&davinci_emif_regs->nanderrval1); + return 0; + } else if (iserror == ECC_STATE_TOO_MANY_ERRS) { + val = __raw_readl(&davinci_emif_regs->nanderrval1); + return -1; + } + + numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16) + & 0x3) + 1; + + /* Read the error address, error value and correct */ + for (i = 0; i < numerrors; i++) { + if (i > 1) { + erroraddress = + ((__raw_readl(&davinci_emif_regs->nanderradd2) >> + (16 * (i & 1))) & 0x3FF); + erroraddress = ((512 + 7) - erroraddress); + errorvalue = + ((__raw_readl(&davinci_emif_regs->nanderrval2) >> + (16 * (i & 1))) & 0xFF); + } else { + erroraddress = + ((__raw_readl(&davinci_emif_regs->nanderradd1) >> + (16 * (i & 1))) & 0x3FF); + erroraddress = ((512 + 7) - erroraddress); + errorvalue = + ((__raw_readl(&davinci_emif_regs->nanderrval1) >> + (16 * (i & 1))) & 0xFF); + } + /* xor the corrupt data with error value */ + if (erroraddress < 512) + dat[erroraddress] ^= errorvalue; + } + + return numerrors; +} +#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */ + +static int nand_davinci_dev_ready(struct mtd_info *mtd) +{ + return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1; +} + +static void nand_flash_init(void) +{ + /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS! + * Instead, have your board_init() set EMIF timings, based on its + * knowledge of the clocks and what devices are hooked up ... and + * don't even do that unless no UBL handled it. + */ +#ifdef CONFIG_SOC_DM644X + u_int32_t acfg1 = 0x3ffffffc; + + /*------------------------------------------------------------------* + * NAND FLASH CHIP TIMEOUT @ 459 MHz * + * * + * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz * + * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns * + * * + *------------------------------------------------------------------*/ + acfg1 = 0 + | (0 << 31) /* selectStrobe */ + | (0 << 30) /* extWait */ + | (1 << 26) /* writeSetup 10 ns */ + | (3 << 20) /* writeStrobe 40 ns */ + | (1 << 17) /* writeHold 10 ns */ + | (1 << 13) /* readSetup 10 ns */ + | (5 << 7) /* readStrobe 60 ns */ + | (1 << 4) /* readHold 10 ns */ + | (3 << 2) /* turnAround ?? ns */ + | (0 << 0) /* asyncSize 8-bit bus */ + ; + + __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */ + + /* NAND flash on CS2 */ + __raw_writel(0x00000101, &davinci_emif_regs->nandfcr); +#endif +} + +void davinci_nand_init(struct nand_chip *nand) +{ + nand->chip_delay = 0; +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + nand->bbt_options |= NAND_BBT_USE_FLASH; +#endif +#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE + nand->options |= NAND_NO_SUBPAGE_WRITE; +#endif +#ifdef CONFIG_SYS_NAND_HW_ECC + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = 512; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->ecc.calculate = nand_davinci_calculate_ecc; + nand->ecc.correct = nand_davinci_correct_data; + nand->ecc.hwctl = nand_davinci_enable_hwecc; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif /* CONFIG_SYS_NAND_HW_ECC */ +#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST + nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; + nand->ecc.size = 512; + nand->ecc.bytes = 10; + nand->ecc.strength = 4; + nand->ecc.calculate = nand_davinci_4bit_calculate_ecc; + nand->ecc.correct = nand_davinci_4bit_correct_data; + nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc; + nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst; +#endif + /* Set address of hardware control function */ + nand->cmd_ctrl = nand_davinci_hwcontrol; + + nand->read_buf = nand_davinci_read_buf; + nand->write_buf = nand_davinci_write_buf; + + nand->dev_ready = nand_davinci_dev_ready; + + nand_flash_init(); +} + +int board_nand_init(struct nand_chip *chip) __attribute__((weak)); + +int board_nand_init(struct nand_chip *chip) +{ + davinci_nand_init(chip); + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/docg4.c b/qemu/roms/u-boot/drivers/mtd/nand/docg4.c new file mode 100644 index 000000000..b9121c397 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/docg4.c @@ -0,0 +1,1028 @@ +/* + * drivers/mtd/nand/docg4.c + * + * Copyright (C) 2013 Mike Dunn <mikedunn@newsguy.com> + * + * SPDX-License-Identifier: GPL-2.0+ + * + * mtd nand driver for M-Systems DiskOnChip G4 + * + * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus + * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. + * Should work on these as well. Let me know! + * + * TODO: + * + * Mechanism for management of password-protected areas + * + * Hamming ecc when reading oob only + * + * According to the M-Sys documentation, this device is also available in a + * "dual-die" configuration having a 256MB capacity, but no mechanism for + * detecting this variant is documented. Currently this driver assumes 128MB + * capacity. + * + * Support for multiple cascaded devices ("floors"). Not sure which gadgets + * contain multiple G4s in a cascaded configuration, if any. + */ + + +#include <common.h> +#include <asm/arch/hardware.h> +#include <asm/io.h> +#include <asm/bitops.h> +#include <asm/errno.h> +#include <malloc.h> +#include <nand.h> +#include <linux/bch.h> +#include <linux/bitrev.h> +#include <linux/mtd/docg4.h> + +/* + * The device has a nop register which M-Sys claims is for the purpose of + * inserting precise delays. But beware; at least some operations fail if the + * nop writes are replaced with a generic delay! + */ +static inline void write_nop(void __iomem *docptr) +{ + writew(0, docptr + DOC_NOP); +} + + +static int poll_status(void __iomem *docptr) +{ + /* + * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL + * register. Operations known to take a long time (e.g., block erase) + * should sleep for a while before calling this. + */ + + uint8_t flash_status; + + /* hardware quirk requires reading twice initially */ + flash_status = readb(docptr + DOC_FLASHCONTROL); + + do { + flash_status = readb(docptr + DOC_FLASHCONTROL); + } while (!(flash_status & DOC_CTRL_FLASHREADY)); + + return 0; +} + +static void write_addr(void __iomem *docptr, uint32_t docg4_addr) +{ + /* write the four address bytes packed in docg4_addr to the device */ + + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); +} + +/* + * This is a module parameter in the linux kernel version of this driver. It is + * hard-coded to 'off' for u-boot. This driver uses oob to mark bad blocks. + * This can be problematic when dealing with data not intended for the mtd/nand + * subsystem. For example, on boards that boot from the docg4 and use the IPL + * to load an spl + u-boot image, the blocks containing the image will be + * reported as "bad" because the oob of the first page of each block contains a + * magic number that the IPL looks for, which causes the badblock scan to + * erroneously add them to the bad block table. To erase such a block, use + * u-boot's 'nand scrub'. scrub is safe for the docg4. The device does have a + * factory bad block table, but it is read-only, and is used in conjunction with + * oob bad block markers that are written by mtd/nand when a block is deemed to + * be bad. To read data from "bad" blocks, use 'read.raw'. Unfortunately, + * read.raw does not use ecc, which would still work fine on such misidentified + * bad blocks. TODO: u-boot nand utilities need the ability to ignore bad + * blocks. + */ +static const int ignore_badblocks; /* remains false */ + +struct docg4_priv { + int status; + struct { + unsigned int command; + int column; + int page; + } last_command; + uint8_t oob_buf[16]; + uint8_t ecc_buf[7]; + int oob_page; + struct bch_control *bch; +}; +/* + * Oob bytes 0 - 6 are available to the user. + * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc. + * Byte 15 (the last) is used by the driver as a "page written" flag. + */ +static struct nand_ecclayout docg4_oobinfo = { + .eccbytes = 9, + .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, + .oobavail = 7, + .oobfree = { {0, 7} } +}; + +static void reset(void __iomem *docptr) +{ + /* full device reset */ + + writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + write_nop(docptr); + + writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + + writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); + + poll_status(docptr); +} + +static void docg4_select_chip(struct mtd_info *mtd, int chip) +{ + /* + * Select among multiple cascaded chips ("floors"). Multiple floors are + * not yet supported, so the only valid non-negative value is 0. + */ + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + + if (chip < 0) + return; /* deselected */ + + if (chip > 0) + printf("multiple floors currently unsupported\n"); + + writew(0, docptr + DOC_DEVICESELECT); +} + +static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) +{ + /* read the 7 hw-generated ecc bytes */ + + int i; + for (i = 0; i < 7; i++) { /* hw quirk; read twice */ + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + } +} + +static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + /* + * Called after a page read when hardware reports bitflips. + * Up to four bitflips can be corrected. + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + int i, numerrs; + unsigned int errpos[4]; + const uint8_t blank_read_hwecc[8] = { + 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; + + read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ + + /* check if read error is due to a blank page */ + if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) + return 0; /* yes */ + + /* skip additional check of "written flag" if ignore_badblocks */ + if (!ignore_badblocks) { + /* + * If the hw ecc bytes are not those of a blank page, there's + * still a chance that the page is blank, but was read with + * errors. Check the "written flag" in last oob byte, which + * is set to zero when a page is written. If more than half + * the bits are set, assume a blank page. Unfortunately, the + * bit flips(s) are not reported in stats. + */ + + if (doc->oob_buf[15]) { + int bit, numsetbits = 0; + unsigned long written_flag = doc->oob_buf[15]; + + for (bit = 0; bit < 8; bit++) { + if (written_flag & 0x01) + numsetbits++; + written_flag >>= 1; + } + if (numsetbits > 4) { /* assume blank */ + printf("errors in blank page at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return 0; + } + } + } + + /* + * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch + * algorithm is used to decode this. However the hw operates on page + * data in a bit order that is the reverse of that of the bch alg, + * requiring that the bits be reversed on the result. Thanks to Ivan + * Djelic for his analysis! + */ + for (i = 0; i < 7; i++) + doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); + + numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, + doc->ecc_buf, NULL, errpos); + + if (numerrs == -EBADMSG) { + printf("uncorrectable errors at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return -EBADMSG; + } + + BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ + + /* undo last step in BCH alg (modulo mirroring not needed) */ + for (i = 0; i < numerrs; i++) + errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); + + /* fix the errors */ + for (i = 0; i < numerrs; i++) { + /* ignore if error within oob ecc bytes */ + if (errpos[i] > DOCG4_USERDATA_LEN * 8) + continue; + + /* if error within oob area preceeding ecc bytes... */ + if (errpos[i] > DOCG4_PAGE_SIZE * 8) + __change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, + (unsigned long *)doc->oob_buf); + + else /* error in page data */ + __change_bit(errpos[i], (unsigned long *)buf); + } + + printf("%d error(s) corrected at offset %08x\n", + numerrs, page * DOCG4_PAGE_SIZE); + + return numerrs; +} + +static int read_progstatus(struct docg4_priv *doc, void __iomem *docptr) +{ + /* + * This apparently checks the status of programming. Done after an + * erasure, and after page data is written. On error, the status is + * saved, to be later retrieved by the nand infrastructure code. + */ + + /* status is read from the I/O reg */ + uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); + + MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s: %02x %02x %02x\n", + __func__, status1, status2, status3); + + if (status1 != DOCG4_PROGSTATUS_GOOD || + status2 != DOCG4_PROGSTATUS_GOOD_2 || + status3 != DOCG4_PROGSTATUS_GOOD_2) { + doc->status = NAND_STATUS_FAIL; + printf("read_progstatus failed: %02x, %02x, %02x\n", + status1, status2, status3); + return -EIO; + } + return 0; +} + +static int pageprog(struct mtd_info *mtd) +{ + /* + * Final step in writing a page. Writes the contents of its + * internal buffer out to the flash array, or some such. + */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + int retval = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "docg4: %s\n", __func__); + + writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + /* Just busy-wait; usleep_range() slows things down noticeably. */ + poll_status(docptr); + + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + retval = read_progstatus(doc, docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(docptr); + write_nop(docptr); + + return retval; +} + +static void sequence_reset(void __iomem *docptr) +{ + /* common starting sequence for all operations */ + + writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); + writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(docptr); + write_nop(docptr); +} + +static void read_page_prologue(void __iomem *docptr, uint32_t docg4_addr) +{ + /* first step in reading a page */ + + sequence_reset(docptr); + + writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + write_addr(docptr, docg4_addr); + + write_nop(docptr); + writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + poll_status(docptr); +} + +static void write_page_prologue(void __iomem *docptr, uint32_t docg4_addr) +{ + /* first step in writing a page */ + + sequence_reset(docptr); + writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_addr(docptr, docg4_addr); + write_nop(docptr); + write_nop(docptr); + poll_status(docptr); +} + +static uint32_t mtd_to_docg4_address(int page, int column) +{ + /* + * Convert mtd address to format used by the device, 32 bit packed. + * + * Some notes on G4 addressing... The M-Sys documentation on this device + * claims that pages are 2K in length, and indeed, the format of the + * address used by the device reflects that. But within each page are + * four 512 byte "sub-pages", each with its own oob data that is + * read/written immediately after the 512 bytes of page data. This oob + * data contains the ecc bytes for the preceeding 512 bytes. + * + * Rather than tell the mtd nand infrastructure that page size is 2k, + * with four sub-pages each, we engage in a little subterfuge and tell + * the infrastructure code that pages are 512 bytes in size. This is + * done because during the course of reverse-engineering the device, I + * never observed an instance where an entire 2K "page" was read or + * written as a unit. Each "sub-page" is always addressed individually, + * its data read/written, and ecc handled before the next "sub-page" is + * addressed. + * + * This requires us to convert addresses passed by the mtd nand + * infrastructure code to those used by the device. + * + * The address that is written to the device consists of four bytes: the + * first two are the 2k page number, and the second is the index into + * the page. The index is in terms of 16-bit half-words and includes + * the preceeding oob data, so e.g., the index into the second + * "sub-page" is 0x108, and the full device address of the start of mtd + * page 0x201 is 0x00800108. + */ + int g4_page = page / 4; /* device's 2K page */ + int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ + return (g4_page << 16) | g4_index; /* pack */ +} + +static void docg4_command(struct mtd_info *mtd, unsigned command, int column, + int page_addr) +{ + /* handle standard nand commands */ + + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s %x, page_addr=%x, column=%x\n", + __func__, command, page_addr, column); + + /* + * Save the command and its arguments. This enables emulation of + * standard flash devices, and also some optimizations. + */ + doc->last_command.command = command; + doc->last_command.column = column; + doc->last_command.page = page_addr; + + switch (command) { + case NAND_CMD_RESET: + reset(CONFIG_SYS_NAND_BASE); + break; + + case NAND_CMD_READ0: + read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); + break; + + case NAND_CMD_STATUS: + /* next call to read_byte() will expect a status */ + break; + + case NAND_CMD_SEQIN: + write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); + + /* hack for deferred write of oob bytes */ + if (doc->oob_page == page_addr) + memcpy(nand->oob_poi, doc->oob_buf, 16); + break; + + case NAND_CMD_PAGEPROG: + pageprog(mtd); + break; + + /* we don't expect these, based on review of nand_base.c */ + case NAND_CMD_READOOB: + case NAND_CMD_READID: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + printf("docg4_command: unexpected nand command 0x%x\n", + command); + break; + } +} + +static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd->priv; + uint16_t *p = (uint16_t *)buf; + len >>= 1; + + for (i = 0; i < len; i++) + p[i] = readw(nand->IO_ADDR_R); +} + +static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + uint16_t status; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %x\n", __func__, page); + + /* + * Oob bytes are read as part of a normal page read. If the previous + * nand command was a read of the page whose oob is now being read, just + * copy the oob bytes that we saved in a local buffer and avoid a + * separate oob read. + */ + if (doc->last_command.command == NAND_CMD_READ0 && + doc->last_command.page == page) { + memcpy(nand->oob_poi, doc->oob_buf, 16); + return 0; + } + + /* + * Separate read of oob data only. + */ + docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); + + writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is oob data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + printf("docg4_read_oob failed: status = 0x%02x\n", status); + return -EIO; + } + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: status = 0x%x\n", __func__, status); + + docg4_read_buf(mtd, nand->oob_poi, 16); + + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return 0; +} + +static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + /* + * Writing oob-only is not really supported, because MLC nand must write + * oob bytes at the same time as page data. Nonetheless, we save the + * oob buffer contents here, and then write it along with the page data + * if the same page is subsequently written. This allows user space + * utilities that write the oob data prior to the page data to work + * (e.g., nandwrite). The disdvantage is that, if the intention was to + * write oob only, the operation is quietly ignored. Also, oob can get + * corrupted if two concurrent processes are running nandwrite. + */ + + /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ + struct docg4_priv *doc = nand->priv; + doc->oob_page = page; + memcpy(doc->oob_buf, nand->oob_poi, 16); + return 0; +} + +static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + /* only called when module_param ignore_badblocks is set */ + return 0; +} + +static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd->priv; + uint16_t *p = (uint16_t *)buf; + len >>= 1; + + for (i = 0; i < len; i++) + writew(p[i], nand->IO_ADDR_W); +} + +static int write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int use_ecc) +{ + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + uint8_t ecc_buf[8]; + + writew(DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + + /* write the page data */ + docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); + + /* oob bytes 0 through 5 are written to I/O reg */ + docg4_write_buf16(mtd, nand->oob_poi, 6); + + /* oob byte 6 written to a separate reg */ + writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); + + write_nop(docptr); + write_nop(docptr); + + /* write hw-generated ecc bytes to oob */ + if (likely(use_ecc)) { + /* oob byte 7 is hamming code */ + uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); + hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ + writew(hamming, docptr + DOCG4_OOB_6_7); + write_nop(docptr); + + /* read the 7 bch bytes from ecc regs */ + read_hw_ecc(docptr, ecc_buf); + ecc_buf[7] = 0; /* clear the "page written" flag */ + } + + /* write user-supplied bytes to oob */ + else { + writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); + write_nop(docptr); + memcpy(ecc_buf, &nand->oob_poi[8], 8); + } + + docg4_write_buf16(mtd, ecc_buf, 8); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return 0; +} + +static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required) +{ + return write_page(mtd, nand, buf, 0); +} + +static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required) +{ + return write_page(mtd, nand, buf, 1); +} + +static int read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int page, int use_ecc) +{ + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + uint16_t status, edc_err, *buf16; + + writew(DOC_ECCCONF0_READ_MODE | + DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is page data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + printf("docg4_read_page: bad status: 0x%02x\n", status); + writew(0, docptr + DOC_DATAEND); + return -EIO; + } + + docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ + + /* first 14 oob bytes read from I/O reg */ + docg4_read_buf(mtd, nand->oob_poi, 14); + + /* last 2 read from another reg */ + buf16 = (uint16_t *)(nand->oob_poi + 14); + *buf16 = readw(docptr + DOCG4_MYSTERY_REG); + + /* + * Diskonchips read oob immediately after a page read. Mtd + * infrastructure issues a separate command for reading oob after the + * page is read. So we save the oob bytes in a local buffer and just + * copy it if the next command reads oob from the same page. + */ + memcpy(doc->oob_buf, nand->oob_poi, 16); + + write_nop(docptr); + + if (likely(use_ecc)) { + /* read the register that tells us if bitflip(s) detected */ + edc_err = readw(docptr + DOC_ECCCONF1); + edc_err = readw(docptr + DOC_ECCCONF1); + + /* If bitflips are reported, attempt to correct with ecc */ + if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { + int bits_corrected = correct_data(mtd, buf, page); + if (bits_corrected == -EBADMSG) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += bits_corrected; + } + } + + writew(0, docptr + DOC_DATAEND); + return 0; +} + + +static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, 0); +} + +static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, 1); +} + +static void docg4_erase_block(struct mtd_info *mtd, int page) +{ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + void __iomem *docptr = CONFIG_SYS_NAND_BASE; + uint16_t g4_page; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: page %04x\n", __func__, page); + + sequence_reset(docptr); + + writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + /* only 2 bytes of address are written to specify erase block */ + g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + g4_page >>= 8; + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + write_nop(docptr); + + /* start the erasure */ + writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + poll_status(docptr); + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + read_progstatus(doc, docptr); + + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(docptr); + write_nop(docptr); +} + +static int read_factory_bbt(struct mtd_info *mtd) +{ + /* + * The device contains a read-only factory bad block table. Read it and + * update the memory-based bbt accordingly. + */ + + struct nand_chip *nand = mtd->priv; + uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); + uint8_t *buf; + int i, block, status; + + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + read_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); + status = docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); + if (status) + goto exit; + + /* + * If no memory-based bbt was created, exit. This will happen if module + * parameter ignore_badblocks is set. Then why even call this function? + * For an unknown reason, block erase always fails if it's the first + * operation after device power-up. The above read ensures it never is. + * Ugly, I know. + */ + if (nand->bbt == NULL) /* no memory-based bbt */ + goto exit; + + /* + * Parse factory bbt and update memory-based bbt. Factory bbt format is + * simple: one bit per block, block numbers increase left to right (msb + * to lsb). Bit clear means bad block. + */ + for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { + int bitnum; + uint8_t mask; + for (bitnum = 0, mask = 0x80; + bitnum < 8; bitnum++, mask >>= 1) { + if (!(buf[i] & mask)) { + int badblock = block + bitnum; + nand->bbt[badblock / 4] |= + 0x03 << ((badblock % 4) * 2); + mtd->ecc_stats.badblocks++; + printf("factory-marked bad block: %d\n", + badblock); + } + } + } + exit: + kfree(buf); + return status; +} + +static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + /* + * Mark a block as bad. Bad blocks are marked in the oob area of the + * first page of the block. The default scan_bbt() in the nand + * infrastructure code works fine for building the memory-based bbt + * during initialization, as does the nand infrastructure function that + * checks if a block is bad by reading the bbt. This function replaces + * the nand default because writes to oob-only are not supported. + */ + + int ret, i; + uint8_t *buf; + struct nand_chip *nand = mtd->priv; + struct nand_bbt_descr *bbtd = nand->badblock_pattern; + int block = (int)(ofs >> nand->bbt_erase_shift); + int page = (int)(ofs >> nand->page_shift); + uint32_t g4_addr = mtd_to_docg4_address(page, 0); + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: %08llx\n", __func__, ofs); + + if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) + printf("%s: ofs %llx not start of block!\n", + __func__, ofs); + + /* allocate blank buffer for page data */ + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + /* update bbt in memory */ + nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); + + /* write bit-wise negation of pattern to oob buffer */ + memset(nand->oob_poi, 0xff, mtd->oobsize); + for (i = 0; i < bbtd->len; i++) + nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; + + /* write first page of block */ + write_page_prologue(CONFIG_SYS_NAND_BASE, g4_addr); + docg4_write_page(mtd, nand, buf, 1); + ret = pageprog(mtd); + if (!ret) + mtd->ecc_stats.badblocks++; + + kfree(buf); + + return ret; +} + +static uint8_t docg4_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct docg4_priv *doc = nand->priv; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s\n", __func__); + + if (doc->last_command.command == NAND_CMD_STATUS) { + int status; + + /* + * Previous nand command was status request, so nand + * infrastructure code expects to read the status here. If an + * error occurred in a previous operation, report it. + */ + doc->last_command.command = 0; + + if (doc->status) { + status = doc->status; + doc->status = 0; + } + + /* why is NAND_STATUS_WP inverse logic?? */ + else + status = NAND_STATUS_WP | NAND_STATUS_READY; + + return status; + } + + printf("unexpectd call to read_byte()\n"); + + return 0; +} + +static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) +{ + struct docg4_priv *doc = nand->priv; + int status = NAND_STATUS_WP; /* inverse logic?? */ + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s...\n", __func__); + + /* report any previously unreported error */ + if (doc->status) { + status |= doc->status; + doc->status = 0; + return status; + } + + status |= poll_status(CONFIG_SYS_NAND_BASE); + return status; +} + +int docg4_nand_init(struct mtd_info *mtd, struct nand_chip *nand, int devnum) +{ + uint16_t id1, id2; + struct docg4_priv *docg4; + int retval; + + docg4 = kzalloc(sizeof(*docg4), GFP_KERNEL); + if (!docg4) + return -1; + + mtd->priv = nand; + nand->priv = docg4; + + /* These must be initialized here because the docg4 is non-standard + * and doesn't produce an id that the nand code can use to look up + * these values (nand_scan_ident() not called). + */ + mtd->size = DOCG4_CHIP_SIZE; + mtd->name = "Msys_Diskonchip_G4"; + mtd->writesize = DOCG4_PAGE_SIZE; + mtd->erasesize = DOCG4_BLOCK_SIZE; + mtd->oobsize = DOCG4_OOB_SIZE; + + nand->IO_ADDR_R = + (void __iomem *)CONFIG_SYS_NAND_BASE + DOC_IOSPACE_DATA; + nand->IO_ADDR_W = nand->IO_ADDR_R; + nand->chipsize = DOCG4_CHIP_SIZE; + nand->chip_shift = DOCG4_CHIP_SHIFT; + nand->bbt_erase_shift = DOCG4_ERASE_SHIFT; + nand->phys_erase_shift = DOCG4_ERASE_SHIFT; + nand->chip_delay = 20; + nand->page_shift = DOCG4_PAGE_SHIFT; + nand->pagemask = 0x3ffff; + nand->badblockpos = NAND_LARGE_BADBLOCK_POS; + nand->badblockbits = 8; + nand->ecc.layout = &docg4_oobinfo; + nand->ecc.mode = NAND_ECC_HW_SYNDROME; + nand->ecc.size = DOCG4_PAGE_SIZE; + nand->ecc.prepad = 8; + nand->ecc.bytes = 8; + nand->ecc.strength = DOCG4_T; + nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; + nand->controller = &nand->hwcontrol; + + /* methods */ + nand->cmdfunc = docg4_command; + nand->waitfunc = docg4_wait; + nand->select_chip = docg4_select_chip; + nand->read_byte = docg4_read_byte; + nand->block_markbad = docg4_block_markbad; + nand->read_buf = docg4_read_buf; + nand->write_buf = docg4_write_buf16; + nand->scan_bbt = nand_default_bbt; + nand->erase_cmd = docg4_erase_block; + nand->ecc.read_page = docg4_read_page; + nand->ecc.write_page = docg4_write_page; + nand->ecc.read_page_raw = docg4_read_page_raw; + nand->ecc.write_page_raw = docg4_write_page_raw; + nand->ecc.read_oob = docg4_read_oob; + nand->ecc.write_oob = docg4_write_oob; + + /* + * The way the nand infrastructure code is written, a memory-based bbt + * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, + * nand->block_bad() is used. So when ignoring bad blocks, we skip the + * scan and define a dummy block_bad() which always returns 0. + */ + if (ignore_badblocks) { + nand->options |= NAND_SKIP_BBTSCAN; + nand->block_bad = docg4_block_neverbad; + } + + reset(CONFIG_SYS_NAND_BASE); + + /* check for presence of g4 chip by reading id registers */ + id1 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID); + id1 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); + id2 = readw(CONFIG_SYS_NAND_BASE + DOC_CHIPID_INV); + id2 = readw(CONFIG_SYS_NAND_BASE + DOCG4_MYSTERY_REG); + if (id1 != DOCG4_IDREG1_VALUE || id2 != DOCG4_IDREG2_VALUE) + return -1; + + /* initialize bch algorithm */ + docg4->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); + if (docg4->bch == NULL) + return -1; + + retval = nand_scan_tail(mtd); + if (retval) + return -1; + + /* + * Scan for bad blocks and create bbt here, then add the factory-marked + * bad blocks to the bbt. + */ + nand->scan_bbt(mtd); + nand->options |= NAND_BBT_SCANNED; + retval = read_factory_bbt(mtd); + if (retval) + return -1; + + retval = nand_register(devnum); + if (retval) + return -1; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/docg4_spl.c b/qemu/roms/u-boot/drivers/mtd/nand/docg4_spl.c new file mode 100644 index 000000000..351b75a09 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/docg4_spl.c @@ -0,0 +1,219 @@ +/* + * SPL driver for Diskonchip G4 nand flash + * + * Copyright (C) 2013 Mike Dunn <mikedunn@newsguy.com> + * + * SPDX-License-Identifier: GPL-2.0+ + * + * This driver basically mimics the load functionality of a typical IPL (initial + * program loader) resident in the 2k NOR-like region of the docg4 that is + * mapped to the reset vector. It allows the u-boot SPL to continue loading if + * the IPL loads a fixed number of flash blocks that is insufficient to contain + * the entire u-boot image. In this case, a concatenated spl + u-boot image is + * written at the flash offset from which the IPL loads an image, and when the + * IPL jumps to the SPL, the SPL resumes loading where the IPL left off. See + * the palmtreo680 for an example. + * + * This driver assumes that the data was written to the flash using the device's + * "reliable" mode, and also assumes that each 512 byte page is stored + * redundantly in the subsequent page. This storage format is likely to be used + * by all boards that boot from the docg4. The format compensates for the lack + * of ecc in the IPL. + * + * Reliable mode reduces the capacity of a block by half, and the redundant + * pages reduce it by half again. As a result, the normal 256k capacity of a + * block is reduced to 64k for the purposes of the IPL/SPL. + */ + +#include <asm/io.h> +#include <linux/mtd/docg4.h> + +/* forward declarations */ +static inline void write_nop(void __iomem *docptr); +static int poll_status(void __iomem *docptr); +static void write_addr(void __iomem *docptr, uint32_t docg4_addr); +static void address_sequence(unsigned int g4_page, unsigned int g4_index, + void __iomem *docptr); +static int docg4_load_block_reliable(uint32_t flash_offset, void *dest_addr); + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + void *load_addr = dst; + uint32_t flash_offset = offs; + const unsigned int block_count = + (size + DOCG4_BLOCK_CAPACITY_SPL - 1) + / DOCG4_BLOCK_CAPACITY_SPL; + int i; + + for (i = 0; i < block_count; i++) { + int ret = docg4_load_block_reliable(flash_offset, load_addr); + if (ret) + return ret; + load_addr += DOCG4_BLOCK_CAPACITY_SPL; + flash_offset += DOCG4_BLOCK_SIZE; + } + return 0; +} + +static inline void write_nop(void __iomem *docptr) +{ + writew(0, docptr + DOC_NOP); +} + +static int poll_status(void __iomem *docptr) +{ + /* + * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL + * register. Operations known to take a long time (e.g., block erase) + * should sleep for a while before calling this. + */ + + uint8_t flash_status; + + /* hardware quirk requires reading twice initially */ + flash_status = readb(docptr + DOC_FLASHCONTROL); + + do { + flash_status = readb(docptr + DOC_FLASHCONTROL); + } while (!(flash_status & DOC_CTRL_FLASHREADY)); + + return 0; +} + +static void write_addr(void __iomem *docptr, uint32_t docg4_addr) +{ + /* write the four address bytes packed in docg4_addr to the device */ + + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); +} + +static void address_sequence(unsigned int g4_page, unsigned int g4_index, + void __iomem *docptr) +{ + writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_addr(docptr, ((uint32_t)g4_page << 16) | g4_index); + write_nop(docptr); +} + +static int docg4_load_block_reliable(uint32_t flash_offset, void *dest_addr) +{ + void __iomem *docptr = (void *)CONFIG_SYS_NAND_BASE; + unsigned int g4_page = flash_offset >> 11; /* 2k page */ + const unsigned int last_g4_page = g4_page + 0x80; /* last in block */ + int g4_index = 0; + uint16_t flash_status; + uint16_t *buf; + + /* flash_offset must be aligned to the start of a block */ + if (flash_offset & 0x3ffff) + return -1; + + writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(docptr); + write_nop(docptr); + writew(0x45, docptr + DOC_FLASHSEQUENCE); + writew(0xa3, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + writew(0x22, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + /* read 1st 4 oob bytes of first subpage of block */ + address_sequence(g4_page, 0x0100, docptr); /* index at oob */ + write_nop(docptr); + flash_status = readw(docptr + DOC_FLASHCONTROL); + flash_status = readw(docptr + DOC_FLASHCONTROL); + if (flash_status & 0x06) /* sequence or protection errors */ + return -1; + writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(docptr); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* + * Here we read the first four oob bytes of the first page of the block. + * The IPL on the palmtreo680 requires that this contain a 32 bit magic + * number, or the load aborts. We'll ignore it. + */ + readw(docptr + 0x103c); /* hw quirk; 1st read discarded */ + readw(docptr + 0x103c); /* lower 16 bits of magic number */ + readw(docptr + DOCG4_MYSTERY_REG); /* upper 16 bits of magic number */ + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + write_nop(docptr); + + /* load contents of block to memory */ + buf = (uint16_t *)dest_addr; + do { + int i; + + address_sequence(g4_page, g4_index, docptr); + writew(DOCG4_CMD_READ2, + docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(docptr); + writew(DOC_ECCCONF0_READ_MODE | + DOC_ECCCONF0_ECC_ENABLE | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* read the 512 bytes of page data, 2 bytes at a time */ + readw(docptr + 0x103c); /* hw quirk */ + for (i = 0; i < 256; i++) + *buf++ = readw(docptr + 0x103c); + + /* read oob, but discard it */ + for (i = 0; i < 7; i++) + readw(docptr + 0x103c); + readw(docptr + DOCG4_OOB_6_7); + readw(docptr + DOCG4_OOB_6_7); + + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + write_nop(docptr); + + if (!(g4_index & 0x100)) { + /* not redundant subpage read; check for ecc error */ + write_nop(docptr); + flash_status = readw(docptr + DOC_ECCCONF1); + flash_status = readw(docptr + DOC_ECCCONF1); + if (flash_status & 0x80) { /* ecc error */ + g4_index += 0x108; /* read redundant subpage */ + buf -= 256; /* back up ram ptr */ + continue; + } else /* no ecc error */ + g4_index += 0x210; /* skip redundant subpage */ + } else /* redundant page was just read; skip ecc error check */ + g4_index += 0x108; + + if (g4_index == 0x420) { /* finished with 2k page */ + g4_index = 0; + g4_page += 2; /* odd-numbered 2k pages skipped */ + } + + } while (g4_page != last_g4_page); /* while still on same block */ + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_nand.c new file mode 100644 index 000000000..2f31fc96a --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_nand.c @@ -0,0 +1,829 @@ +/* Freescale Enhanced Local Bus Controller FCM NAND driver + * + * Copyright (c) 2006-2008 Freescale Semiconductor + * + * Authors: Nick Spence <nick.spence@freescale.com>, + * Scott Wood <scottwood@freescale.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <malloc.h> +#include <nand.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> + +#include <asm/io.h> +#include <asm/errno.h> + +#ifdef VERBOSE_DEBUG +#define DEBUG_ELBC +#define vdbg(format, arg...) printf("DEBUG: " format, ##arg) +#else +#define vdbg(format, arg...) do {} while (0) +#endif + +/* Can't use plain old DEBUG because the linux mtd + * headers define it as a macro. + */ +#ifdef DEBUG_ELBC +#define dbg(format, arg...) printf("DEBUG: " format, ##arg) +#else +#define dbg(format, arg...) do {} while (0) +#endif + +#define MAX_BANKS 8 +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ +#define FCM_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for FCM */ + +#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC) + +struct fsl_elbc_ctrl; + +/* mtd information per set */ + +struct fsl_elbc_mtd { + struct nand_chip chip; + struct fsl_elbc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + u8 __iomem *vbase; /* Chip select base virtual address */ + int page_size; /* NAND page size (0=512, 1=2048) */ + unsigned int fmr; /* FCM Flash Mode Register value */ +}; + +/* overview of the fsl elbc controller */ + +struct fsl_elbc_ctrl { + struct nand_hw_control controller; + struct fsl_elbc_mtd *chips[MAX_BANKS]; + + /* device info */ + fsl_lbc_t *regs; + u8 __iomem *addr; /* Address of assigned FCM buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes; /* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int status; /* status read from LTESR after last op */ + unsigned int mdr; /* UPM/FCM Data Register value */ + unsigned int use_mdr; /* Non zero if the MDR is to be set */ + unsigned int oob; /* Non zero if operating on OOB data */ +}; + +/* These map to the positions used by the FCM hardware ECC generator */ + +/* Small Page FLASH with FMR[ECCM] = 0 */ +static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { + .eccbytes = 3, + .eccpos = {6, 7, 8}, + .oobfree = { {0, 5}, {9, 7} }, +}; + +/* Small Page FLASH with FMR[ECCM] = 1 */ +static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { + .eccbytes = 3, + .eccpos = {8, 9, 10}, + .oobfree = { {0, 5}, {6, 2}, {11, 5} }, +}; + +/* Large Page FLASH with FMR[ECCM] = 0 */ +static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { + .eccbytes = 12, + .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, + .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }, +}; + +/* Large Page FLASH with FMR[ECCM] = 1 */ +static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { + .eccbytes = 12, + .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, + .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }, +}; + +/* + * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset + * 1, so we have to adjust bad block pattern. This pattern should be used for + * x8 chips only. So far hardware does not support x16 chips anyway. + */ +static u8 scan_ff_pattern[] = { 0xff, }; + +static struct nand_bbt_descr largepage_memorybased = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern, +}; + +/* + * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, + * interfere with ECC positions, that's why we implement our own descriptors. + * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/*=================================*/ + +/* + * Set up the FCM hardware block and page address fields, and the fcm + * structure addr field to point to the correct FCM buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_lbc_t *lbc = ctrl->regs; + int buf_num; + + ctrl->page = page_addr; + + if (priv->page_size) { + out_be32(&lbc->fbar, page_addr >> 6); + out_be32(&lbc->fpar, + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | + (oob ? FPAR_LP_MS : 0) | column); + buf_num = (page_addr & 1) << 2; + } else { + out_be32(&lbc->fbar, page_addr >> 5); + out_be32(&lbc->fpar, + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | + (oob ? FPAR_SP_MS : 0) | column); + buf_num = page_addr & 7; + } + + ctrl->addr = priv->vbase + buf_num * 1024; + ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ctrl->index += priv->page_size ? 2048 : 512; + + vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " + "index %x, pes %d ps %d\n", + buf_num, ctrl->addr, priv->vbase, ctrl->index, + chip->phys_erase_shift, chip->page_shift); +} + +/* + * execute FCM command and wait for it to complete + */ +static int fsl_elbc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_lbc_t *lbc = ctrl->regs; + long long end_tick; + u32 ltesr; + + /* Setup the FMR[OP] to execute without write protection */ + out_be32(&lbc->fmr, priv->fmr | 3); + if (ctrl->use_mdr) + out_be32(&lbc->mdr, ctrl->mdr); + + vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); + vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x " + "fbcr=%08x bank=%d\n", + in_be32(&lbc->fbar), in_be32(&lbc->fpar), + in_be32(&lbc->fbcr), priv->bank); + + /* execute special operation */ + out_be32(&lbc->lsor, priv->bank); + + /* wait for FCM complete flag or timeout */ + end_tick = usec2ticks(FCM_TIMEOUT_MSECS * 1000) + get_ticks(); + + ltesr = 0; + while (end_tick > get_ticks()) { + ltesr = in_be32(&lbc->ltesr); + if (ltesr & LTESR_CC) + break; + } + + ctrl->status = ltesr & LTESR_NAND_MASK; + out_be32(&lbc->ltesr, ctrl->status); + out_be32(&lbc->lteatr, 0); + + /* store mdr value in case it was needed */ + if (ctrl->use_mdr) + ctrl->mdr = in_be32(&lbc->mdr); + + ctrl->use_mdr = 0; + + vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n", + ctrl->status, ctrl->mdr, in_be32(&lbc->fmr)); + + /* returns 0 on success otherwise non-zero) */ + return ctrl->status == LTESR_CC ? 0 : -EIO; +} + +static void fsl_elbc_do_read(struct nand_chip *chip, int oob) +{ + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_lbc_t *lbc = ctrl->regs; + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_CW1 << FIR_OP3_SHIFT) | + (FIR_OP_RBW << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_RBW << FIR_OP3_SHIFT)); + + if (oob) + out_be32(&lbc->fcr, + NAND_CMD_READOOB << FCR_CMD0_SHIFT); + else + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the FCM */ +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_lbc_t *lbc = ctrl->regs; + + ctrl->use_mdr = 0; + + /* clear the read buffer */ + ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ctrl->index = 0; + + switch (command) { + /* READ0 and READ1 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ1: + column += 256; + + /* fall-through */ + case NAND_CMD_READ0: + vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ + set_addr(mtd, 0, page_addr, 0); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ctrl->index += column; + + fsl_elbc_do_read(chip, 0); + fsl_elbc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + out_be32(&lbc->fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_elbc_do_read(chip, 1); + fsl_elbc_run_command(mtd); + + return; + + /* READID must read all 5 possible bytes while CEB is active */ + case NAND_CMD_READID: + case NAND_CMD_PARAM: + vdbg("fsl_elbc_cmdfunc: NAND_CMD 0x%x.\n", command); + + out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_UA << FIR_OP1_SHIFT) | + (FIR_OP_RBW << FIR_OP2_SHIFT)); + out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + out_be32(&lbc->fbcr, 256); + ctrl->read_bytes = 256; + ctrl->use_mdr = 1; + ctrl->mdr = column; + set_addr(mtd, 0, 0, 0); + fsl_elbc_run_command(mtd); + return; + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " + "page_addr: 0x%x.\n", page_addr); + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); + + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_PA << FIR_OP1_SHIFT) | + (FIR_OP_CM1 << FIR_OP2_SHIFT)); + + out_be32(&lbc->fcr, + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT)); + + out_be32(&lbc->fbcr, 0); + ctrl->read_bytes = 0; + + fsl_elbc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 fcr; + vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " + "page_addr: 0x%x, column: 0x%x.\n", + page_addr, column); + + ctrl->column = column; + ctrl->oob = 0; + + if (priv->page_size) { + fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) | + (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT); + + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_WB << FIR_OP3_SHIFT) | + (FIR_OP_CW1 << FIR_OP4_SHIFT)); + } else { + fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) | + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); + + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CM2 << FIR_OP1_SHIFT) | + (FIR_OP_CA << FIR_OP2_SHIFT) | + (FIR_OP_PA << FIR_OP3_SHIFT) | + (FIR_OP_WB << FIR_OP4_SHIFT) | + (FIR_OP_CW1 << FIR_OP5_SHIFT)); + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; + ctrl->oob = 1; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; + } else { + /* Second 256 bytes --> READ1 */ + fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; + } + } + + out_be32(&lbc->fcr, fcr); + set_addr(mtd, column, page_addr, ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " + "writing %d bytes.\n", ctrl->index); + + /* if the write did not start at 0 or is not a full page + * then set the exact length, otherwise use a full page + * write so the HW generates the ECC. + */ + if (ctrl->oob || ctrl->column != 0 || + ctrl->index != mtd->writesize + mtd->oobsize) + out_be32(&lbc->fbcr, ctrl->index); + else + out_be32(&lbc->fbcr, 0); + + fsl_elbc_run_command(mtd); + + return; + } + + /* CMD_STATUS must read the status byte while CEB is active */ + /* Note - it does not wait for the ready line */ + case NAND_CMD_STATUS: + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); + return; + + /* RESET without waiting for the ready line */ + case NAND_CMD_RESET: + dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); + fsl_elbc_run_command(mtd); + return; + + default: + printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", + command); + } +} + +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the FCM Controller Data Buffer + */ +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + printf("write_buf of %d bytes", len); + ctrl->status = 0; + return; + } + + if ((unsigned int)len > bufsize - ctrl->index) { + printf("write_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, bufsize - ctrl->index); + len = bufsize - ctrl->index; + } + + memcpy_toio(&ctrl->addr[ctrl->index], buf, len); + /* + * This is workaround for the weird elbc hangs during nand write, + * Scott Wood says: "...perhaps difference in how long it takes a + * write to make it through the localbus compared to a write to IMMR + * is causing problems, and sync isn't helping for some reason." + * Reading back the last byte helps though. + */ + in_8(&ctrl->addr[ctrl->index] + len - 1); + + ctrl->index += len; +} + +/* + * read a byte from either the FCM hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_elbc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + + /* If there are still bytes in the FCM, then use the next byte. */ + if (ctrl->index < ctrl->read_bytes) + return in_8(&ctrl->addr[ctrl->index++]); + + printf("read_byte beyond end of buffer\n"); + return ERR_BYTE; +} + +/* + * Read from the FCM Controller Data Buffer + */ +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + int avail; + + if (len < 0) + return; + + avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); + memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); + ctrl->index += avail; + + if (len > avail) + printf("read_buf beyond end of buffer " + "(%d requested, %d available)\n", + len, avail); +} + +/* + * Verify buffer against the FCM Controller Data Buffer + */ +static int fsl_elbc_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + int i; + + if (len < 0) { + printf("write_buf of %d bytes", len); + return -EINVAL; + } + + if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { + printf("verify_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, ctrl->read_bytes - ctrl->index); + + ctrl->index = ctrl->read_bytes; + return -EINVAL; + } + + for (i = 0; i < len; i++) + if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) + break; + + ctrl->index += len; + return i == len && ctrl->status == LTESR_CC ? 0 : -EIO; +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + fsl_lbc_t *lbc = ctrl->regs; + + if (ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ctrl->use_mdr = 0; + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + if (ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); + return fsl_elbc_read_byte(mtd); +} + +static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + fsl_elbc_read_buf(mtd, buf, mtd->writesize); + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + fsl_elbc_write_buf(mtd, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static struct fsl_elbc_ctrl *elbc_ctrl; + +static void fsl_elbc_ctrl_init(void) +{ + elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL); + if (!elbc_ctrl) + return; + + elbc_ctrl->regs = LBC_BASE_ADDR; + + /* clear event registers */ + out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK); + out_be32(&elbc_ctrl->regs->lteatr, 0); + + /* Enable interrupts for any detected events */ + out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK); + + elbc_ctrl->read_bytes = 0; + elbc_ctrl->index = 0; + elbc_ctrl->addr = NULL; +} + +static int fsl_elbc_chip_init(int devnum, u8 *addr) +{ + struct mtd_info *mtd = &nand_info[devnum]; + struct nand_chip *nand; + struct fsl_elbc_mtd *priv; + uint32_t br = 0, or = 0; + int ret; + + if (!elbc_ctrl) { + fsl_elbc_ctrl_init(); + if (!elbc_ctrl) + return -1; + } + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + priv->ctrl = elbc_ctrl; + priv->vbase = addr; + + /* Find which chip select it is connected to. It'd be nice + * if we could pass more than one datum to the NAND driver... + */ + for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { + phys_addr_t phys_addr = virt_to_phys(addr); + + br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br); + or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or); + + if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM && + (br & or & BR_BA) == BR_PHYS_ADDR(phys_addr)) + break; + } + + if (priv->bank >= MAX_BANKS) { + printf("fsl_elbc_nand: address did not match any " + "chip selects\n"); + return -ENODEV; + } + + nand = &priv->chip; + mtd->priv = nand; + + elbc_ctrl->chips[priv->bank] = priv; + + /* fill in nand_chip structure */ + /* set up function call table */ + nand->read_byte = fsl_elbc_read_byte; + nand->write_buf = fsl_elbc_write_buf; + nand->read_buf = fsl_elbc_read_buf; + nand->verify_buf = fsl_elbc_verify_buf; + nand->select_chip = fsl_elbc_select_chip; + nand->cmdfunc = fsl_elbc_cmdfunc; + nand->waitfunc = fsl_elbc_wait; + + /* set up nand options */ + nand->bbt_td = &bbt_main_descr; + nand->bbt_md = &bbt_mirror_descr; + + /* set up nand options */ + nand->options = NAND_NO_SUBPAGE_WRITE; + nand->bbt_options = NAND_BBT_USE_FLASH; + + nand->controller = &elbc_ctrl->controller; + nand->priv = priv; + + nand->ecc.read_page = fsl_elbc_read_page; + nand->ecc.write_page = fsl_elbc_write_page; + + priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT); + + /* If CS Base Register selects full hardware ECC then use it */ + if ((br & BR_DECC) == BR_DECC_CHK_GEN) { + nand->ecc.mode = NAND_ECC_HW; + + nand->ecc.layout = (priv->fmr & FMR_ECCM) ? + &fsl_elbc_oob_sp_eccm1 : + &fsl_elbc_oob_sp_eccm0; + + nand->ecc.size = 512; + nand->ecc.bytes = 3; + nand->ecc.steps = 1; + nand->ecc.strength = 1; + } else { + /* otherwise fall back to software ECC */ +#if defined(CONFIG_NAND_ECC_BCH) + nand->ecc.mode = NAND_ECC_SOFT_BCH; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif + } + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + /* Large-page-specific setup */ + if (mtd->writesize == 2048) { + setbits_be32(&elbc_ctrl->regs->bank[priv->bank].or, + OR_FCM_PGS); + in_be32(&elbc_ctrl->regs->bank[priv->bank].or); + + priv->page_size = 1; + nand->badblock_pattern = &largepage_memorybased; + + /* + * Hardware expects small page has ECCM0, large page has + * ECCM1 when booting from NAND, and we follow that even + * when not booting from NAND. + */ + priv->fmr |= FMR_ECCM; + + /* adjust ecc setup if needed */ + if ((br & BR_DECC) == BR_DECC_CHK_GEN) { + nand->ecc.steps = 4; + nand->ecc.layout = (priv->fmr & FMR_ECCM) ? + &fsl_elbc_oob_lp_eccm1 : + &fsl_elbc_oob_lp_eccm0; + } + } else if (mtd->writesize == 512) { + clrbits_be32(&elbc_ctrl->regs->bank[priv->bank].or, + OR_FCM_PGS); + in_be32(&elbc_ctrl->regs->bank[priv->bank].or); + } else { + return -ENODEV; + } + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + ret = nand_register(devnum); + if (ret) + return ret; + + return 0; +} + +#ifndef CONFIG_SYS_NAND_BASE_LIST +#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } +#endif + +static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] = + CONFIG_SYS_NAND_BASE_LIST; + +void board_nand_init(void) +{ + int i; + + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + fsl_elbc_chip_init(i, (u8 *)base_address[i]); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_spl.c b/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_spl.c new file mode 100644 index 000000000..29521359a --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsl_elbc_spl.c @@ -0,0 +1,168 @@ +/* + * NAND boot for Freescale Enhanced Local Bus Controller, Flash Control Machine + * + * (C) Copyright 2006-2008 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * Copyright (c) 2008 Freescale Semiconductor, Inc. + * Author: Scott Wood <scottwood@freescale.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/fsl_lbc.h> +#include <nand.h> + +#define WINDOW_SIZE 8192 + +static void nand_wait(void) +{ + fsl_lbc_t *regs = LBC_BASE_ADDR; + + for (;;) { + uint32_t status = in_be32(®s->ltesr); + + if (status == 1) + return; + + if (status & 1) { + puts("read failed (ltesr)\n"); + for (;;); + } + } +} + +#ifdef CONFIG_TPL_BUILD +int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst) +#else +static int nand_load_image(uint32_t offs, unsigned int uboot_size, void *vdst) +#endif +{ + fsl_lbc_t *regs = LBC_BASE_ADDR; + uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE; + const int large = CONFIG_SYS_NAND_OR_PRELIM & OR_FCM_PGS; + const int block_shift = large ? 17 : 14; + const int block_size = 1 << block_shift; + const int page_size = large ? 2048 : 512; + const int bad_marker = large ? page_size + 0 : page_size + 5; + int fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT) | 2; + int pos = 0; + char *dst = vdst; + + if (offs & (block_size - 1)) { + puts("bad offset\n"); + for (;;); + } + + if (large) { + fmr |= FMR_ECCM; + out_be32(®s->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); + out_be32(®s->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_CW1 << FIR_OP3_SHIFT) | + (FIR_OP_RBW << FIR_OP4_SHIFT)); + } else { + out_be32(®s->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); + out_be32(®s->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_RBW << FIR_OP3_SHIFT)); + } + + out_be32(®s->fbcr, 0); + clrsetbits_be32(®s->bank[0].br, BR_DECC, BR_DECC_CHK_GEN); + + while (pos < uboot_size) { + int i = 0; + out_be32(®s->fbar, offs >> block_shift); + + do { + int j; + unsigned int page_offs = (offs & (block_size - 1)) << 1; + + out_be32(®s->ltesr, ~0); + out_be32(®s->lteatr, 0); + out_be32(®s->fpar, page_offs); + out_be32(®s->fmr, fmr); + out_be32(®s->lsor, 0); + nand_wait(); + + page_offs %= WINDOW_SIZE; + + /* + * If either of the first two pages are marked bad, + * continue to the next block. + */ + if (i++ < 2 && buf[page_offs + bad_marker] != 0xff) { + puts("skipping\n"); + offs = (offs + block_size) & ~(block_size - 1); + pos &= ~(block_size - 1); + break; + } + + for (j = 0; j < page_size; j++) + dst[pos + j] = buf[page_offs + j]; + + pos += page_size; + offs += page_size; + } while ((offs & (block_size - 1)) && (pos < uboot_size)); + } + + return 0; +} + +/* + * Defines a static function nand_load_image() here, because non-static makes + * the code too large for certain SPLs(minimal SPL, maximum size <= 4Kbytes) + */ +#ifndef CONFIG_TPL_BUILD +#define nand_spl_load_image(offs, uboot_size, vdst) \ + nand_load_image(offs, uboot_size, vdst) +#endif + +/* + * The main entry for NAND booting. It's necessary that SDRAM is already + * configured and available since this code loads the main U-Boot image + * from NAND into SDRAM and starts it from there. + */ +void nand_boot(void) +{ + __attribute__((noreturn)) void (*uboot)(void); + /* + * Load U-Boot image from NAND into RAM + */ + nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS, + CONFIG_SYS_NAND_U_BOOT_SIZE, + (void *)CONFIG_SYS_NAND_U_BOOT_DST); + +#ifdef CONFIG_NAND_ENV_DST + nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, + (void *)CONFIG_NAND_ENV_DST); + +#ifdef CONFIG_ENV_OFFSET_REDUND + nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, + (void *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); +#endif +#endif + +#ifdef CONFIG_SPL_FLUSH_IMAGE + /* + * Clean d-cache and invalidate i-cache, to + * make sure that no stale data is executed. + */ + flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE); +#endif + + puts("transfering control\n"); + /* + * Jump to U-Boot image + */ + uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; + (*uboot)(); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_nand.c new file mode 100644 index 000000000..be5a16a1b --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_nand.c @@ -0,0 +1,1039 @@ +/* Integrated Flash Controller NAND Machine Driver + * + * Copyright (c) 2012 Freescale Semiconductor, Inc + * + * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <malloc.h> +#include <nand.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> + +#include <asm/io.h> +#include <asm/errno.h> +#include <fsl_ifc.h> + +#define FSL_IFC_V1_1_0 0x01010000 +#define MAX_BANKS 4 +#define ERR_BYTE 0xFF /* Value returned for read bytes + when read failed */ +#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC + NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_ctrl { + struct nand_hw_control controller; + struct fsl_ifc_mtd *chips[MAX_BANKS]; + + /* device info */ + struct fsl_ifc *regs; + uint8_t __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int cs_nand; /* On which chipsel NAND is connected */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes; /* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int status; /* status read from NEESR after last op */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ +}; + +static struct fsl_ifc_ctrl *ifc_ctrl; + +/* 512-byte page with 4-bit ECC, 8-bit */ +static struct nand_ecclayout oob_512_8bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {0, 5}, {6, 2} }, +}; + +/* 512-byte page with 4-bit ECC, 16-bit */ +static struct nand_ecclayout oob_512_16bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {2, 6}, }, +}; + +/* 2048-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_2048_ecc4 = { + .eccbytes = 32, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + }, + .oobfree = { {2, 6}, {40, 24} }, +}; + +/* 4096-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_4096_ecc4 = { + .eccbytes = 64, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + }, + .oobfree = { {2, 6}, {72, 56} }, +}; + +/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_4096_ecc8 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 82} }, +}; + +/* 8192-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_8192_ecc4 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 208} }, +}; + +/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_8192_ecc8 = { + .eccbytes = 256, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, + 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, + 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, + 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, + 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, + 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, + 248, 249, 250, 251, 252, 253, 254, 255, + 256, 257, 258, 259, 260, 261, 262, 263, + }, + .oobfree = { {2, 6}, {264, 80} }, +}; + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc *ifc = ctrl->regs; + int buf_num; + + ctrl->page = page_addr; + + /* Program ROW0/COL0 */ + ifc_out32(&ifc->ifc_nand.row0, page_addr); + ifc_out32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); + + buf_num = page_addr & priv->bufnum_mask; + + ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ctrl->index += mtd->writesize; +} + +static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + unsigned int bufnum) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); + u32 __iomem *main = (u32 *)addr; + u8 __iomem *oob = addr + mtd->writesize; + int i; + + for (i = 0; i < mtd->writesize / 4; i++) { + if (__raw_readl(&main[i]) != 0xffffffff) + return 0; + } + + for (i = 0; i < chip->ecc.layout->eccbytes; i++) { + int pos = chip->ecc.layout->eccpos[i]; + + if (__raw_readb(&oob[pos]) != 0xff) + return 0; + } + + return 1; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + u32 *eccstat, unsigned int bufnum) +{ + u32 reg = eccstat[bufnum / 4]; + int errors; + + errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + + return errors; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static int fsl_ifc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc *ifc = ctrl->regs; + long long end_tick; + u32 eccstat[4]; + int i; + + /* set the chip select for NAND Transaction */ + ifc_out32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); + + /* start read/write seq */ + ifc_out32(&ifc->ifc_nand.nandseq_strt, + IFC_NAND_SEQ_STRT_FIR_STRT); + + /* wait for NAND Machine complete flag or timeout */ + end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); + + while (end_tick > get_ticks()) { + ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); + + if (ctrl->status & IFC_NAND_EVTER_STAT_OPC) + break; + } + + ifc_out32(&ifc->ifc_nand.nand_evter_stat, ctrl->status); + + if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER) + printf("%s: Flash Time Out Error\n", __func__); + if (ctrl->status & IFC_NAND_EVTER_STAT_WPER) + printf("%s: Write Protect Error\n", __func__); + + if (ctrl->eccread) { + int errors; + int bufnum = ctrl->page & priv->bufnum_mask; + int sector = bufnum * chip->ecc.steps; + int sector_end = sector + chip->ecc.steps - 1; + + for (i = sector / 4; i <= sector_end / 4; i++) + eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]); + + for (i = sector; i <= sector_end; i++) { + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * OK only if the whole page is blank. + * + * We disable ECCER reporting due to erratum + * IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + if (!is_blank(mtd, ctrl, bufnum)) + ctrl->status |= + IFC_NAND_EVTER_STAT_ECCER; + break; + } + + mtd->ecc_stats.corrected += errors; + } + + ctrl->eccread = 0; + } + + /* returns 0 on success otherwise non-zero) */ + return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; +} + +static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc *ifc = ctrl->regs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); + + ifc_out32(&ifc->ifc_nand.nand_fcr0, + (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); + } else { + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); + + if (oob) + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); + else + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc *ifc = ctrl->regs; + + /* clear the read buffer */ + ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: { + ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); + set_addr(mtd, 0, page_addr, 0); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ctrl->index += column; + + if (chip->ecc.mode == NAND_ECC_HW) + ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + } + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + ifc_out32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + /* READID must read all possible bytes while CEB is active */ + case NAND_CMD_READID: + case NAND_CMD_PARAM: { + int timing = IFC_FIR_OP_RB; + if (command == NAND_CMD_PARAM) + timing = IFC_FIR_OP_RBCD; + + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fcr0, + command << IFC_NAND_FCR0_CMD0_SHIFT); + ifc_out32(&ifc->ifc_nand.row3, column); + + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + ifc_out32(&ifc->ifc_nand.nand_fbcr, 256); + ctrl->read_bytes = 256; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + } + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); + + ifc_out32(&ifc->ifc_nand.nand_fcr0, + (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); + + ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); + ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ctrl->column = column; + ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); + + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << + IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fir1, + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT)); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); + + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fir1, + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT)); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ctrl->oob = 1; + } + ifc_out32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); + set_addr(mtd, column, page_addr, ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: + if (ctrl->oob) + ifc_out32(&ifc->ifc_nand.nand_fbcr, + ctrl->index - ctrl->column); + else + ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); + + fsl_ifc_run_command(mtd); + return; + + case NAND_CMD_STATUS: + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); + ifc_out32(&ifc->ifc_nand.nand_fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* Chip sometimes reporting write protect even when it's not */ + out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); + return; + + case NAND_CMD_RESET: + ifc_out32(&ifc->ifc_nand.nand_fir0, + IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); + fsl_ifc_run_command(mtd); + return; + + default: + printf("%s: error, unsupported command 0x%x.\n", + __func__, command); + } +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + printf("%s of %d bytes", __func__, len); + ctrl->status = 0; + return; + } + + if ((unsigned int)len > bufsize - ctrl->index) { + printf("%s beyond end of buffer " + "(%d requested, %u available)\n", + __func__, len, bufsize - ctrl->index); + len = bufsize - ctrl->index; + } + + memcpy_toio(&ctrl->addr[ctrl->index], buf, len); + ctrl->index += len; +} + +/* + * read a byte from either the IFC hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_ifc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + + /* If there are still bytes in the IFC buffer, then use the + * next byte. */ + if (ctrl->index < ctrl->read_bytes) + return in_8(&ctrl->addr[ctrl->index++]); + + printf("%s beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ctrl->index < ctrl->read_bytes) { + data = ifc_in16((uint16_t *)&ctrl-> + addr[ctrl->index]); + ctrl->index += 2; + return (uint8_t)data; + } + + printf("%s beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + int avail; + + if (len < 0) + return; + + avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); + memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); + ctrl->index += avail; + + if (len > avail) + printf("%s beyond end of buffer " + "(%d requested, %d available)\n", + __func__, len, avail); +} + +/* + * Verify buffer against the IFC Controller Data Buffer + */ +static int fsl_ifc_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + int i; + + if (len < 0) { + printf("%s of %d bytes", __func__, len); + return -EINVAL; + } + + if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { + printf("%s beyond end of buffer " + "(%d requested, %u available)\n", + __func__, len, ctrl->read_bytes - ctrl->index); + + ctrl->index = ctrl->read_bytes; + return -EINVAL; + } + + for (i = 0; i < len; i++) + if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) + break; + + ctrl->index += len; + return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc *ifc = ctrl->regs; + u32 nand_fsr; + + if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) + return NAND_STATUS_FAIL; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD0_SHIFT); + ifc_out32(&ifc->ifc_nand.nand_fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) + return NAND_STATUS_FAIL; + + nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); + + /* Chip sometimes reporting write protect even when it's not */ + nand_fsr = nand_fsr | NAND_STATUS_WP; + return nand_fsr; +} + +static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + + fsl_ifc_read_buf(mtd, buf, mtd->writesize); + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + fsl_ifc_write_buf(mtd, buf, mtd->writesize); + fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static void fsl_ifc_ctrl_init(void) +{ + ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL); + if (!ifc_ctrl) + return; + + ifc_ctrl->regs = IFC_BASE_ADDR; + + /* clear event registers */ + ifc_out32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U); + ifc_out32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U); + + /* Enable error and event for any detected errors */ + ifc_out32(&ifc_ctrl->regs->ifc_nand.nand_evter_en, + IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_PGRDCMPL_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN); + + ifc_out32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0); +} + +static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) +{ +} + +static void fsl_ifc_sram_init(void) +{ + struct fsl_ifc *ifc = ifc_ctrl->regs; + uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0; + long long end_tick; + + cs = ifc_ctrl->cs_nand >> IFC_NAND_CSEL_SHIFT; + + /* Save CSOR and CSOR_ext */ + csor = ifc_in32(&ifc_ctrl->regs->csor_cs[cs].csor); + csor_ext = ifc_in32(&ifc_ctrl->regs->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + ifc_out32(&ifc_ctrl->regs->csor_cs[cs].csor, csor_8k); + ifc_out32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, 0x0000400); + + /* READID */ + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); + ifc_out32(&ifc->ifc_nand.row3, 0x0); + + ifc_out32(&ifc->ifc_nand.nand_fbcr, 0x0); + + /* Program ROW0/COL0 */ + ifc_out32(&ifc->ifc_nand.row0, 0x0); + ifc_out32(&ifc->ifc_nand.col0, 0x0); + + /* set the chip select for NAND Transaction */ + ifc_out32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); + + /* start read seq */ + ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); + + /* wait for NAND Machine complete flag or timeout */ + end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); + + while (end_tick > get_ticks()) { + ifc_ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); + + if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC) + break; + } + + ifc_out32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status); + + /* Restore CSOR and CSOR_ext */ + ifc_out32(&ifc_ctrl->regs->csor_cs[cs].csor, csor); + ifc_out32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, csor_ext); +} + +static int fsl_ifc_chip_init(int devnum, u8 *addr) +{ + struct mtd_info *mtd = &nand_info[devnum]; + struct nand_chip *nand; + struct fsl_ifc_mtd *priv; + struct nand_ecclayout *layout; + uint32_t cspr = 0, csor = 0, ver = 0; + int ret; + + if (!ifc_ctrl) { + fsl_ifc_ctrl_init(); + if (!ifc_ctrl) + return -1; + } + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + priv->ctrl = ifc_ctrl; + priv->vbase = addr; + + /* Find which chip select it is connected to. + */ + for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { + phys_addr_t phys_addr = virt_to_phys(addr); + + cspr = ifc_in32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr); + csor = ifc_in32(&ifc_ctrl->regs->csor_cs[priv->bank].csor); + + if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND && + (cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr)) { + ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT; + break; + } + } + + if (priv->bank >= MAX_BANKS) { + printf("%s: address did not match any " + "chip selects\n", __func__); + kfree(priv); + return -ENODEV; + } + + nand = &priv->chip; + mtd->priv = nand; + + ifc_ctrl->chips[priv->bank] = priv; + + /* fill in nand_chip structure */ + /* set up function call table */ + + nand->write_buf = fsl_ifc_write_buf; + nand->read_buf = fsl_ifc_read_buf; + nand->verify_buf = fsl_ifc_verify_buf; + nand->select_chip = fsl_ifc_select_chip; + nand->cmdfunc = fsl_ifc_cmdfunc; + nand->waitfunc = fsl_ifc_wait; + + /* set up nand options */ + nand->bbt_td = &bbt_main_descr; + nand->bbt_md = &bbt_mirror_descr; + + /* set up nand options */ + nand->options = NAND_NO_SUBPAGE_WRITE; + nand->bbt_options = NAND_BBT_USE_FLASH; + + if (cspr & CSPR_PORT_SIZE_16) { + nand->read_byte = fsl_ifc_read_byte16; + nand->options |= NAND_BUSWIDTH_16; + } else { + nand->read_byte = fsl_ifc_read_byte; + } + + nand->controller = &ifc_ctrl->controller; + nand->priv = priv; + + nand->ecc.read_page = fsl_ifc_read_page; + nand->ecc.write_page = fsl_ifc_write_page; + + /* Hardware generates ECC per 512 Bytes */ + nand->ecc.size = 512; + nand->ecc.bytes = 8; + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (nand->options & NAND_BUSWIDTH_16) { + layout = &oob_512_16bit_ecc4; + } else { + layout = &oob_512_8bit_ecc4; + + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + nand->ecc.strength = 4; + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + layout = &oob_2048_ecc4; + nand->ecc.strength = 4; + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_4096_ecc4; + nand->ecc.strength = 4; + } else { + layout = &oob_4096_ecc8; + nand->ecc.strength = 8; + nand->ecc.bytes = 16; + } + + priv->bufnum_mask = 1; + break; + + case CSOR_NAND_PGS_8K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_8192_ecc4; + nand->ecc.strength = 4; + } else { + layout = &oob_8192_ecc8; + nand->ecc.strength = 8; + nand->ecc.bytes = 16; + } + + priv->bufnum_mask = 0; + break; + + + default: + printf("ifc nand: bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.layout = layout; + } else { + nand->ecc.mode = NAND_ECC_SOFT; + } + + ver = ifc_in32(&ifc_ctrl->regs->ifc_rev); + if (ver == FSL_IFC_V1_1_0) + fsl_ifc_sram_init(); + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + ret = nand_register(devnum); + if (ret) + return ret; + return 0; +} + +#ifndef CONFIG_SYS_NAND_BASE_LIST +#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } +#endif + +static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] = + CONFIG_SYS_NAND_BASE_LIST; + +void board_nand_init(void) +{ + int i; + + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + fsl_ifc_chip_init(i, (u8 *)base_address[i]); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_spl.c b/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_spl.c new file mode 100644 index 000000000..510077282 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsl_ifc_spl.c @@ -0,0 +1,252 @@ +/* + * NAND boot for Freescale Integrated Flash Controller, NAND FCM + * + * Copyright 2011 Freescale Semiconductor, Inc. + * Author: Dipen Dudhat <dipen.dudhat@freescale.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <fsl_ifc.h> +#include <linux/mtd/nand.h> + +static inline int is_blank(uchar *addr, int page_size) +{ + int i; + + for (i = 0; i < page_size; i++) { + if (__raw_readb(&addr[i]) != 0xff) + return 0; + } + + /* + * For the SPL, don't worry about uncorrectable errors + * where the main area is all FFs but shouldn't be. + */ + return 1; +} + +/* returns nonzero if entire page is blank */ +static inline int check_read_ecc(uchar *buf, u32 *eccstat, + unsigned int bufnum, int page_size) +{ + u32 reg = eccstat[bufnum / 4]; + int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf; + + if (errors == 0xf) { /* uncorrectable */ + /* Blank pages fail hw ECC checks */ + if (is_blank(buf, page_size)) + return 1; + + puts("ecc error\n"); + for (;;) + ; + } + + return 0; +} + +static inline void nand_wait(uchar *buf, int bufnum, int page_size) +{ + struct fsl_ifc *ifc = IFC_BASE_ADDR; + u32 status; + u32 eccstat[4]; + int bufperpage = page_size / 512; + int bufnum_end, i; + + bufnum *= bufperpage; + bufnum_end = bufnum + bufperpage - 1; + + do { + status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); + } while (!(status & IFC_NAND_EVTER_STAT_OPC)); + + if (status & IFC_NAND_EVTER_STAT_FTOER) { + puts("flash time out error\n"); + for (;;) + ; + } + + for (i = bufnum / 4; i <= bufnum_end / 4; i++) + eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]); + + for (i = bufnum; i <= bufnum_end; i++) { + if (check_read_ecc(buf, eccstat, i, page_size)) + break; + } + + ifc_out32(&ifc->ifc_nand.nand_evter_stat, status); +} + +static inline int bad_block(uchar *marker, int port_size) +{ + if (port_size == 8) + return __raw_readb(marker) != 0xff; + else + return __raw_readw((u16 *)marker) != 0xffff; +} + +int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst) +{ + struct fsl_ifc *ifc = IFC_BASE_ADDR; + uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE; + int page_size; + int port_size; + int pages_per_blk; + int blk_size; + int bad_marker = 0; + int bufnum_mask, bufnum; + + int csor, cspr; + int pos = 0; + int j = 0; + + int sram_addr; + int pg_no; + uchar *dst = vdst; + + /* Get NAND Flash configuration */ + csor = CONFIG_SYS_NAND_CSOR; + cspr = CONFIG_SYS_NAND_CSPR; + + port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8; + + if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) { + page_size = 8192; + bufnum_mask = 0x0; + } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) { + page_size = 4096; + bufnum_mask = 0x1; + } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) { + page_size = 2048; + bufnum_mask = 0x3; + } else { + page_size = 512; + bufnum_mask = 0xf; + + if (port_size == 8) + bad_marker = 5; + } + + pages_per_blk = + 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT); + + blk_size = pages_per_blk * page_size; + + /* Open Full SRAM mapping for spare are access */ + ifc_out32(&ifc->ifc_nand.ncfgr, 0x0); + + /* Clear Boot events */ + ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff); + + /* Program FIR/FCR for Large/Small page */ + if (page_size > 512) { + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); + + ifc_out32(&ifc->ifc_nand.nand_fcr0, + (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); + } else { + ifc_out32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT)); + ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); + + ifc_out32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); + } + + /* Program FBCR = 0 for full page read */ + ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); + + /* Read and copy u-boot on SDRAM from NAND device, In parallel + * check for Bad block if found skip it and read continue to + * next Block + */ + while (pos < uboot_size) { + int i = 0; + do { + pg_no = offs / page_size; + bufnum = pg_no & bufnum_mask; + sram_addr = bufnum * page_size * 2; + + ifc_out32(&ifc->ifc_nand.row0, pg_no); + ifc_out32(&ifc->ifc_nand.col0, 0); + /* start read */ + ifc_out32(&ifc->ifc_nand.nandseq_strt, + IFC_NAND_SEQ_STRT_FIR_STRT); + + /* wait for read to complete */ + nand_wait(&buf[sram_addr], bufnum, page_size); + + /* + * If either of the first two pages are marked bad, + * continue to the next block. + */ + if (i++ < 2 && + bad_block(&buf[sram_addr + page_size + bad_marker], + port_size)) { + puts("skipping\n"); + offs = (offs + blk_size) & ~(blk_size - 1); + pos &= ~(blk_size - 1); + break; + } + + for (j = 0; j < page_size; j++) + dst[pos + j] = __raw_readb(&buf[sram_addr + j]); + + pos += page_size; + offs += page_size; + } while ((offs & (blk_size - 1)) && (pos < uboot_size)); + } + + return 0; +} + +/* + * Main entrypoint for NAND Boot. It's necessary that SDRAM is already + * configured and available since this code loads the main U-boot image + * from NAND into SDRAM and starts from there. + */ +void nand_boot(void) +{ + __attribute__((noreturn)) void (*uboot)(void); + /* + * Load U-Boot image from NAND into RAM + */ + nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS, + CONFIG_SYS_NAND_U_BOOT_SIZE, + (uchar *)CONFIG_SYS_NAND_U_BOOT_DST); + +#ifdef CONFIG_NAND_ENV_DST + nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, + (uchar *)CONFIG_NAND_ENV_DST); + +#ifdef CONFIG_ENV_OFFSET_REDUND + nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, + (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); +#endif +#endif + /* + * Jump to U-Boot image + */ +#ifdef CONFIG_SPL_FLUSH_IMAGE + /* + * Clean d-cache and invalidate i-cache, to + * make sure that no stale data is executed. + */ + flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE); +#endif + uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; + uboot(); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsl_upm.c b/qemu/roms/u-boot/drivers/mtd/nand/fsl_upm.c new file mode 100644 index 000000000..3ae0044f2 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsl_upm.c @@ -0,0 +1,199 @@ +/* + * FSL UPM NAND driver + * + * Copyright (C) 2007 MontaVista Software, Inc. + * Anton Vorontsov <avorontsov@ru.mvista.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <config.h> +#include <common.h> +#include <asm/io.h> +#include <asm/errno.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/fsl_upm.h> +#include <nand.h> + +static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset) +{ + clrsetbits_be32(upm->mxmr, MxMR_MAD_MSK, MxMR_OP_RUNP | pat_offset); + (void)in_be32(upm->mxmr); +} + +static void fsl_upm_end_pattern(struct fsl_upm *upm) +{ + clrbits_be32(upm->mxmr, MxMR_OP_RUNP); + + while (in_be32(upm->mxmr) & MxMR_OP_RUNP) + eieio(); +} + +static void fsl_upm_run_pattern(struct fsl_upm *upm, int width, + void __iomem *io_addr, u32 mar) +{ + out_be32(upm->mar, mar); + (void)in_be32(upm->mar); + switch (width) { + case 8: + out_8(io_addr, 0x0); + break; + case 16: + out_be16(io_addr, 0x0); + break; + case 32: + out_be32(io_addr, 0x0); + break; + } +} + +static void fun_wait(struct fsl_upm_nand *fun) +{ + if (fun->dev_ready) { + while (!fun->dev_ready(fun->chip_nr)) + debug("unexpected busy state\n"); + } else { + /* + * If the R/B pin is not connected, + * a short delay is necessary. + */ + udelay(1); + } +} + +#if CONFIG_SYS_NAND_MAX_CHIPS > 1 +static void fun_select_chip(struct mtd_info *mtd, int chip_nr) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_upm_nand *fun = chip->priv; + + if (chip_nr >= 0) { + fun->chip_nr = chip_nr; + chip->IO_ADDR_R = chip->IO_ADDR_W = + fun->upm.io_addr + fun->chip_offset * chip_nr; + } else if (chip_nr == -1) { + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + } +} +#endif + +static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_upm_nand *fun = chip->priv; + void __iomem *io_addr; + u32 mar; + + if (!(ctrl & fun->last_ctrl)) { + fsl_upm_end_pattern(&fun->upm); + + if (cmd == NAND_CMD_NONE) + return; + + fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE); + } + + if (ctrl & NAND_CTRL_CHANGE) { + if (ctrl & NAND_ALE) + fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset); + else if (ctrl & NAND_CLE) + fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); + } + + mar = cmd << (32 - fun->width); + io_addr = fun->upm.io_addr; +#if CONFIG_SYS_NAND_MAX_CHIPS > 1 + if (fun->chip_nr > 0) { + io_addr += fun->chip_offset * fun->chip_nr; + if (fun->upm_mar_chip_offset) + mar |= fun->upm_mar_chip_offset * fun->chip_nr; + } +#endif + fsl_upm_run_pattern(&fun->upm, fun->width, io_addr, mar); + + /* + * Some boards/chips needs this. At least the MPC8360E-RDK + * needs it. Probably weird chip, because I don't see any + * need for this on MPC8555E + Samsung K9F1G08U0A. Usually + * here are 0-2 unexpected busy states per block read. + */ + if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN) + fun_wait(fun); +} + +static u8 upm_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + + return in_8(chip->IO_ADDR_R); +} + +static void upm_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + struct fsl_upm_nand *fun = chip->priv; + + for (i = 0; i < len; i++) { + out_8(chip->IO_ADDR_W, buf[i]); + if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE) + fun_wait(fun); + } + + if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER) + fun_wait(fun); +} + +static void upm_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + for (i = 0; i < len; i++) + buf[i] = in_8(chip->IO_ADDR_R); +} + +static int upm_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + for (i = 0; i < len; i++) { + if (buf[i] != in_8(chip->IO_ADDR_R)) + return -EFAULT; + } + + return 0; +} + +static int nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_upm_nand *fun = chip->priv; + + return fun->dev_ready(fun->chip_nr); +} + +int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun) +{ + if (fun->width != 8 && fun->width != 16 && fun->width != 32) + return -ENOSYS; + + fun->last_ctrl = NAND_CLE; + + chip->priv = fun; + chip->chip_delay = fun->chip_delay; + chip->ecc.mode = NAND_ECC_SOFT; + chip->cmd_ctrl = fun_cmd_ctrl; +#if CONFIG_SYS_NAND_MAX_CHIPS > 1 + chip->select_chip = fun_select_chip; +#endif + chip->read_byte = upm_nand_read_byte; + chip->read_buf = upm_nand_read_buf; + chip->write_buf = upm_nand_write_buf; + chip->verify_buf = upm_nand_verify_buf; + if (fun->dev_ready) + chip->dev_ready = nand_dev_ready; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/fsmc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/fsmc_nand.c new file mode 100644 index 000000000..567eff091 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/fsmc_nand.c @@ -0,0 +1,473 @@ +/* + * (C) Copyright 2010 + * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com. + * + * (C) Copyright 2012 + * Amit Virdi, ST Microelectronics, amit.virdi@st.com. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/io.h> +#include <linux/bitops.h> +#include <linux/err.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/fsmc_nand.h> +#include <asm/arch/hardware.h> + +static u32 fsmc_version; +static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *) + CONFIG_SYS_FSMC_BASE; + +/* + * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of + * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can + * correct 1 bit in 512 bytes + */ + +static struct nand_ecclayout fsmc_ecc4_lp_layout = { + .eccbytes = 104, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 1} + } +}; + +/* + * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes + * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 + * bytes are free for use. + */ +static struct nand_ecclayout fsmc_ecc4_224_layout = { + .eccbytes = 104, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 97} + } +}; + +/* + * ECC placement definitions in oobfree type format + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data + * Managing the ecc bytes in the following way makes it easier for software to + * read ecc bytes consecutive to data bytes. This way is similar to + * oobfree structure maintained already in u-boot nand driver + */ +static struct fsmc_eccplace fsmc_eccpl_lp = { + .eccplace = { + {.offset = 2, .length = 13}, + {.offset = 18, .length = 13}, + {.offset = 34, .length = 13}, + {.offset = 50, .length = 13}, + {.offset = 66, .length = 13}, + {.offset = 82, .length = 13}, + {.offset = 98, .length = 13}, + {.offset = 114, .length = 13} + } +}; + +static struct nand_ecclayout fsmc_ecc4_sp_layout = { + .eccbytes = 13, + .eccpos = { 0, 1, 2, 3, 6, 7, 8, + 9, 10, 11, 12, 13, 14 + }, + .oobfree = { + {.offset = 15, .length = 1}, + } +}; + +static struct fsmc_eccplace fsmc_eccpl_sp = { + .eccplace = { + {.offset = 0, .length = 4}, + {.offset = 6, .length = 9} + } +}; + +static struct nand_ecclayout fsmc_ecc1_layout = { + .eccbytes = 24, + .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, + 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, + .oobfree = { + {.offset = 8, .length = 8}, + {.offset = 24, .length = 8}, + {.offset = 40, .length = 8}, + {.offset = 56, .length = 8}, + {.offset = 72, .length = 8}, + {.offset = 88, .length = 8}, + {.offset = 104, .length = 8}, + {.offset = 120, .length = 8} + } +}; + +/* Count the number of 0's in buff upto a max of max_bits */ +static int count_written_bits(uint8_t *buff, int size, int max_bits) +{ + int k, written_bits = 0; + + for (k = 0; k < size; k++) { + written_bits += hweight8(~buff[k]); + if (written_bits > max_bits) + break; + } + + return written_bits; +} + +static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl) +{ + struct nand_chip *this = mtd->priv; + ulong IO_ADDR_W; + + if (ctrl & NAND_CTRL_CHANGE) { + IO_ADDR_W = (ulong)this->IO_ADDR_W; + + IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE); + if (ctrl & NAND_CLE) + IO_ADDR_W |= CONFIG_SYS_NAND_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= CONFIG_SYS_NAND_ALE; + + if (ctrl & NAND_NCE) { + writel(readl(&fsmc_regs_p->pc) | + FSMC_ENABLE, &fsmc_regs_p->pc); + } else { + writel(readl(&fsmc_regs_p->pc) & + ~FSMC_ENABLE, &fsmc_regs_p->pc); + } + this->IO_ADDR_W = (void *)IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + /* The calculated ecc is actually the correction index in data */ + u32 err_idx[8]; + u32 num_err, i; + u32 ecc1, ecc2, ecc3, ecc4; + + num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF; + + if (likely(num_err == 0)) + return 0; + + if (unlikely(num_err > 8)) { + /* + * This is a temporary erase check. A newly erased page read + * would result in an ecc error because the oob data is also + * erased to FF and the calculated ecc for an FF data is not + * FF..FF. + * This is a workaround to skip performing correction in case + * data is FF..FF + * + * Logic: + * For every page, each bit written as 0 is counted until these + * number of bits are greater than 8 (the maximum correction + * capability of FSMC for each 512 + 13 bytes) + */ + + int bits_ecc = count_written_bits(read_ecc, 13, 8); + int bits_data = count_written_bits(dat, 512, 8); + + if ((bits_ecc + bits_data) <= 8) { + if (bits_data) + memset(dat, 0xff, 512); + return bits_data + bits_ecc; + } + + return -EBADMSG; + } + + ecc1 = readl(&fsmc_regs_p->ecc1); + ecc2 = readl(&fsmc_regs_p->ecc2); + ecc3 = readl(&fsmc_regs_p->ecc3); + ecc4 = readl(&fsmc_regs_p->sts); + + err_idx[0] = (ecc1 >> 0) & 0x1FFF; + err_idx[1] = (ecc1 >> 13) & 0x1FFF; + err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); + err_idx[3] = (ecc2 >> 7) & 0x1FFF; + err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); + err_idx[5] = (ecc3 >> 1) & 0x1FFF; + err_idx[6] = (ecc3 >> 14) & 0x1FFF; + err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); + + i = 0; + while (i < num_err) { + err_idx[i] ^= 3; + + if (err_idx[i] < 512 * 8) + __change_bit(err_idx[i], dat); + + i++; + } + + return num_err; +} + +static int fsmc_read_hwecc(struct mtd_info *mtd, + const u_char *data, u_char *ecc) +{ + u_int ecc_tmp; + int timeout = CONFIG_SYS_HZ; + ulong start; + + switch (fsmc_version) { + case FSMC_VER8: + start = get_timer(0); + while (get_timer(start) < timeout) { + /* + * Busy waiting for ecc computation + * to finish for 512 bytes + */ + if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY) + break; + } + + ecc_tmp = readl(&fsmc_regs_p->ecc1); + ecc[0] = (u_char) (ecc_tmp >> 0); + ecc[1] = (u_char) (ecc_tmp >> 8); + ecc[2] = (u_char) (ecc_tmp >> 16); + ecc[3] = (u_char) (ecc_tmp >> 24); + + ecc_tmp = readl(&fsmc_regs_p->ecc2); + ecc[4] = (u_char) (ecc_tmp >> 0); + ecc[5] = (u_char) (ecc_tmp >> 8); + ecc[6] = (u_char) (ecc_tmp >> 16); + ecc[7] = (u_char) (ecc_tmp >> 24); + + ecc_tmp = readl(&fsmc_regs_p->ecc3); + ecc[8] = (u_char) (ecc_tmp >> 0); + ecc[9] = (u_char) (ecc_tmp >> 8); + ecc[10] = (u_char) (ecc_tmp >> 16); + ecc[11] = (u_char) (ecc_tmp >> 24); + + ecc_tmp = readl(&fsmc_regs_p->sts); + ecc[12] = (u_char) (ecc_tmp >> 16); + break; + + default: + ecc_tmp = readl(&fsmc_regs_p->ecc1); + ecc[0] = (u_char) (ecc_tmp >> 0); + ecc[1] = (u_char) (ecc_tmp >> 8); + ecc[2] = (u_char) (ecc_tmp >> 16); + break; + } + + return 0; +} + +void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256, + &fsmc_regs_p->pc); + writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN, + &fsmc_regs_p->pc); + writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN, + &fsmc_regs_p->pc); +} + +/* + * fsmc_read_page_hwecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * This routine is needed for fsmc verison 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(upto a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsmc_eccplace *fsmc_eccpl; + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + int off, len, group = 0; + uint8_t oob[13] __attribute__ ((aligned (2))); + + /* Differentiate between small and large page ecc place definitions */ + if (mtd->writesize == 512) + fsmc_eccpl = &fsmc_eccpl_sp; + else + fsmc_eccpl = &fsmc_eccpl_lp; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + + chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + + for (j = 0; j < eccbytes;) { + off = fsmc_eccpl->eccplace[group].offset; + len = fsmc_eccpl->eccplace[group].length; + group++; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + if (chip->options & NAND_BUSWIDTH_16) + len = roundup(len, 2); + chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); + chip->read_buf(mtd, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, 13); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], + &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + + return 0; +} + +int fsmc_nand_init(struct nand_chip *nand) +{ + static int chip_nr; + struct mtd_info *mtd; + int i; + u32 peripid2 = readl(&fsmc_regs_p->peripid2); + + fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) & + FSMC_REVISION_MSK; + + writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl); + +#if defined(CONFIG_SYS_FSMC_NAND_16BIT) + writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, + &fsmc_regs_p->pc); +#elif defined(CONFIG_SYS_FSMC_NAND_8BIT) + writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, + &fsmc_regs_p->pc); +#else +#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT +#endif + writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1, + &fsmc_regs_p->pc); + writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, + &fsmc_regs_p->comm); + writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, + &fsmc_regs_p->attrib); + + nand->options = 0; +#if defined(CONFIG_SYS_FSMC_NAND_16BIT) + nand->options |= NAND_BUSWIDTH_16; +#endif + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = 512; + nand->ecc.calculate = fsmc_read_hwecc; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->cmd_ctrl = fsmc_nand_hwcontrol; + nand->IO_ADDR_R = nand->IO_ADDR_W = + (void __iomem *)CONFIG_SYS_NAND_BASE; + nand->badblockbits = 7; + + mtd = &nand_info[chip_nr++]; + mtd->priv = nand; + + switch (fsmc_version) { + case FSMC_VER8: + nand->ecc.bytes = 13; + nand->ecc.strength = 8; + nand->ecc.correct = fsmc_bch8_correct_data; + nand->ecc.read_page = fsmc_read_page_hwecc; + if (mtd->writesize == 512) + nand->ecc.layout = &fsmc_ecc4_sp_layout; + else { + if (mtd->oobsize == 224) + nand->ecc.layout = &fsmc_ecc4_224_layout; + else + nand->ecc.layout = &fsmc_ecc4_lp_layout; + } + + break; + default: + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->ecc.layout = &fsmc_ecc1_layout; + nand->ecc.correct = nand_correct_data; + break; + } + + /* Detect NAND chips */ + if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) + return -ENXIO; + + if (nand_scan_tail(mtd)) + return -ENXIO; + + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + if (nand_register(i)) + return -ENXIO; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/jz4740_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/jz4740_nand.c new file mode 100644 index 000000000..7a62cc336 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/jz4740_nand.c @@ -0,0 +1,259 @@ +/* + * Platform independend driver for JZ4740. + * + * Copyright (c) 2007 Ingenic Semiconductor Inc. + * Author: <jlwei@ingenic.cn> + * + * SPDX-License-Identifier: GPL-2.0+ + */ +#include <common.h> + +#include <nand.h> +#include <asm/io.h> +#include <asm/jz4740.h> + +#define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000) +#define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000) +#define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000) + +#define BIT(x) (1 << (x)) +#define JZ_NAND_ECC_CTRL_ENCODING BIT(3) +#define JZ_NAND_ECC_CTRL_RS BIT(2) +#define JZ_NAND_ECC_CTRL_RESET BIT(1) +#define JZ_NAND_ECC_CTRL_ENABLE BIT(0) + +#define EMC_SMCR1_OPT_NAND 0x094c4400 +/* Optimize the timing of nand */ + +static struct jz4740_emc * emc = (struct jz4740_emc *)JZ4740_EMC_BASE; + +static struct nand_ecclayout qi_lb60_ecclayout_2gb = { + .eccbytes = 72, + .eccpos = { + 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, + 28, 29, 30, 31, 32, 33, 34, 35, + 36, 37, 38, 39, 40, 41, 42, 43, + 44, 45, 46, 47, 48, 49, 50, 51, + 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, + 68, 69, 70, 71, 72, 73, 74, 75, + 76, 77, 78, 79, 80, 81, 82, 83 }, + .oobfree = { + {.offset = 2, + .length = 10 }, + {.offset = 84, + .length = 44 } } +}; + +static int is_reading; + +static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + uint32_t reg; + + if (ctrl & NAND_CTRL_CHANGE) { + if (ctrl & NAND_ALE) + this->IO_ADDR_W = JZ_NAND_ADDR_ADDR; + else if (ctrl & NAND_CLE) + this->IO_ADDR_W = JZ_NAND_CMD_ADDR; + else + this->IO_ADDR_W = JZ_NAND_DATA_ADDR; + + reg = readl(&emc->nfcsr); + if (ctrl & NAND_NCE) + reg |= EMC_NFCSR_NFCE1; + else + reg &= ~EMC_NFCSR_NFCE1; + writel(reg, &emc->nfcsr); + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +static int jz_nand_device_ready(struct mtd_info *mtd) +{ + return (readl(GPIO_PXPIN(2)) & 0x40000000) ? 1 : 0; +} + +void board_nand_select_device(struct nand_chip *nand, int chip) +{ + /* + * Don't use "chip" to address the NAND device, + * generate the cs from the address where it is encoded. + */ +} + +static int jz_nand_rs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + uint32_t status; + int i; + + if (is_reading) + return 0; + + do { + status = readl(&emc->nfints); + } while (!(status & EMC_NFINTS_ENCF)); + + /* disable ecc */ + writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr); + + for (i = 0; i < 9; i++) + ecc_code[i] = readb(&emc->nfpar[i]); + + return 0; +} + +static void jz_nand_hwctl(struct mtd_info *mtd, int mode) +{ + uint32_t reg; + + writel(0, &emc->nfints); + reg = readl(&emc->nfecr); + reg |= JZ_NAND_ECC_CTRL_RESET; + reg |= JZ_NAND_ECC_CTRL_ENABLE; + reg |= JZ_NAND_ECC_CTRL_RS; + + switch (mode) { + case NAND_ECC_READ: + reg &= ~JZ_NAND_ECC_CTRL_ENCODING; + is_reading = 1; + break; + case NAND_ECC_WRITE: + reg |= JZ_NAND_ECC_CTRL_ENCODING; + is_reading = 0; + break; + default: + break; + } + + writel(reg, &emc->nfecr); +} + +/* Correct 1~9-bit errors in 512-bytes data */ +static void jz_rs_correct(unsigned char *dat, int idx, int mask) +{ + int i; + + idx--; + + i = idx + (idx >> 3); + if (i >= 512) + return; + + mask <<= (idx & 0x7); + + dat[i] ^= mask & 0xff; + if (i < 511) + dat[i + 1] ^= (mask >> 8) & 0xff; +} + +static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + int k; + uint32_t errcnt, index, mask, status; + + /* Set PAR values */ + const uint8_t all_ff_ecc[] = { + 0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f }; + + if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && + read_ecc[2] == 0xff && read_ecc[3] == 0xff && + read_ecc[4] == 0xff && read_ecc[5] == 0xff && + read_ecc[6] == 0xff && read_ecc[7] == 0xff && + read_ecc[8] == 0xff) { + for (k = 0; k < 9; k++) + writeb(all_ff_ecc[k], &emc->nfpar[k]); + } else { + for (k = 0; k < 9; k++) + writeb(read_ecc[k], &emc->nfpar[k]); + } + /* Set PRDY */ + writel(readl(&emc->nfecr) | EMC_NFECR_PRDY, &emc->nfecr); + + /* Wait for completion */ + do { + status = readl(&emc->nfints); + } while (!(status & EMC_NFINTS_DECF)); + + /* disable ecc */ + writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr); + + /* Check decoding */ + if (!(status & EMC_NFINTS_ERR)) + return 0; + + if (status & EMC_NFINTS_UNCOR) { + printf("uncorrectable ecc\n"); + return -1; + } + + errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT; + + switch (errcnt) { + case 4: + index = (readl(&emc->nferr[3]) & EMC_NFERR_INDEX_MASK) >> + EMC_NFERR_INDEX_BIT; + mask = (readl(&emc->nferr[3]) & EMC_NFERR_MASK_MASK) >> + EMC_NFERR_MASK_BIT; + jz_rs_correct(dat, index, mask); + case 3: + index = (readl(&emc->nferr[2]) & EMC_NFERR_INDEX_MASK) >> + EMC_NFERR_INDEX_BIT; + mask = (readl(&emc->nferr[2]) & EMC_NFERR_MASK_MASK) >> + EMC_NFERR_MASK_BIT; + jz_rs_correct(dat, index, mask); + case 2: + index = (readl(&emc->nferr[1]) & EMC_NFERR_INDEX_MASK) >> + EMC_NFERR_INDEX_BIT; + mask = (readl(&emc->nferr[1]) & EMC_NFERR_MASK_MASK) >> + EMC_NFERR_MASK_BIT; + jz_rs_correct(dat, index, mask); + case 1: + index = (readl(&emc->nferr[0]) & EMC_NFERR_INDEX_MASK) >> + EMC_NFERR_INDEX_BIT; + mask = (readl(&emc->nferr[0]) & EMC_NFERR_MASK_MASK) >> + EMC_NFERR_MASK_BIT; + jz_rs_correct(dat, index, mask); + default: + break; + } + + return errcnt; +} + +/* + * Main initialization routine + */ +int board_nand_init(struct nand_chip *nand) +{ + uint32_t reg; + + reg = readl(&emc->nfcsr); + reg |= EMC_NFCSR_NFE1; /* EMC setup, Set NFE bit */ + writel(reg, &emc->nfcsr); + + writel(EMC_SMCR1_OPT_NAND, &emc->smcr[1]); + + nand->IO_ADDR_R = JZ_NAND_DATA_ADDR; + nand->IO_ADDR_W = JZ_NAND_DATA_ADDR; + nand->cmd_ctrl = jz_nand_cmd_ctrl; + nand->dev_ready = jz_nand_device_ready; + nand->ecc.hwctl = jz_nand_hwctl; + nand->ecc.correct = jz_nand_rs_correct_data; + nand->ecc.calculate = jz_nand_rs_calculate_ecc; + nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; + nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; + nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; + nand->ecc.strength = 4; + nand->ecc.layout = &qi_lb60_ecclayout_2gb; + nand->chip_delay = 50; + nand->bbt_options |= NAND_BBT_USE_FLASH; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/kb9202_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/kb9202_nand.c new file mode 100644 index 000000000..22c562540 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/kb9202_nand.c @@ -0,0 +1,134 @@ +/* + * (C) Copyright 2006 + * KwikByte <kb9200_dev@kwikbyte.com> + * + * (C) Copyright 2009 + * Matthias Kaehlcke <matthias@kaehlcke.net> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/arch/AT91RM9200.h> +#include <asm/arch/hardware.h> + +#include <nand.h> + +/* + * hardware specific access to control-lines + */ + +#define MASK_ALE (1 << 22) /* our ALE is A22 */ +#define MASK_CLE (1 << 21) /* our CLE is A21 */ + +#define KB9202_NAND_NCE (1 << 28) /* EN* on D28 */ +#define KB9202_NAND_BUSY (1 << 29) /* RB* on D29 */ + +#define KB9202_SMC2_NWS (1 << 2) +#define KB9202_SMC2_TDF (1 << 8) +#define KB9202_SMC2_RWSETUP (1 << 24) +#define KB9202_SMC2_RWHOLD (1 << 29) + +/* + * Board-specific function to access device control signals + */ +static void kb9202_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + + if (ctrl & NAND_CTRL_CHANGE) { + ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; + + /* clear ALE and CLE bits */ + IO_ADDR_W &= ~(MASK_ALE | MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= MASK_CLE; + + if (ctrl & NAND_ALE) + IO_ADDR_W |= MASK_ALE; + + this->IO_ADDR_W = (void *) IO_ADDR_W; + + if (ctrl & NAND_NCE) + writel(KB9202_NAND_NCE, AT91C_PIOC_CODR); + else + writel(KB9202_NAND_NCE, AT91C_PIOC_SODR); + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + + +/* + * Board-specific function to access the device ready signal. + */ +static int kb9202_nand_ready(struct mtd_info *mtd) +{ + return readl(AT91C_PIOC_PDSR) & KB9202_NAND_BUSY; +} + + +/* + * Board-specific NAND init. Copied from include/linux/mtd/nand.h for reference. + * + * struct nand_chip - NAND Private Flash Chip Data + * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device + * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device + * @hwcontrol: [BOARDSPECIFIC] hardwarespecific function for accesing control-lines + * @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line + * If set to NULL no access to ready/busy is available and the ready/busy information + * is read from the chip status register + * @enable_hwecc: [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only + * be provided if a hardware ECC is available + * @eccmode: [BOARDSPECIFIC] mode of ecc, see defines + * @chip_delay: [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR) + * @options: [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about + * special functionality. See the defines for further explanation +*/ +/* + * This routine initializes controller and GPIOs. + */ +int board_nand_init(struct nand_chip *nand) +{ + unsigned int value; + + nand->ecc.mode = NAND_ECC_SOFT; + nand->cmd_ctrl = kb9202_nand_hwcontrol; + nand->dev_ready = kb9202_nand_ready; + + /* in case running outside of bootloader */ + writel(1 << AT91C_ID_PIOC, AT91C_PMC_PCER); + + /* setup nand flash access (allow ample margin) */ + /* 4 wait states, 1 setup, 1 hold, 1 float for 8-bit device */ + writel(AT91C_SMC2_WSEN | KB9202_SMC2_NWS | KB9202_SMC2_TDF | + AT91C_SMC2_DBW_8 | KB9202_SMC2_RWSETUP | KB9202_SMC2_RWHOLD, + AT91C_SMC_CSR3); + + /* enable internal NAND controller */ + value = readl(AT91C_EBI_CSA); + value |= AT91C_EBI_CS3A_SMC_SmartMedia; + writel(value, AT91C_EBI_CSA); + + /* enable SMOE/SMWE */ + writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_ASR); + writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_PDR); + writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_OER); + + /* set NCE to high */ + writel(KB9202_NAND_NCE, AT91C_PIOC_SODR); + + /* disable output on pin connected to the busy line of the NAND */ + writel(KB9202_NAND_BUSY, AT91C_PIOC_ODR); + + /* enable the PIO to control NCE and BUSY */ + writel(KB9202_NAND_NCE | KB9202_NAND_BUSY, AT91C_PIOC_PER); + + /* enable output for NCE */ + writel(KB9202_NAND_NCE, AT91C_PIOC_OER); + + return (0); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/kirkwood_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/kirkwood_nand.c new file mode 100644 index 000000000..72687a1da --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/kirkwood_nand.c @@ -0,0 +1,70 @@ +/* + * (C) Copyright 2009 + * Marvell Semiconductor <www.marvell.com> + * Written-by: Prafulla Wadaskar <prafulla@marvell.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/arch/kirkwood.h> +#include <nand.h> + +/* NAND Flash Soc registers */ +struct kwnandf_registers { + u32 rd_params; /* 0x10418 */ + u32 wr_param; /* 0x1041c */ + u8 pad[0x10470 - 0x1041c - 4]; + u32 ctrl; /* 0x10470 */ +}; + +static struct kwnandf_registers *nf_reg = + (struct kwnandf_registers *)KW_NANDF_BASE; + +/* + * hardware specific access to control-lines/bits + */ +#define NAND_ACTCEBOOT_BIT 0x02 + +static void kw_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nc = mtd->priv; + u32 offs; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + offs = (1 << 0); /* Commands with A[1:0] == 01 */ + else if (ctrl & NAND_ALE) + offs = (1 << 1); /* Addresses with A[1:0] == 10 */ + else + return; + + writeb(cmd, nc->IO_ADDR_W + offs); +} + +void kw_nand_select_chip(struct mtd_info *mtd, int chip) +{ + u32 data; + + data = readl(&nf_reg->ctrl); + data |= NAND_ACTCEBOOT_BIT; + writel(data, &nf_reg->ctrl); +} + +int board_nand_init(struct nand_chip *nand) +{ + nand->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING; +#if defined(CONFIG_NAND_ECC_BCH) + nand->ecc.mode = NAND_ECC_SOFT_BCH; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif + nand->cmd_ctrl = kw_nand_hwcontrol; + nand->chip_delay = 40; + nand->select_chip = kw_nand_select_chip; + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/kmeter1_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/kmeter1_nand.c new file mode 100644 index 000000000..df0bde579 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/kmeter1_nand.c @@ -0,0 +1,123 @@ +/* + * (C) Copyright 2009 + * Heiko Schocher, DENX Software Engineering, hs@denx.de + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/io.h> + +#define CONFIG_NAND_MODE_REG (void *)(CONFIG_SYS_NAND_BASE + 0x20000) +#define CONFIG_NAND_DATA_REG (void *)(CONFIG_SYS_NAND_BASE + 0x30000) + +#define read_mode() in_8(CONFIG_NAND_MODE_REG) +#define write_mode(val) out_8(CONFIG_NAND_MODE_REG, val) +#define read_data() in_8(CONFIG_NAND_DATA_REG) +#define write_data(val) out_8(CONFIG_NAND_DATA_REG, val) + +#define KPN_RDY2 (1 << 7) +#define KPN_RDY1 (1 << 6) +#define KPN_WPN (1 << 4) +#define KPN_CE2N (1 << 3) +#define KPN_CE1N (1 << 2) +#define KPN_ALE (1 << 1) +#define KPN_CLE (1 << 0) + +#define KPN_DEFAULT_CHIP_DELAY 50 + +static int kpn_chip_ready(void) +{ + if (read_mode() & KPN_RDY1) + return 1; + + return 0; +} + +static void kpn_wait_rdy(void) +{ + int cnt = 1000000; + + while (--cnt && !kpn_chip_ready()) + udelay(1); + + if (!cnt) + printf ("timeout while waiting for RDY\n"); +} + +static void kpn_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + u8 reg_val = read_mode(); + + if (ctrl & NAND_CTRL_CHANGE) { + reg_val = reg_val & ~(KPN_ALE + KPN_CLE); + + if (ctrl & NAND_CLE) + reg_val = reg_val | KPN_CLE; + if (ctrl & NAND_ALE) + reg_val = reg_val | KPN_ALE; + if (ctrl & NAND_NCE) + reg_val = reg_val & ~KPN_CE1N; + else + reg_val = reg_val | KPN_CE1N; + + write_mode(reg_val); + } + if (cmd != NAND_CMD_NONE) + write_data(cmd); + + /* wait until flash is ready */ + kpn_wait_rdy(); +} + +static u_char kpn_nand_read_byte(struct mtd_info *mtd) +{ + return read_data(); +} + +static void kpn_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) { + write_data(buf[i]); + kpn_wait_rdy(); + } +} + +static void kpn_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = read_data(); +} + +static int kpn_nand_dev_ready(struct mtd_info *mtd) +{ + kpn_wait_rdy(); + + return 1; +} + +int board_nand_init(struct nand_chip *nand) +{ +#if defined(CONFIG_NAND_ECC_BCH) + nand->ecc.mode = NAND_ECC_SOFT_BCH; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif + + /* Reference hardware control function */ + nand->cmd_ctrl = kpn_nand_hwcontrol; + nand->read_byte = kpn_nand_read_byte; + nand->write_buf = kpn_nand_write_buf; + nand->read_buf = kpn_nand_read_buf; + nand->dev_ready = kpn_nand_dev_ready; + nand->chip_delay = KPN_DEFAULT_CHIP_DELAY; + + /* reset mode register */ + write_mode(KPN_CE1N + KPN_CE2N + KPN_WPN); + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mpc5121_nfc.c b/qemu/roms/u-boot/drivers/mtd/nand/mpc5121_nfc.c new file mode 100644 index 000000000..d0f3a3532 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/mpc5121_nfc.c @@ -0,0 +1,681 @@ +/* + * Copyright 2004-2008 Freescale Semiconductor, Inc. + * Copyright 2009 Semihalf. + * (C) Copyright 2009 Stefan Roese <sr@denx.de> + * + * Based on original driver from Freescale Semiconductor + * written by John Rigby <jrigby@freescale.com> on basis + * of drivers/mtd/nand/mxc_nand.c. Reworked and extended + * Piotr Ziecik <kosmo@semihalf.com>. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <malloc.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/compat.h> + +#include <asm/errno.h> +#include <asm/io.h> +#include <asm/processor.h> +#include <nand.h> + +#define DRV_NAME "mpc5121_nfc" + +/* Timeouts */ +#define NFC_RESET_TIMEOUT 1000 /* 1 ms */ +#define NFC_TIMEOUT 2000 /* 2000 us */ + +/* Addresses for NFC MAIN RAM BUFFER areas */ +#define NFC_MAIN_AREA(n) ((n) * 0x200) + +/* Addresses for NFC SPARE BUFFER areas */ +#define NFC_SPARE_BUFFERS 8 +#define NFC_SPARE_LEN 0x40 +#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN)) + +/* MPC5121 NFC registers */ +#define NFC_BUF_ADDR 0x1E04 +#define NFC_FLASH_ADDR 0x1E06 +#define NFC_FLASH_CMD 0x1E08 +#define NFC_CONFIG 0x1E0A +#define NFC_ECC_STATUS1 0x1E0C +#define NFC_ECC_STATUS2 0x1E0E +#define NFC_SPAS 0x1E10 +#define NFC_WRPROT 0x1E12 +#define NFC_NF_WRPRST 0x1E18 +#define NFC_CONFIG1 0x1E1A +#define NFC_CONFIG2 0x1E1C +#define NFC_UNLOCKSTART_BLK0 0x1E20 +#define NFC_UNLOCKEND_BLK0 0x1E22 +#define NFC_UNLOCKSTART_BLK1 0x1E24 +#define NFC_UNLOCKEND_BLK1 0x1E26 +#define NFC_UNLOCKSTART_BLK2 0x1E28 +#define NFC_UNLOCKEND_BLK2 0x1E2A +#define NFC_UNLOCKSTART_BLK3 0x1E2C +#define NFC_UNLOCKEND_BLK3 0x1E2E + +/* Bit Definitions: NFC_BUF_ADDR */ +#define NFC_RBA_MASK (7 << 0) +#define NFC_ACTIVE_CS_SHIFT 5 +#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT) + +/* Bit Definitions: NFC_CONFIG */ +#define NFC_BLS_UNLOCKED (1 << 1) + +/* Bit Definitions: NFC_CONFIG1 */ +#define NFC_ECC_4BIT (1 << 0) +#define NFC_FULL_PAGE_DMA (1 << 1) +#define NFC_SPARE_ONLY (1 << 2) +#define NFC_ECC_ENABLE (1 << 3) +#define NFC_INT_MASK (1 << 4) +#define NFC_BIG_ENDIAN (1 << 5) +#define NFC_RESET (1 << 6) +#define NFC_CE (1 << 7) +#define NFC_ONE_CYCLE (1 << 8) +#define NFC_PPB_32 (0 << 9) +#define NFC_PPB_64 (1 << 9) +#define NFC_PPB_128 (2 << 9) +#define NFC_PPB_256 (3 << 9) +#define NFC_PPB_MASK (3 << 9) +#define NFC_FULL_PAGE_INT (1 << 11) + +/* Bit Definitions: NFC_CONFIG2 */ +#define NFC_COMMAND (1 << 0) +#define NFC_ADDRESS (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) +#define NFC_CMD_FAIL (1 << 15) +#define NFC_INT (1 << 15) + +/* Bit Definitions: NFC_WRPROT */ +#define NFC_WPC_LOCK_TIGHT (1 << 0) +#define NFC_WPC_LOCK (1 << 1) +#define NFC_WPC_UNLOCK (1 << 2) + +struct mpc5121_nfc_prv { + struct mtd_info mtd; + struct nand_chip chip; + int irq; + void __iomem *regs; + struct clk *clk; + uint column; + int spareonly; + int chipsel; +}; + +int mpc5121_nfc_chip = 0; + +static void mpc5121_nfc_done(struct mtd_info *mtd); + +/* Read NFC register */ +static inline u16 nfc_read(struct mtd_info *mtd, uint reg) +{ + struct nand_chip *chip = mtd->priv; + struct mpc5121_nfc_prv *prv = chip->priv; + + return in_be16(prv->regs + reg); +} + +/* Write NFC register */ +static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val) +{ + struct nand_chip *chip = mtd->priv; + struct mpc5121_nfc_prv *prv = chip->priv; + + out_be16(prv->regs + reg, val); +} + +/* Set bits in NFC register */ +static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) | bits); +} + +/* Clear bits in NFC register */ +static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits); +} + +/* Invoke address cycle */ +static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr) +{ + nfc_write(mtd, NFC_FLASH_ADDR, addr); + nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS); + mpc5121_nfc_done(mtd); +} + +/* Invoke command cycle */ +static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd) +{ + nfc_write(mtd, NFC_FLASH_CMD, cmd); + nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND); + mpc5121_nfc_done(mtd); +} + +/* Send data from NFC buffers to NAND flash */ +static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_INPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive data from NAND flash */ +static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive ID from NAND flash */ +static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_ID); + mpc5121_nfc_done(mtd); +} + +/* Receive status from NAND flash */ +static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_STATUS); + mpc5121_nfc_done(mtd); +} + +static void mpc5121_nfc_done(struct mtd_info *mtd) +{ + int max_retries = NFC_TIMEOUT; + + while (1) { + max_retries--; + if (nfc_read(mtd, NFC_CONFIG2) & NFC_INT) + break; + udelay(1); + } + + if (max_retries <= 0) + printk(KERN_WARNING DRV_NAME + ": Timeout while waiting for completion.\n"); +} + +/* Do address cycle(s) */ +static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) +{ + struct nand_chip *chip = mtd->priv; + u32 pagemask = chip->pagemask; + + if (column != -1) { + mpc5121_nfc_send_addr(mtd, column); + if (mtd->writesize > 512) + mpc5121_nfc_send_addr(mtd, column >> 8); + } + + if (page != -1) { + do { + mpc5121_nfc_send_addr(mtd, page & 0xFF); + page >>= 8; + pagemask >>= 8; + } while (pagemask); + } +} + +/* Control chip select signals */ + +/* + * Selecting the active device: + * + * This is different than the linux version. Switching between chips + * is done via board_nand_select_device(). The Linux select_chip + * function used here in U-Boot has only 2 valid chip numbers: + * 0 select + * -1 deselect + */ + +/* + * Implement it as a weak default, so that boards with a specific + * chip-select routine can use their own function. + */ +void __mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + if (chip < 0) { + nfc_clear(mtd, NFC_CONFIG1, NFC_CE); + return; + } + + nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) & + NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_CONFIG1, NFC_CE); +} +void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip) + __attribute__((weak, alias("__mpc5121_nfc_select_chip"))); + +void board_nand_select_device(struct nand_chip *nand, int chip) +{ + /* + * Only save this chip number in global variable here. This + * will be used later in mpc5121_nfc_select_chip(). + */ + mpc5121_nfc_chip = chip; +} + +/* Read NAND Ready/Busy signal */ +static int mpc5121_nfc_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles ready/busy signal internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +/* Write command to NAND flash */ +static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command, + int column, int page) +{ + struct nand_chip *chip = mtd->priv; + struct mpc5121_nfc_prv *prv = chip->priv; + + prv->column = (column >= 0) ? column : 0; + prv->spareonly = 0; + + switch (command) { + case NAND_CMD_PAGEPROG: + mpc5121_nfc_send_prog_page(mtd); + break; + /* + * NFC does not support sub-page reads and writes, + * so emulate them using full page transfers. + */ + case NAND_CMD_READ0: + column = 0; + break; + + case NAND_CMD_READ1: + prv->column += 256; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_READOOB: + prv->spareonly = 1; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_SEQIN: + mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page); + column = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_READID: + case NAND_CMD_STATUS: + case NAND_CMD_RESET: + break; + + default: + return; + } + + mpc5121_nfc_send_cmd(mtd, command); + mpc5121_nfc_addr_cycle(mtd, column, page); + + switch (command) { + case NAND_CMD_READ0: + if (mtd->writesize > 512) + mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART); + mpc5121_nfc_send_read_page(mtd); + break; + + case NAND_CMD_READID: + mpc5121_nfc_send_read_id(mtd); + break; + + case NAND_CMD_STATUS: + mpc5121_nfc_send_read_status(mtd); + if (chip->options & NAND_BUSWIDTH_16) + prv->column = 1; + else + prv->column = 0; + break; + } +} + +/* Copy data from/to NFC spare buffers. */ +static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset, + u8 * buffer, uint size, int wr) +{ + struct nand_chip *nand = mtd->priv; + struct mpc5121_nfc_prv *prv = nand->priv; + uint o, s, sbsize, blksize; + + /* + * NAND spare area is available through NFC spare buffers. + * The NFC divides spare area into (page_size / 512) chunks. + * Each chunk is placed into separate spare memory area, using + * first (spare_size / num_of_chunks) bytes of the buffer. + * + * For NAND device in which the spare area is not divided fully + * by the number of chunks, number of used bytes in each spare + * buffer is rounded down to the nearest even number of bytes, + * and all remaining bytes are added to the last used spare area. + * + * For more information read section 26.6.10 of MPC5121e + * Microcontroller Reference Manual, Rev. 3. + */ + + /* Calculate number of valid bytes in each spare buffer */ + sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1; + + while (size) { + /* Calculate spare buffer number */ + s = offset / sbsize; + if (s > NFC_SPARE_BUFFERS - 1) + s = NFC_SPARE_BUFFERS - 1; + + /* + * Calculate offset to requested data block in selected spare + * buffer and its size. + */ + o = offset - (s * sbsize); + blksize = min(sbsize - o, size); + + if (wr) + memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o, + buffer, blksize); + else + memcpy_fromio(buffer, + prv->regs + NFC_SPARE_AREA(s) + o, + blksize); + + buffer += blksize; + offset += blksize; + size -= blksize; + }; +} + +/* Copy data from/to NFC main and spare buffers */ +static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char * buf, int len, + int wr) +{ + struct nand_chip *chip = mtd->priv; + struct mpc5121_nfc_prv *prv = chip->priv; + uint c = prv->column; + uint l; + + /* Handle spare area access */ + if (prv->spareonly || c >= mtd->writesize) { + /* Calculate offset from beginning of spare area */ + if (c >= mtd->writesize) + c -= mtd->writesize; + + prv->column += len; + mpc5121_nfc_copy_spare(mtd, c, buf, len, wr); + return; + } + + /* + * Handle main area access - limit copy length to prevent + * crossing main/spare boundary. + */ + l = min((uint) len, mtd->writesize - c); + prv->column += l; + + if (wr) + memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l); + else + memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l); + + /* Handle crossing main/spare boundary */ + if (l != len) { + buf += l; + len -= l; + mpc5121_nfc_buf_copy(mtd, buf, len, wr); + } +} + +/* Read data from NFC buffers */ +static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char * buf, int len) +{ + mpc5121_nfc_buf_copy(mtd, buf, len, 0); +} + +/* Write data to NFC buffers */ +static void mpc5121_nfc_write_buf(struct mtd_info *mtd, + const u_char * buf, int len) +{ + mpc5121_nfc_buf_copy(mtd, (u_char *) buf, len, 1); +} + +/* Compare buffer with NAND flash */ +static int mpc5121_nfc_verify_buf(struct mtd_info *mtd, + const u_char * buf, int len) +{ + u_char tmp[256]; + uint bsize; + + while (len) { + bsize = min(len, 256); + mpc5121_nfc_read_buf(mtd, tmp, bsize); + + if (memcmp(buf, tmp, bsize)) + return 1; + + buf += bsize; + len -= bsize; + } + + return 0; +} + +/* Read byte from NFC buffers */ +static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) +{ + u8 tmp; + + mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp)); + + return tmp; +} + +/* Read word from NFC buffers */ +static u16 mpc5121_nfc_read_word(struct mtd_info *mtd) +{ + u16 tmp; + + mpc5121_nfc_read_buf(mtd, (u_char *) & tmp, sizeof(tmp)); + + return tmp; +} + +/* + * Read NFC configuration from Reset Config Word + * + * NFC is configured during reset in basis of information stored + * in Reset Config Word. There is no other way to set NAND block + * size, spare size and bus width. + */ +static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) +{ + immap_t *im = (immap_t *)CONFIG_SYS_IMMR; + struct nand_chip *chip = mtd->priv; + uint rcw_pagesize = 0; + uint rcw_sparesize = 0; + uint rcw_width; + uint rcwh; + uint romloc, ps; + + rcwh = in_be32(&(im->reset.rcwh)); + + /* Bit 6: NFC bus width */ + rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1; + + /* Bit 7: NFC Page/Spare size */ + ps = (rcwh >> 7) & 0x1; + + /* Bits [22:21]: ROM Location */ + romloc = (rcwh >> 21) & 0x3; + + /* Decode RCW bits */ + switch ((ps << 2) | romloc) { + case 0x00: + case 0x01: + rcw_pagesize = 512; + rcw_sparesize = 16; + break; + case 0x02: + case 0x03: + rcw_pagesize = 4096; + rcw_sparesize = 128; + break; + case 0x04: + case 0x05: + rcw_pagesize = 2048; + rcw_sparesize = 64; + break; + case 0x06: + case 0x07: + rcw_pagesize = 4096; + rcw_sparesize = 218; + break; + } + + mtd->writesize = rcw_pagesize; + mtd->oobsize = rcw_sparesize; + if (rcw_width == 2) + chip->options |= NAND_BUSWIDTH_16; + + debug(KERN_NOTICE DRV_NAME ": Configured for " + "%u-bit NAND, page size %u with %u spare.\n", + rcw_width * 8, rcw_pagesize, rcw_sparesize); + return 0; +} + +int board_nand_init(struct nand_chip *chip) +{ + struct mpc5121_nfc_prv *prv; + struct mtd_info *mtd; + int resettime = 0; + int retval = 0; + int rev; + static int chip_nr = 0; + + /* + * Check SoC revision. This driver supports only NFC + * in MPC5121 revision 2. + */ + rev = (mfspr(SPRN_SVR) >> 4) & 0xF; + if (rev != 2) { + printk(KERN_ERR DRV_NAME + ": SoC revision %u is not supported!\n", rev); + return -ENXIO; + } + + prv = malloc(sizeof(*prv)); + if (!prv) { + printk(KERN_ERR DRV_NAME ": Memory exhausted!\n"); + return -ENOMEM; + } + + mtd = &nand_info[chip_nr++]; + mtd->priv = chip; + chip->priv = prv; + + /* Read NFC configuration from Reset Config Word */ + retval = mpc5121_nfc_read_hw_config(mtd); + if (retval) { + printk(KERN_ERR DRV_NAME ": Unable to read NFC config!\n"); + return retval; + } + + prv->regs = (void __iomem *)CONFIG_SYS_NAND_BASE; + chip->dev_ready = mpc5121_nfc_dev_ready; + chip->cmdfunc = mpc5121_nfc_command; + chip->read_byte = mpc5121_nfc_read_byte; + chip->read_word = mpc5121_nfc_read_word; + chip->read_buf = mpc5121_nfc_read_buf; + chip->write_buf = mpc5121_nfc_write_buf; + chip->verify_buf = mpc5121_nfc_verify_buf; + chip->select_chip = mpc5121_nfc_select_chip; + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->ecc.mode = NAND_ECC_SOFT; + + /* Reset NAND Flash controller */ + nfc_set(mtd, NFC_CONFIG1, NFC_RESET); + while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) { + if (resettime++ >= NFC_RESET_TIMEOUT) { + printk(KERN_ERR DRV_NAME + ": Timeout while resetting NFC!\n"); + retval = -EINVAL; + goto error; + } + + udelay(1); + } + + /* Enable write to NFC memory */ + nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED); + + /* Enable write to all NAND pages */ + nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000); + nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF); + nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK); + + /* + * Setup NFC: + * - Big Endian transfers, + * - Interrupt after full page read/write. + */ + nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK | + NFC_FULL_PAGE_INT); + + /* Set spare area size */ + nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1); + + /* Detect NAND chips */ + if (nand_scan(mtd, 1)) { + printk(KERN_ERR DRV_NAME ": NAND Flash not found !\n"); + retval = -ENXIO; + goto error; + } + + /* Set erase block size */ + switch (mtd->erasesize / mtd->writesize) { + case 32: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32); + break; + + case 64: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64); + break; + + case 128: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128); + break; + + case 256: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256); + break; + + default: + printk(KERN_ERR DRV_NAME ": Unsupported NAND flash!\n"); + retval = -ENXIO; + goto error; + } + + return 0; +error: + return retval; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c new file mode 100644 index 000000000..ed0ca3aca --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.c @@ -0,0 +1,1342 @@ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + * Copyright 2009 Ilya Yanok, <yanok@emcraft.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <linux/err.h> +#include <asm/io.h> +#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \ + defined(CONFIG_MX51) || defined(CONFIG_MX53) +#include <asm/arch/imx-regs.h> +#endif +#include "mxc_nand.h" + +#define DRIVER_NAME "mxc_nand" + +struct mxc_nand_host { + struct mtd_info mtd; + struct nand_chip *nand; + + struct mxc_nand_regs __iomem *regs; +#ifdef MXC_NFC_V3_2 + struct mxc_nand_ip_regs __iomem *ip_regs; +#endif + int spare_only; + int status_request; + int pagesize_2k; + int clk_act; + uint16_t col_addr; + unsigned int page_addr; +}; + +static struct mxc_nand_host mxc_host; +static struct mxc_nand_host *host = &mxc_host; + +/* Define delays in microsec for NAND device operations */ +#define TROP_US_DELAY 2000 +/* Macros to get byte and bit positions of ECC */ +#define COLPOS(x) ((x) >> 3) +#define BITPOS(x) ((x) & 0xf) + +/* Define single bit Error positions in Main & Spare area */ +#define MAIN_SINGLEBIT_ERROR 0x4 +#define SPARE_SINGLEBIT_ERROR 0x1 + +/* OOB placement block for use with hardware ecc generation */ +#if defined(MXC_NFC_V1) +#ifndef CONFIG_SYS_NAND_LARGEPAGE +static struct nand_ecclayout nand_hw_eccoob = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = { {0, 5}, {11, 5}, } +}; +#else +static struct nand_ecclayout nand_hw_eccoob2k = { + .eccbytes = 20, + .eccpos = { + 6, 7, 8, 9, 10, + 22, 23, 24, 25, 26, + 38, 39, 40, 41, 42, + 54, 55, 56, 57, 58, + }, + .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} }, +}; +#endif +#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) +#ifndef CONFIG_SYS_NAND_LARGEPAGE +static struct nand_ecclayout nand_hw_eccoob = { + .eccbytes = 9, + .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {2, 5} } +}; +#else +static struct nand_ecclayout nand_hw_eccoob2k = { + .eccbytes = 36, + .eccpos = { + 7, 8, 9, 10, 11, 12, 13, 14, 15, + 23, 24, 25, 26, 27, 28, 29, 30, 31, + 39, 40, 41, 42, 43, 44, 45, 46, 47, + 55, 56, 57, 58, 59, 60, 61, 62, 63, + }, + .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} }, +}; +#endif +#endif + +static int is_16bit_nand(void) +{ +#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) + return 1; +#else + return 0; +#endif +} + +static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) +{ + uint32_t *d = dest; + + size >>= 2; + while (size--) + __raw_writel(__raw_readl(source++), d++); + return dest; +} + +/* + * This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit. + */ +static void wait_op_done(struct mxc_nand_host *host, int max_retries, + uint16_t param) +{ + uint32_t tmp; + + while (max_retries-- > 0) { +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + tmp = readnfc(&host->regs->config2); + if (tmp & NFC_V1_V2_CONFIG2_INT) { + tmp &= ~NFC_V1_V2_CONFIG2_INT; + writenfc(tmp, &host->regs->config2); +#elif defined(MXC_NFC_V3_2) + tmp = readnfc(&host->ip_regs->ipc); + if (tmp & NFC_V3_IPC_INT) { + tmp &= ~NFC_V3_IPC_INT; + writenfc(tmp, &host->ip_regs->ipc); +#endif + break; + } + udelay(1); + } + if (max_retries < 0) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", + __func__, param); + } +} + +/* + * This function issues the specified command to the NAND device and + * waits for completion. + */ +static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd); + + writenfc(cmd, &host->regs->flash_cmd); + writenfc(NFC_CMD, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, cmd); +} + +/* + * This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. + */ +static void send_addr(struct mxc_nand_host *host, uint16_t addr) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr); + + writenfc(addr, &host->regs->flash_addr); + writenfc(NFC_ADDR, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, addr); +} + +/* + * This function requests the NANDFC to initiate the transfer + * of data currently in the NANDFC RAM buffer to the NAND device. + */ +static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + if (spare_only) + MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only); + + if (is_mxc_nfc_21() || is_mxc_nfc_32()) { + int i; + /* + * The controller copies the 64 bytes of spare data from + * the first 16 bytes of each of the 4 64 byte spare buffers. + * Copy the contiguous data starting in spare_area[0] to + * the four spare area buffers. + */ + for (i = 1; i < 4; i++) { + void __iomem *src = &host->regs->spare_area[0][i * 16]; + void __iomem *dst = &host->regs->spare_area[i][0]; + + mxc_nand_memcpy32(dst, src, 16); + } + } + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + writenfc(buf_id, &host->regs->buf_addr); +#elif defined(MXC_NFC_V3_2) + uint32_t tmp = readnfc(&host->regs->config1); + tmp &= ~NFC_V3_CONFIG1_RBA_MASK; + tmp |= NFC_V3_CONFIG1_RBA(buf_id); + writenfc(tmp, &host->regs->config1); +#endif + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint32_t config1 = readnfc(&host->regs->config1); + if (spare_only) + config1 |= NFC_CONFIG1_SP_EN; + else + config1 &= ~NFC_CONFIG1_SP_EN; + writenfc(config1, &host->regs->config1); + } + + writenfc(NFC_INPUT, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only); +} + +/* + * Requests NANDFC to initiate the transfer of data from the + * NAND device into in the NANDFC ram buffer. + */ +static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + writenfc(buf_id, &host->regs->buf_addr); +#elif defined(MXC_NFC_V3_2) + uint32_t tmp = readnfc(&host->regs->config1); + tmp &= ~NFC_V3_CONFIG1_RBA_MASK; + tmp |= NFC_V3_CONFIG1_RBA(buf_id); + writenfc(tmp, &host->regs->config1); +#endif + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint32_t config1 = readnfc(&host->regs->config1); + if (spare_only) + config1 |= NFC_CONFIG1_SP_EN; + else + config1 &= ~NFC_CONFIG1_SP_EN; + writenfc(config1, &host->regs->config1); + } + + writenfc(NFC_OUTPUT, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only); + + if (is_mxc_nfc_21() || is_mxc_nfc_32()) { + int i; + + /* + * The controller copies the 64 bytes of spare data to + * the first 16 bytes of each of the 4 spare buffers. + * Make the data contiguous starting in spare_area[0]. + */ + for (i = 1; i < 4; i++) { + void __iomem *src = &host->regs->spare_area[i][0]; + void __iomem *dst = &host->regs->spare_area[0][i * 16]; + + mxc_nand_memcpy32(dst, src, 16); + } + } +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id(struct mxc_nand_host *host) +{ + uint32_t tmp; + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + /* NANDFC buffer 0 is used for device ID output */ + writenfc(0x0, &host->regs->buf_addr); +#elif defined(MXC_NFC_V3_2) + tmp = readnfc(&host->regs->config1); + tmp &= ~NFC_V3_CONFIG1_RBA_MASK; + writenfc(tmp, &host->regs->config1); +#endif + + /* Read ID into main buffer */ + tmp = readnfc(&host->regs->config1); + tmp &= ~NFC_CONFIG1_SP_EN; + writenfc(tmp, &host->regs->config1); + + writenfc(NFC_ID, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0); +} + +/* + * This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. + */ +static uint16_t get_dev_status(struct mxc_nand_host *host) +{ +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + void __iomem *main_buf = host->regs->main_area[1]; + uint32_t store; +#endif + uint32_t ret, tmp; + /* Issue status request to NAND device */ + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + /* store the main area1 first word, later do recovery */ + store = readl(main_buf); + /* NANDFC buffer 1 is used for device status */ + writenfc(1, &host->regs->buf_addr); +#endif + + /* Read status into main buffer */ + tmp = readnfc(&host->regs->config1); + tmp &= ~NFC_CONFIG1_SP_EN; + writenfc(tmp, &host->regs->config1); + + writenfc(NFC_STATUS, &host->regs->operation); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0); + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + /* + * Status is placed in first word of main buffer + * get status, then recovery area 1 data + */ + ret = readw(main_buf); + writel(store, main_buf); +#elif defined(MXC_NFC_V3_2) + ret = readnfc(&host->regs->config1) >> 16; +#endif + + return ret; +} + +/* This function is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + uint16_t tmp = readnfc(&host->regs->config1); + + if (on) + tmp |= NFC_V1_V2_CONFIG1_ECC_EN; + else + tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN; + writenfc(tmp, &host->regs->config1); +#elif defined(MXC_NFC_V3_2) + uint32_t tmp = readnfc(&host->ip_regs->config2); + + if (on) + tmp |= NFC_V3_CONFIG2_ECC_EN; + else + tmp &= ~NFC_V3_CONFIG2_ECC_EN; + writenfc(tmp, &host->ip_regs->config2); +#endif +} + +#ifdef CONFIG_MXC_NAND_HWECC +static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + /* + * If HW ECC is enabled, we turn it on during init. There is + * no need to enable again here. + */ +} + +#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) +static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + int page) +{ + struct mxc_nand_host *host = chip->priv; + uint8_t *buf = chip->oob_poi; + int length = mtd->oobsize; + int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + uint8_t *bufpoi = buf; + int i, toread; + + MTDDEBUG(MTD_DEBUG_LEVEL0, + "%s: Reading OOB area of page %u to oob %p\n", + __func__, page, buf); + + chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); + for (i = 0; i < chip->ecc.steps; i++) { + toread = min_t(int, length, chip->ecc.prepad); + if (toread) { + chip->read_buf(mtd, bufpoi, toread); + bufpoi += toread; + length -= toread; + } + bufpoi += chip->ecc.bytes; + host->col_addr += chip->ecc.bytes; + length -= chip->ecc.bytes; + + toread = min_t(int, length, chip->ecc.postpad); + if (toread) { + chip->read_buf(mtd, bufpoi, toread); + bufpoi += toread; + length -= toread; + } + } + if (length > 0) + chip->read_buf(mtd, bufpoi, length); + + _mxc_nand_enable_hwecc(mtd, 0); + chip->cmdfunc(mtd, NAND_CMD_READOOB, + mtd->writesize + chip->ecc.prepad, page); + bufpoi = buf + chip->ecc.prepad; + length = mtd->oobsize - chip->ecc.prepad; + for (i = 0; i < chip->ecc.steps; i++) { + toread = min_t(int, length, chip->ecc.bytes); + chip->read_buf(mtd, bufpoi, toread); + bufpoi += eccpitch; + length -= eccpitch; + host->col_addr += chip->ecc.postpad + chip->ecc.prepad; + } + _mxc_nand_enable_hwecc(mtd, 1); + return 1; +} + +static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, + int oob_required, + int page) +{ + struct mxc_nand_host *host = chip->priv; + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + uint8_t *oob = chip->oob_poi; + int steps, size; + int n; + + _mxc_nand_enable_hwecc(mtd, 0); + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); + + for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { + host->col_addr = n * eccsize; + chip->read_buf(mtd, buf, eccsize); + buf += eccsize; + + host->col_addr = mtd->writesize + n * eccpitch; + if (chip->ecc.prepad) { + chip->read_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->read_buf(mtd, oob, eccbytes); + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->read_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) + chip->read_buf(mtd, oob, size); + _mxc_nand_enable_hwecc(mtd, 1); + + return 0; +} + +static int mxc_nand_read_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, + int oob_required, + int page) +{ + struct mxc_nand_host *host = chip->priv; + int n, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + + MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n", + page, buf, oob); + + /* first read the data area and the available portion of OOB */ + for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { + int stat; + + host->col_addr = n * eccsize; + + chip->read_buf(mtd, p, eccsize); + + host->col_addr = mtd->writesize + n * eccpitch; + + if (chip->ecc.prepad) { + chip->read_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + stat = chip->ecc.correct(mtd, p, oob, NULL); + + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->read_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + n = mtd->oobsize - (oob - chip->oob_poi); + if (n) + chip->read_buf(mtd, oob, n); + + /* Then switch ECC off and read the OOB area to get the ECC code */ + _mxc_nand_enable_hwecc(mtd, 0); + chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); + eccsteps = chip->ecc.steps; + oob = chip->oob_poi + chip->ecc.prepad; + for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { + host->col_addr = mtd->writesize + + n * eccpitch + + chip->ecc.prepad; + chip->read_buf(mtd, oob, eccbytes); + oob += eccbytes + chip->ecc.postpad; + } + _mxc_nand_enable_hwecc(mtd, 1); + return 0; +} + +static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + struct mxc_nand_host *host = chip->priv; + int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int length = mtd->oobsize; + int i, len, status, steps = chip->ecc.steps; + const uint8_t *bufpoi = chip->oob_poi; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + for (i = 0; i < steps; i++) { + len = min_t(int, length, eccpitch); + + chip->write_buf(mtd, bufpoi, len); + bufpoi += len; + length -= len; + host->col_addr += chip->ecc.prepad + chip->ecc.postpad; + } + if (length > 0) + chip->write_buf(mtd, bufpoi, length); + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required) +{ + struct mxc_nand_host *host = chip->priv; + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + uint8_t *oob = chip->oob_poi; + int steps, size; + int n; + + for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { + host->col_addr = n * eccsize; + chip->write_buf(mtd, buf, eccsize); + buf += eccsize; + + host->col_addr = mtd->writesize + n * eccpitch; + + if (chip->ecc.prepad) { + chip->write_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + host->col_addr += eccbytes; + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->write_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) + chip->write_buf(mtd, oob, size); + return 0; +} + +static int mxc_nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required) +{ + struct mxc_nand_host *host = chip->priv; + int i, n, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsteps = chip->ecc.steps; + const uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + for (i = n = 0; + eccsteps; + n++, eccsteps--, i += eccbytes, p += eccsize) { + host->col_addr = n * eccsize; + + chip->write_buf(mtd, p, eccsize); + + host->col_addr = mtd->writesize + n * eccpitch; + + if (chip->ecc.prepad) { + chip->write_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->write_buf(mtd, oob, eccbytes); + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->write_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) + chip->write_buf(mtd, oob, i); + return 0; +} + +static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint32_t ecc_status = readl(&host->regs->ecc_status_result); + int subpages = mtd->writesize / nand_chip->subpagesize; + int pg2blk_shift = nand_chip->phys_erase_shift - + nand_chip->page_shift; + + do { + if ((ecc_status & 0xf) > 4) { + static int last_bad = -1; + + if (last_bad != host->page_addr >> pg2blk_shift) { + last_bad = host->page_addr >> pg2blk_shift; + printk(KERN_DEBUG + "MXC_NAND: HWECC uncorrectable ECC error" + " in block %u page %u subpage %d\n", + last_bad, host->page_addr, + mtd->writesize / nand_chip->subpagesize + - subpages); + } + return -1; + } + ecc_status >>= 4; + subpages--; + } while (subpages > 0); + + return 0; +} +#else +#define mxc_nand_read_page_syndrome NULL +#define mxc_nand_read_page_raw_syndrome NULL +#define mxc_nand_read_oob_syndrome NULL +#define mxc_nand_write_page_syndrome NULL +#define mxc_nand_write_page_raw_syndrome NULL +#define mxc_nand_write_oob_syndrome NULL + +static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + /* + * 1-Bit errors are automatically corrected in HW. No need for + * additional correction. 2-Bit errors cannot be corrected by + * HW ECC, so we need to return failure + */ + uint16_t ecc_status = readnfc(&host->regs->ecc_status_result); + + if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, + "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + return -1; + } + + return 0; +} +#endif + +static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + return 0; +} +#endif + +static u_char mxc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint8_t ret = 0; + uint16_t col; + uint16_t __iomem *main_buf = + (uint16_t __iomem *)host->regs->main_area[0]; + uint16_t __iomem *spare_buf = + (uint16_t __iomem *)host->regs->spare_area[0]; + union { + uint16_t word; + uint8_t bytes[2]; + } nfc_word; + + /* Check for status request */ + if (host->status_request) + return get_dev_status(host) & 0xFF; + + /* Get column for 16-bit access */ + col = host->col_addr >> 1; + + /* If we are accessing the spare region */ + if (host->spare_only) + nfc_word.word = readw(&spare_buf[col]); + else + nfc_word.word = readw(&main_buf[col]); + + /* Pick upper/lower byte of word from RAM buffer */ + ret = nfc_word.bytes[host->col_addr & 0x1]; + + /* Update saved column address */ + if (nand_chip->options & NAND_BUSWIDTH_16) + host->col_addr += 2; + else + host->col_addr++; + + return ret; +} + +static uint16_t mxc_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint16_t col, ret; + uint16_t __iomem *p; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_word(col = %d)\n", host->col_addr); + + col = host->col_addr; + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + if (col < mtd->writesize) { + p = (uint16_t __iomem *)(host->regs->main_area[0] + + (col >> 1)); + } else { + p = (uint16_t __iomem *)(host->regs->spare_area[0] + + ((col - mtd->writesize) >> 1)); + } + + if (col & 1) { + union { + uint16_t word; + uint8_t bytes[2]; + } nfc_word[3]; + + nfc_word[0].word = readw(p); + nfc_word[1].word = readw(p + 1); + + nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; + nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; + + ret = nfc_word[2].word; + } else { + ret = readw(p); + } + + /* Update saved column address */ + host->col_addr = col + 2; + + return ret; +} + +/* + * Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash + */ +static void mxc_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, + len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); + + while (n > 0) { + void __iomem *p; + + if (col < mtd->writesize) { + p = host->regs->main_area[0] + (col & ~3); + } else { + p = host->regs->spare_area[0] - + mtd->writesize + (col & ~3); + } + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, + __LINE__, p); + + if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { + union { + uint32_t word; + uint8_t bytes[4]; + } nfc_word; + + nfc_word.word = readl(p); + nfc_word.bytes[col & 3] = buf[i++]; + n--; + col++; + + writel(nfc_word.word, p); + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: n = %d, m = %d, i = %d, col = %d\n", + __func__, __LINE__, n, m, i, col); + + mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; +} + +/* + * Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + while (n > 0) { + void __iomem *p; + + if (col < mtd->writesize) { + p = host->regs->main_area[0] + (col & ~3); + } else { + p = host->regs->spare_area[0] - + mtd->writesize + (col & ~3); + } + + if (((col | (int)&buf[i]) & 3) || n < 4) { + union { + uint32_t word; + uint8_t bytes[4]; + } nfc_word; + + nfc_word.word = readl(p); + buf[i++] = nfc_word.bytes[col & 3]; + n--; + col++; + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); + + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; +} + +/* + * Used by the upper layer to verify the data in NAND Flash + * with the data in the buf. + */ +static int mxc_nand_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + u_char tmp[256]; + uint bsize; + + while (len) { + bsize = min(len, 256); + mxc_nand_read_buf(mtd, tmp, bsize); + + if (memcmp(buf, tmp, bsize)) + return 1; + + buf += bsize; + len -= bsize; + } + + return 0; +} + +/* + * This function is used by upper layer for select and + * deselect of the NAND chip + */ +static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + switch (chip) { + case -1: + /* TODO: Disable the NFC clock */ + if (host->clk_act) + host->clk_act = 0; + break; + case 0: + /* TODO: Enable the NFC clock */ + if (!host->clk_act) + host->clk_act = 1; + break; + + default: + break; + } +} + +/* + * Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash + */ +void mxc_nand_command(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + + case NAND_CMD_STATUS: + host->col_addr = 0; + host->status_request = true; + break; + + case NAND_CMD_READ0: + host->page_addr = page_addr; + host->col_addr = column; + host->spare_only = false; + break; + + case NAND_CMD_READOOB: + host->col_addr = column; + host->spare_only = true; + if (host->pagesize_2k) + command = NAND_CMD_READ0; /* only READ0 is valid */ + break; + + case NAND_CMD_SEQIN: + if (column >= mtd->writesize) { + /* + * before sending SEQIN command for partial write, + * we need read one page out. FSL NFC does not support + * partial write. It always sends out 512+ecc+512+ecc + * for large page nand flash. But for small page nand + * flash, it does support SPARE ONLY operation. + */ + if (host->pagesize_2k) { + /* call ourself to read a page */ + mxc_nand_command(mtd, NAND_CMD_READ0, 0, + page_addr); + } + + host->col_addr = column - mtd->writesize; + host->spare_only = true; + + /* Set program pointer to spare region */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READOOB); + } else { + host->spare_only = false; + host->col_addr = column; + + /* Set program pointer to page start */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READ0); + } + break; + + case NAND_CMD_PAGEPROG: + send_prog_page(host, 0, host->spare_only); + + if (host->pagesize_2k && is_mxc_nfc_1()) { + /* data in 4 areas */ + send_prog_page(host, 1, host->spare_only); + send_prog_page(host, 2, host->spare_only); + send_prog_page(host, 3, host->spare_only); + } + + break; + } + + /* Write out the command to the device. */ + send_cmd(host, command); + + /* Write out column address, if necessary */ + if (column != -1) { + /* + * MXC NANDFC can only perform full page+spare or + * spare-only read/write. When the upper layers perform + * a read/write buffer operation, we will use the saved + * column address to index into the full page. + */ + send_addr(host, 0); + if (host->pagesize_2k) + /* another col addr cycle for 2k page */ + send_addr(host, 0); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + u32 page_mask = nand_chip->pagemask; + do { + send_addr(host, page_addr & 0xFF); + page_addr >>= 8; + page_mask >>= 8; + } while (page_mask); + } + + /* Command post-processing step */ + switch (command) { + + case NAND_CMD_RESET: + break; + + case NAND_CMD_READOOB: + case NAND_CMD_READ0: + if (host->pagesize_2k) { + /* send read confirm command */ + send_cmd(host, NAND_CMD_READSTART); + /* read for each AREA */ + send_read_page(host, 0, host->spare_only); + if (is_mxc_nfc_1()) { + send_read_page(host, 1, host->spare_only); + send_read_page(host, 2, host->spare_only); + send_read_page(host, 3, host->spare_only); + } + } else { + send_read_page(host, 0, host->spare_only); + } + break; + + case NAND_CMD_READID: + host->col_addr = 0; + send_read_id(host); + break; + + case NAND_CMD_PAGEPROG: + break; + + case NAND_CMD_STATUS: + break; + + case NAND_CMD_ERASE2: + break; + } +} + +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +#endif + +int board_nand_init(struct nand_chip *this) +{ + struct mtd_info *mtd; +#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) + uint32_t tmp; +#endif + +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + this->bbt_options |= NAND_BBT_USE_FLASH; + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; +#endif + + /* structures must be linked */ + mtd = &host->mtd; + mtd->priv = this; + host->nand = this; + + /* 5 us command delay time */ + this->chip_delay = 5; + + this->priv = host; + this->dev_ready = mxc_nand_dev_ready; + this->cmdfunc = mxc_nand_command; + this->select_chip = mxc_nand_select_chip; + this->read_byte = mxc_nand_read_byte; + this->read_word = mxc_nand_read_word; + this->write_buf = mxc_nand_write_buf; + this->read_buf = mxc_nand_read_buf; + this->verify_buf = mxc_nand_verify_buf; + + host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; +#ifdef MXC_NFC_V3_2 + host->ip_regs = + (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE; +#endif + host->clk_act = 1; + +#ifdef CONFIG_MXC_NAND_HWECC + this->ecc.calculate = mxc_nand_calculate_ecc; + this->ecc.hwctl = mxc_nand_enable_hwecc; + this->ecc.correct = mxc_nand_correct_data; + if (is_mxc_nfc_21() || is_mxc_nfc_32()) { + this->ecc.mode = NAND_ECC_HW_SYNDROME; + this->ecc.read_page = mxc_nand_read_page_syndrome; + this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome; + this->ecc.read_oob = mxc_nand_read_oob_syndrome; + this->ecc.write_page = mxc_nand_write_page_syndrome; + this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome; + this->ecc.write_oob = mxc_nand_write_oob_syndrome; + this->ecc.bytes = 9; + this->ecc.prepad = 7; + } else { + this->ecc.mode = NAND_ECC_HW; + } + + if (is_mxc_nfc_1()) + this->ecc.strength = 1; + else + this->ecc.strength = 4; + + host->pagesize_2k = 0; + + this->ecc.size = 512; + _mxc_nand_enable_hwecc(mtd, 1); +#else + this->ecc.layout = &nand_soft_eccoob; + this->ecc.mode = NAND_ECC_SOFT; + _mxc_nand_enable_hwecc(mtd, 0); +#endif + /* Reset NAND */ + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* NAND bus width determines access functions used by upper layer */ + if (is_16bit_nand()) + this->options |= NAND_BUSWIDTH_16; + +#ifdef CONFIG_SYS_NAND_LARGEPAGE + host->pagesize_2k = 1; + this->ecc.layout = &nand_hw_eccoob2k; +#else + host->pagesize_2k = 0; + this->ecc.layout = &nand_hw_eccoob; +#endif + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) +#ifdef MXC_NFC_V2_1 + tmp = readnfc(&host->regs->config1); + tmp |= NFC_V2_CONFIG1_ONE_CYCLE; + tmp |= NFC_V2_CONFIG1_ECC_MODE_4; + writenfc(tmp, &host->regs->config1); + if (host->pagesize_2k) + writenfc(64/2, &host->regs->spare_area_size); + else + writenfc(16/2, &host->regs->spare_area_size); +#endif + + /* + * preset operation + * Unlock the internal RAM Buffer + */ + writenfc(0x2, &host->regs->config); + + /* Blocks to be unlocked */ + writenfc(0x0, &host->regs->unlockstart_blkaddr); + /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the + * unlockend_blkaddr, but the magic 0x4000 does not always work + * when writing more than some 32 megabytes (on 2k page nands) + * However 0xFFFF doesn't seem to have this kind + * of limitation (tried it back and forth several times). + * The linux kernel driver sets this to 0xFFFF for the v2 controller + * only, but probably this was not tested there for v1. + * The very same limitation seems to apply to this kernel driver. + * This might be NAND chip specific and the i.MX31 datasheet is + * extremely vague about the semantics of this register. + */ + writenfc(0xFFFF, &host->regs->unlockend_blkaddr); + + /* Unlock Block Command for given address range */ + writenfc(0x4, &host->regs->wrprot); +#elif defined(MXC_NFC_V3_2) + writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1); + writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc); + + /* Unlock the internal RAM Buffer */ + writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, + &host->ip_regs->wrprot); + + /* Blocks to be unlocked */ + for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++) + writenfc(0x0 | 0xFFFF << 16, + &host->ip_regs->wrprot_unlock_blkaddr[tmp]); + + writenfc(0, &host->ip_regs->ipc); + + tmp = readnfc(&host->ip_regs->config2); + tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK | + NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK); + tmp |= NFC_V3_CONFIG2_ONE_CYCLE; + + if (host->pagesize_2k) { + tmp |= NFC_V3_CONFIG2_SPAS(64/2); + tmp |= NFC_V3_CONFIG2_PS_2048; + } else { + tmp |= NFC_V3_CONFIG2_SPAS(16/2); + tmp |= NFC_V3_CONFIG2_PS_512; + } + + writenfc(tmp, &host->ip_regs->config2); + + tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); + + if (!(this->options & NAND_BUSWIDTH_16)) + tmp |= NFC_V3_CONFIG3_FW8; + + writenfc(tmp, &host->ip_regs->config3); + + writenfc(0, &host->ip_regs->delay_line); +#endif + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.h b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.h new file mode 100644 index 000000000..a02d6e0a5 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand.h @@ -0,0 +1,209 @@ +/* + * (c) 2009 Magnus Lilja <lilja.magnus@gmail.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#ifndef __MXC_NAND_H +#define __MXC_NAND_H + +/* + * Register map and bit definitions for the Freescale NAND Flash Controller + * present in various i.MX devices. + * + * MX31 and MX27 have version 1, which has: + * 4 512-byte main buffers and + * 4 16-byte spare buffers + * to support up to 2K byte pagesize nand. + * Reading or writing a 2K page requires 4 FDI/FDO cycles. + * + * MX25 and MX35 have version 2.1, and MX51 and MX53 have version 3.2, which + * have: + * 8 512-byte main buffers and + * 8 64-byte spare buffers + * to support up to 4K byte pagesize nand. + * Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle. + * Also some of registers are moved and/or changed meaning as seen below. + */ +#if defined(CONFIG_MX27) || defined(CONFIG_MX31) +#define MXC_NFC_V1 +#define is_mxc_nfc_1() 1 +#define is_mxc_nfc_21() 0 +#define is_mxc_nfc_32() 0 +#elif defined(CONFIG_MX25) || defined(CONFIG_MX35) +#define MXC_NFC_V2_1 +#define is_mxc_nfc_1() 0 +#define is_mxc_nfc_21() 1 +#define is_mxc_nfc_32() 0 +#elif defined(CONFIG_MX51) || defined(CONFIG_MX53) +#define MXC_NFC_V3 +#define MXC_NFC_V3_2 +#define is_mxc_nfc_1() 0 +#define is_mxc_nfc_21() 0 +#define is_mxc_nfc_32() 1 +#else +#error "MXC NFC implementation not supported" +#endif +#define is_mxc_nfc_3() is_mxc_nfc_32() + +#if defined(MXC_NFC_V1) +#define NAND_MXC_NR_BUFS 4 +#define NAND_MXC_SPARE_BUF_SIZE 16 +#define NAND_MXC_REG_OFFSET 0xe00 +#define NAND_MXC_2K_MULTI_CYCLE +#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) +#define NAND_MXC_NR_BUFS 8 +#define NAND_MXC_SPARE_BUF_SIZE 64 +#define NAND_MXC_REG_OFFSET 0x1e00 +#endif + +struct mxc_nand_regs { + u8 main_area[NAND_MXC_NR_BUFS][0x200]; + u8 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE]; + /* + * reserved size is offset of nfc registers + * minus total main and spare sizes + */ + u8 reserved1[NAND_MXC_REG_OFFSET + - NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)]; +#if defined(MXC_NFC_V1) + u16 buf_size; + u16 reserved2; + u16 buf_addr; + u16 flash_addr; + u16 flash_cmd; + u16 config; + u16 ecc_status_result; + u16 rsltmain_area; + u16 rsltspare_area; + u16 wrprot; + u16 unlockstart_blkaddr; + u16 unlockend_blkaddr; + u16 nf_wrprst; + u16 config1; + u16 config2; +#elif defined(MXC_NFC_V2_1) + u16 reserved2[2]; + u16 buf_addr; + u16 flash_addr; + u16 flash_cmd; + u16 config; + u32 ecc_status_result; + u16 spare_area_size; + u16 wrprot; + u16 reserved3[2]; + u16 nf_wrprst; + u16 config1; + u16 config2; + u16 reserved4; + u16 unlockstart_blkaddr; + u16 unlockend_blkaddr; + u16 unlockstart_blkaddr1; + u16 unlockend_blkaddr1; + u16 unlockstart_blkaddr2; + u16 unlockend_blkaddr2; + u16 unlockstart_blkaddr3; + u16 unlockend_blkaddr3; +#elif defined(MXC_NFC_V3_2) + u32 flash_cmd; + u32 flash_addr[12]; + u32 config1; + u32 ecc_status_result; + u32 status_sum; + u32 launch; +#endif +}; + +#ifdef MXC_NFC_V3_2 +struct mxc_nand_ip_regs { + u32 wrprot; + u32 wrprot_unlock_blkaddr[8]; + u32 config2; + u32 config3; + u32 ipc; + u32 err_addr; + u32 delay_line; +}; +#endif + +/* Set FCMD to 1, rest to 0 for Command operation */ +#define NFC_CMD 0x1 + +/* Set FADD to 1, rest to 0 for Address operation */ +#define NFC_ADDR 0x2 + +/* Set FDI to 1, rest to 0 for Input operation */ +#define NFC_INPUT 0x4 + +/* Set FDO to 001, rest to 0 for Data Output operation */ +#define NFC_OUTPUT 0x8 + +/* Set FDO to 010, rest to 0 for Read ID operation */ +#define NFC_ID 0x10 + +/* Set FDO to 100, rest to 0 for Read Status operation */ +#define NFC_STATUS 0x20 + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) +#define NFC_CONFIG1_SP_EN (1 << 2) +#define NFC_CONFIG1_RST (1 << 6) +#define NFC_CONFIG1_CE (1 << 7) +#elif defined(MXC_NFC_V3_2) +#define NFC_CONFIG1_SP_EN (1 << 0) +#define NFC_CONFIG1_CE (1 << 1) +#define NFC_CONFIG1_RST (1 << 2) +#endif +#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) +#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) +#define NFC_V1_V2_CONFIG1_BIG (1 << 5) +#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) +#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) +#define NFC_V2_CONFIG1_FP_INT (1 << 11) +#define NFC_V3_CONFIG1_RBA_MASK (0x7 << 4) +#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7) << 4) + +#define NFC_V1_V2_CONFIG2_INT (1 << 15) +#define NFC_V3_CONFIG2_PS_MASK (0x3 << 0) +#define NFC_V3_CONFIG2_PS_512 (0 << 0) +#define NFC_V3_CONFIG2_PS_2048 (1 << 0) +#define NFC_V3_CONFIG2_PS_4096 (2 << 0) +#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) +#define NFC_V3_CONFIG2_ECC_EN (1 << 3) +#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) +#define NFC_V3_CONFIG2_NUM_ADDR_PH0 (1 << 5) +#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) +#define NFC_V3_CONFIG2_PPB_MASK (0x3 << 7) +#define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7) +#define NFC_V3_CONFIG2_EDC_MASK (0x7 << 9) +#define NFC_V3_CONFIG2_EDC(x) (((x) & 0x7) << 9) +#define NFC_V3_CONFIG2_NUM_ADDR_PH1(x) (((x) & 0x3) << 12) +#define NFC_V3_CONFIG2_INT_MSK (1 << 15) +#define NFC_V3_CONFIG2_SPAS_MASK (0xff << 16) +#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) +#define NFC_V3_CONFIG2_ST_CMD_MASK (0xff << 24) +#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) + +#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) +#define NFC_V3_CONFIG3_FW8 (1 << 3) +#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) +#define NFC_V3_CONFIG3_NUM_OF_DEVS(x) (((x) & 0x7) << 12) +#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) +#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) + +#define NFC_V3_WRPROT_UNLOCK (1 << 2) +#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) + +#define NFC_V3_IPC_CREQ (1 << 0) +#define NFC_V3_IPC_INT (1 << 31) + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) +#define operation config2 +#define readnfc readw +#define writenfc writew +#elif defined(MXC_NFC_V3_2) +#define operation launch +#define readnfc readl +#define writenfc writel +#endif + +#endif /* __MXC_NAND_H */ diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand_spl.c b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand_spl.c new file mode 100644 index 000000000..69b736a84 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/mxc_nand_spl.c @@ -0,0 +1,351 @@ +/* + * (C) Copyright 2009 + * Magnus Lilja <lilja.magnus@gmail.com> + * + * (C) Copyright 2008 + * Maxim Artamonov, <scn1874 at yandex.ru> + * + * (C) Copyright 2006-2008 + * Stefan Roese, DENX Software Engineering, sr at denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/arch/imx-regs.h> +#include <asm/io.h> +#include "mxc_nand.h" + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) +static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR; +#elif defined(MXC_NFC_V3_2) +static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR_AXI; +static struct mxc_nand_ip_regs *const nfc_ip = (void *)NFC_BASE_ADDR; +#endif + +static void nfc_wait_ready(void) +{ + uint32_t tmp; + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + while (!(readnfc(&nfc->config2) & NFC_V1_V2_CONFIG2_INT)) + ; + + /* Reset interrupt flag */ + tmp = readnfc(&nfc->config2); + tmp &= ~NFC_V1_V2_CONFIG2_INT; + writenfc(tmp, &nfc->config2); +#elif defined(MXC_NFC_V3_2) + while (!(readnfc(&nfc_ip->ipc) & NFC_V3_IPC_INT)) + ; + + /* Reset interrupt flag */ + tmp = readnfc(&nfc_ip->ipc); + tmp &= ~NFC_V3_IPC_INT; + writenfc(tmp, &nfc_ip->ipc); +#endif +} + +static void nfc_nand_init(void) +{ +#if defined(MXC_NFC_V3_2) + int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512; + int tmp; + + tmp = (readnfc(&nfc_ip->config2) & ~(NFC_V3_CONFIG2_SPAS_MASK | + NFC_V3_CONFIG2_EDC_MASK | NFC_V3_CONFIG2_PS_MASK)) | + NFC_V3_CONFIG2_SPAS(CONFIG_SYS_NAND_OOBSIZE / 2) | + NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_ECC_EN | + NFC_V3_CONFIG2_ONE_CYCLE; + if (CONFIG_SYS_NAND_PAGE_SIZE == 4096) + tmp |= NFC_V3_CONFIG2_PS_4096; + else if (CONFIG_SYS_NAND_PAGE_SIZE == 2048) + tmp |= NFC_V3_CONFIG2_PS_2048; + else if (CONFIG_SYS_NAND_PAGE_SIZE == 512) + tmp |= NFC_V3_CONFIG2_PS_512; + /* + * if spare size is larger that 16 bytes per 512 byte hunk + * then use 8 symbol correction instead of 4 + */ + if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16) + tmp |= NFC_V3_CONFIG2_ECC_MODE_8; + else + tmp &= ~NFC_V3_CONFIG2_ECC_MODE_8; + writenfc(tmp, &nfc_ip->config2); + + tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); +#ifndef CONFIG_SYS_NAND_BUSWIDTH_16 + tmp |= NFC_V3_CONFIG3_FW8; +#endif + writenfc(tmp, &nfc_ip->config3); + + writenfc(0, &nfc_ip->delay_line); +#elif defined(MXC_NFC_V2_1) + int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512; + int config1; + + writenfc(CONFIG_SYS_NAND_OOBSIZE / 2, &nfc->spare_area_size); + + /* unlocking RAM Buff */ + writenfc(0x2, &nfc->config); + + /* hardware ECC checking and correct */ + config1 = readnfc(&nfc->config1) | NFC_V1_V2_CONFIG1_ECC_EN | + NFC_V1_V2_CONFIG1_INT_MSK | NFC_V2_CONFIG1_ONE_CYCLE | + NFC_V2_CONFIG1_FP_INT; + /* + * if spare size is larger that 16 bytes per 512 byte hunk + * then use 8 symbol correction instead of 4 + */ + if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16) + config1 &= ~NFC_V2_CONFIG1_ECC_MODE_4; + else + config1 |= NFC_V2_CONFIG1_ECC_MODE_4; + writenfc(config1, &nfc->config1); +#elif defined(MXC_NFC_V1) + /* unlocking RAM Buff */ + writenfc(0x2, &nfc->config); + + /* hardware ECC checking and correct */ + writenfc(NFC_V1_V2_CONFIG1_ECC_EN | NFC_V1_V2_CONFIG1_INT_MSK, + &nfc->config1); +#endif +} + +static void nfc_nand_command(unsigned short command) +{ + writenfc(command, &nfc->flash_cmd); + writenfc(NFC_CMD, &nfc->operation); + nfc_wait_ready(); +} + +static void nfc_nand_address(unsigned short address) +{ + writenfc(address, &nfc->flash_addr); + writenfc(NFC_ADDR, &nfc->operation); + nfc_wait_ready(); +} + +static void nfc_nand_page_address(unsigned int page_address) +{ + unsigned int page_count; + + nfc_nand_address(0x00); + + /* code only for large page flash */ + if (CONFIG_SYS_NAND_PAGE_SIZE > 512) + nfc_nand_address(0x00); + + page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE; + + if (page_address <= page_count) { + page_count--; /* transform 0x01000000 to 0x00ffffff */ + do { + nfc_nand_address(page_address & 0xff); + page_address = page_address >> 8; + page_count = page_count >> 8; + } while (page_count); + } + + nfc_nand_address(0x00); +} + +static void nfc_nand_data_output(void) +{ +#ifdef NAND_MXC_2K_MULTI_CYCLE + int i; +#endif + +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + writenfc(0, &nfc->buf_addr); +#elif defined(MXC_NFC_V3_2) + int config1 = readnfc(&nfc->config1); + config1 &= ~NFC_V3_CONFIG1_RBA_MASK; + writenfc(config1, &nfc->config1); +#endif + writenfc(NFC_OUTPUT, &nfc->operation); + nfc_wait_ready(); +#ifdef NAND_MXC_2K_MULTI_CYCLE + /* + * This NAND controller requires multiple input commands + * for pages larger than 512 bytes. + */ + for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) { + writenfc(i, &nfc->buf_addr); + writenfc(NFC_OUTPUT, &nfc->operation); + nfc_wait_ready(); + } +#endif +} + +static int nfc_nand_check_ecc(void) +{ +#if defined(MXC_NFC_V1) + u16 ecc_status = readw(&nfc->ecc_status_result); + return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2; +#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) + u32 ecc_status = readl(&nfc->ecc_status_result); + int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512; + int err_limit = CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16 ? 8 : 4; + int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512; + + do { + if ((ecc_status & 0xf) > err_limit) + return 1; + ecc_status >>= 4; + } while (--subpages); + + return 0; +#endif +} + +static void nfc_nand_read_page(unsigned int page_address) +{ + /* read in first 0 buffer */ +#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) + writenfc(0, &nfc->buf_addr); +#elif defined(MXC_NFC_V3_2) + int config1 = readnfc(&nfc->config1); + config1 &= ~NFC_V3_CONFIG1_RBA_MASK; + writenfc(config1, &nfc->config1); +#endif + nfc_nand_command(NAND_CMD_READ0); + nfc_nand_page_address(page_address); + + if (CONFIG_SYS_NAND_PAGE_SIZE > 512) + nfc_nand_command(NAND_CMD_READSTART); + + nfc_nand_data_output(); /* fill the main buffer 0 */ +} + +static int nfc_read_page(unsigned int page_address, unsigned char *buf) +{ + int i; + u32 *src; + u32 *dst; + + nfc_nand_read_page(page_address); + + if (nfc_nand_check_ecc()) + return -1; + + src = (u32 *)&nfc->main_area[0][0]; + dst = (u32 *)buf; + + /* main copy loop from NAND-buffer to SDRAM memory */ + for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) { + writel(readl(src), dst); + src++; + dst++; + } + + return 0; +} + +static int is_badblock(int pagenumber) +{ + int page = pagenumber; + u32 badblock; + u32 *src; + + /* Check the first two pages for bad block markers */ + for (page = pagenumber; page < pagenumber + 2; page++) { + nfc_nand_read_page(page); + + src = (u32 *)&nfc->spare_area[0][0]; + + /* + * IMPORTANT NOTE: The nand flash controller uses a non- + * standard layout for large page devices. This can + * affect the position of the bad block marker. + */ + /* Get the bad block marker */ + badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]); + badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4); + badblock &= 0xff; + + /* bad block marker verify */ + if (badblock != 0xff) + return 1; /* potential bad block */ + } + + return 0; +} + +int nand_spl_load_image(uint32_t from, unsigned int size, void *buf) +{ + int i; + unsigned int page; + unsigned int maxpages = CONFIG_SYS_NAND_SIZE / + CONFIG_SYS_NAND_PAGE_SIZE; + + nfc_nand_init(); + + /* Convert to page number */ + page = from / CONFIG_SYS_NAND_PAGE_SIZE; + i = 0; + + size = roundup(size, CONFIG_SYS_NAND_PAGE_SIZE); + while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) { + if (nfc_read_page(page, buf) < 0) + return -1; + + page++; + i++; + buf = buf + CONFIG_SYS_NAND_PAGE_SIZE; + + /* + * Check if we have crossed a block boundary, and if so + * check for bad block. + */ + if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) { + /* + * Yes, new block. See if this block is good. If not, + * loop until we find a good block. + */ + while (is_badblock(page)) { + page = page + CONFIG_SYS_NAND_PAGE_COUNT; + /* Check i we've reached the end of flash. */ + if (page >= maxpages) + return -1; + } + } + } + + return 0; +} + +#ifndef CONFIG_SPL_FRAMEWORK +/* + * The main entry for NAND booting. It's necessary that SDRAM is already + * configured and available since this code loads the main U-Boot image + * from NAND into SDRAM and starts it from there. + */ +void nand_boot(void) +{ + __attribute__((noreturn)) void (*uboot)(void); + + /* + * CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must + * be aligned to full pages + */ + if (!nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS, + CONFIG_SYS_NAND_U_BOOT_SIZE, + (uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) { + /* Copy from NAND successful, start U-boot */ + uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; + uboot(); + } else { + /* Unrecoverable error when copying from NAND */ + hang(); + } +} +#endif + +void nand_init(void) {} +void nand_deselect(void) {} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c new file mode 100644 index 000000000..036c113ad --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/mxs_nand.c @@ -0,0 +1,1179 @@ +/* + * Freescale i.MX28 NAND flash driver + * + * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> + * on behalf of DENX Software Engineering GmbH + * + * Based on code from LTIB: + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/types.h> +#include <malloc.h> +#include <asm/errno.h> +#include <asm/io.h> +#include <asm/arch/clock.h> +#include <asm/arch/imx-regs.h> +#include <asm/imx-common/regs-bch.h> +#include <asm/imx-common/regs-gpmi.h> +#include <asm/arch/sys_proto.h> +#include <asm/imx-common/dma.h> + +#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 + +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 +#if defined(CONFIG_MX6) +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 +#else +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 +#endif +#define MXS_NAND_METADATA_SIZE 10 + +#define MXS_NAND_COMMAND_BUFFER_SIZE 32 + +#define MXS_NAND_BCH_TIMEOUT 10000 + +struct mxs_nand_info { + int cur_chip; + + uint32_t cmd_queue_len; + uint32_t data_buf_size; + + uint8_t *cmd_buf; + uint8_t *data_buf; + uint8_t *oob_buf; + + uint8_t marking_block_bad; + uint8_t raw_oob_mode; + + /* Functions with altered behaviour */ + int (*hooked_read_oob)(struct mtd_info *mtd, + loff_t from, struct mtd_oob_ops *ops); + int (*hooked_write_oob)(struct mtd_info *mtd, + loff_t to, struct mtd_oob_ops *ops); + int (*hooked_block_markbad)(struct mtd_info *mtd, + loff_t ofs); + + /* DMA descriptors */ + struct mxs_dma_desc **desc; + uint32_t desc_index; +}; + +struct nand_ecclayout fake_ecc_layout; + +/* + * Cache management functions + */ +#ifndef CONFIG_SYS_DCACHE_OFF +static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) +{ + uint32_t addr = (uint32_t)info->data_buf; + + flush_dcache_range(addr, addr + info->data_buf_size); +} + +static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) +{ + uint32_t addr = (uint32_t)info->data_buf; + + invalidate_dcache_range(addr, addr + info->data_buf_size); +} + +static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) +{ + uint32_t addr = (uint32_t)info->cmd_buf; + + flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); +} +#else +static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} +static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} +static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} +#endif + +static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) +{ + struct mxs_dma_desc *desc; + + if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { + printf("MXS NAND: Too many DMA descriptors requested\n"); + return NULL; + } + + desc = info->desc[info->desc_index]; + info->desc_index++; + + return desc; +} + +static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) +{ + int i; + struct mxs_dma_desc *desc; + + for (i = 0; i < info->desc_index; i++) { + desc = info->desc[i]; + memset(desc, 0, sizeof(struct mxs_dma_desc)); + desc->address = (dma_addr_t)desc; + } + + info->desc_index = 0; +} + +static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) +{ + return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; +} + +static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) +{ + return ecc_strength * 13; +} + +static uint32_t mxs_nand_aux_status_offset(void) +{ + return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; +} + +static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size, + uint32_t page_oob_size) +{ + if (page_data_size == 2048) + return 8; + + if (page_data_size == 4096) { + if (page_oob_size == 128) + return 8; + + if (page_oob_size == 218) + return 16; + + if (page_oob_size == 224) + return 16; + } + + return 0; +} + +static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, + uint32_t ecc_strength) +{ + uint32_t chunk_data_size_in_bits; + uint32_t chunk_ecc_size_in_bits; + uint32_t chunk_total_size_in_bits; + uint32_t block_mark_chunk_number; + uint32_t block_mark_chunk_bit_offset; + uint32_t block_mark_bit_offset; + + chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; + chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); + + chunk_total_size_in_bits = + chunk_data_size_in_bits + chunk_ecc_size_in_bits; + + /* Compute the bit offset of the block mark within the physical page. */ + block_mark_bit_offset = page_data_size * 8; + + /* Subtract the metadata bits. */ + block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; + + /* + * Compute the chunk number (starting at zero) in which the block mark + * appears. + */ + block_mark_chunk_number = + block_mark_bit_offset / chunk_total_size_in_bits; + + /* + * Compute the bit offset of the block mark within its chunk, and + * validate it. + */ + block_mark_chunk_bit_offset = block_mark_bit_offset - + (block_mark_chunk_number * chunk_total_size_in_bits); + + if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) + return 1; + + /* + * Now that we know the chunk number in which the block mark appears, + * we can subtract all the ECC bits that appear before it. + */ + block_mark_bit_offset -= + block_mark_chunk_number * chunk_ecc_size_in_bits; + + return block_mark_bit_offset; +} + +static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) +{ + uint32_t ecc_strength; + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; +} + +static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) +{ + uint32_t ecc_strength; + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; +} + +/* + * Wait for BCH complete IRQ and clear the IRQ + */ +static int mxs_nand_wait_for_bch_complete(void) +{ + struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; + int timeout = MXS_NAND_BCH_TIMEOUT; + int ret; + + ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, + BCH_CTRL_COMPLETE_IRQ, timeout); + + writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); + + return ret; +} + +/* + * This is the function that we install in the cmd_ctrl function pointer of the + * owning struct nand_chip. The only functions in the reference implementation + * that use these functions pointers are cmdfunc and select_chip. + * + * In this driver, we implement our own select_chip, so this function will only + * be called by the reference implementation's cmdfunc. For this reason, we can + * ignore the chip enable bit and concentrate only on sending bytes to the NAND + * Flash. + */ +static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *nand = mtd->priv; + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_dma_desc *d; + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; + int ret; + + /* + * If this condition is true, something is _VERY_ wrong in MTD + * subsystem! + */ + if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { + printf("MXS NAND: Command queue too long\n"); + return; + } + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will + * deasert both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. + */ + if (ctrl & (NAND_ALE | NAND_CLE)) { + if (data != NAND_CMD_NONE) + nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; + return; + } + + /* + * If control arrives here, MTD has deasserted both the ALE and CLE, + * which means it's ready to run an operation. Check if we have any + * bytes to send. + */ + if (nand_info->cmd_queue_len == 0) + return; + + /* Compile the DMA descriptor -- a descriptor that sends command. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | + MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | + (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); + + d->cmd.address = (dma_addr_t)nand_info->cmd_buf; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WRITE | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_CLE | + GPMI_CTRL0_ADDRESS_INCREMENT | + nand_info->cmd_queue_len; + + mxs_dma_desc_append(channel, d); + + /* Flush caches */ + mxs_nand_flush_cmd_buf(nand_info); + + /* Execute the DMA chain. */ + ret = mxs_dma_go(channel); + if (ret) + printf("MXS NAND: Error sending command\n"); + + mxs_nand_return_dma_descs(nand_info); + + /* Reset the command queue. */ + nand_info->cmd_queue_len = 0; +} + +/* + * Test if the NAND flash is ready. + */ +static int mxs_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct mxs_nand_info *nand_info = chip->priv; + struct mxs_gpmi_regs *gpmi_regs = + (struct mxs_gpmi_regs *)MXS_GPMI_BASE; + uint32_t tmp; + + tmp = readl(&gpmi_regs->hw_gpmi_stat); + tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); + + return tmp & 1; +} + +/* + * Select the NAND chip. + */ +static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd->priv; + struct mxs_nand_info *nand_info = nand->priv; + + nand_info->cur_chip = chip; +} + +/* + * Handle block mark swapping. + * + * Note that, when this function is called, it doesn't know whether it's + * swapping the block mark, or swapping it *back* -- but it doesn't matter + * because the the operation is the same. + */ +static void mxs_nand_swap_block_mark(struct mtd_info *mtd, + uint8_t *data_buf, uint8_t *oob_buf) +{ + uint32_t bit_offset; + uint32_t buf_offset; + + uint32_t src; + uint32_t dst; + + bit_offset = mxs_nand_mark_bit_offset(mtd); + buf_offset = mxs_nand_mark_byte_offset(mtd); + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + src = data_buf[buf_offset] >> bit_offset; + src |= data_buf[buf_offset + 1] << (8 - bit_offset); + + dst = oob_buf[0]; + + oob_buf[0] = src; + + data_buf[buf_offset] &= ~(0xff << bit_offset); + data_buf[buf_offset + 1] &= 0xff << bit_offset; + + data_buf[buf_offset] |= dst << bit_offset; + data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); +} + +/* + * Read data from NAND. + */ +static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) +{ + struct nand_chip *nand = mtd->priv; + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_dma_desc *d; + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; + int ret; + + if (length > NAND_MAX_PAGESIZE) { + printf("MXS NAND: DMA buffer too big\n"); + return; + } + + if (!buf) { + printf("MXS NAND: DMA buffer is NULL\n"); + return; + } + + /* Compile the DMA descriptor - a descriptor that reads data. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | + (length << MXS_DMA_DESC_BYTES_OFFSET); + + d->cmd.address = (dma_addr_t)nand_info->data_buf; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_READ | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA | + length; + + mxs_dma_desc_append(channel, d); + + /* + * A DMA descriptor that waits for the command to end and the chip to + * become ready. + * + * I think we actually should *not* be waiting for the chip to become + * ready because, after all, we don't care. I think the original code + * did that and no one has re-thought it yet. + */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | + MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET); + + d->cmd.address = 0; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA; + + mxs_dma_desc_append(channel, d); + + /* Execute the DMA chain. */ + ret = mxs_dma_go(channel); + if (ret) { + printf("MXS NAND: DMA read error\n"); + goto rtn; + } + + /* Invalidate caches */ + mxs_nand_inval_data_buf(nand_info); + + memcpy(buf, nand_info->data_buf, length); + +rtn: + mxs_nand_return_dma_descs(nand_info); +} + +/* + * Write data to NAND. + */ +static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int length) +{ + struct nand_chip *nand = mtd->priv; + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_dma_desc *d; + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; + int ret; + + if (length > NAND_MAX_PAGESIZE) { + printf("MXS NAND: DMA buffer too big\n"); + return; + } + + if (!buf) { + printf("MXS NAND: DMA buffer is NULL\n"); + return; + } + + memcpy(nand_info->data_buf, buf, length); + + /* Compile the DMA descriptor - a descriptor that writes data. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | + (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | + (length << MXS_DMA_DESC_BYTES_OFFSET); + + d->cmd.address = (dma_addr_t)nand_info->data_buf; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WRITE | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA | + length; + + mxs_dma_desc_append(channel, d); + + /* Flush caches */ + mxs_nand_flush_data_buf(nand_info); + + /* Execute the DMA chain. */ + ret = mxs_dma_go(channel); + if (ret) + printf("MXS NAND: DMA write error\n"); + + mxs_nand_return_dma_descs(nand_info); +} + +/* + * Read a single byte from NAND. + */ +static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) +{ + uint8_t buf; + mxs_nand_read_buf(mtd, &buf, 1); + return buf; +} + +/* + * Read a page from NAND. + */ +static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, + int page) +{ + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_dma_desc *d; + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; + uint32_t corrected = 0, failed = 0; + uint8_t *status; + int i, ret; + + /* Compile the DMA descriptor - wait for ready. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); + + d->cmd.address = 0; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA; + + mxs_dma_desc_append(channel, d); + + /* Compile the DMA descriptor - enable the BCH block and read. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | + MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); + + d->cmd.address = 0; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_READ | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA | + (mtd->writesize + mtd->oobsize); + d->cmd.pio_words[1] = 0; + d->cmd.pio_words[2] = + GPMI_ECCCTRL_ENABLE_ECC | + GPMI_ECCCTRL_ECC_CMD_DECODE | + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; + d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; + + mxs_dma_desc_append(channel, d); + + /* Compile the DMA descriptor - disable the BCH block. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | + (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); + + d->cmd.address = 0; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA | + (mtd->writesize + mtd->oobsize); + d->cmd.pio_words[1] = 0; + d->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(channel, d); + + /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_DEC_SEM; + + d->cmd.address = 0; + + mxs_dma_desc_append(channel, d); + + /* Execute the DMA chain. */ + ret = mxs_dma_go(channel); + if (ret) { + printf("MXS NAND: DMA read error\n"); + goto rtn; + } + + ret = mxs_nand_wait_for_bch_complete(); + if (ret) { + printf("MXS NAND: BCH read timeout\n"); + goto rtn; + } + + /* Invalidate caches */ + mxs_nand_inval_data_buf(nand_info); + + /* Read DMA completed, now do the mark swapping. */ + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); + + /* Loop over status bytes, accumulating ECC status. */ + status = nand_info->oob_buf + mxs_nand_aux_status_offset(); + for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { + if (status[i] == 0x00) + continue; + + if (status[i] == 0xff) + continue; + + if (status[i] == 0xfe) { + failed++; + continue; + } + + corrected += status[i]; + } + + /* Propagate ECC status to the owning MTD. */ + mtd->ecc_stats.failed += failed; + mtd->ecc_stats.corrected += corrected; + + /* + * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for + * details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the block + * mark to the caller's buffer. Note that, if block mark swapping was + * necessary, it has already been done, so we can rely on the first + * byte of the auxiliary buffer to contain the block mark. + */ + memset(nand->oob_poi, 0xff, mtd->oobsize); + + nand->oob_poi[0] = nand_info->oob_buf[0]; + + memcpy(buf, nand_info->data_buf, mtd->writesize); + +rtn: + mxs_nand_return_dma_descs(nand_info); + + return ret; +} + +/* + * Write a page to NAND. + */ +static int mxs_nand_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *nand, const uint8_t *buf, + int oob_required) +{ + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_dma_desc *d; + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; + int ret; + + memcpy(nand_info->data_buf, buf, mtd->writesize); + memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); + + /* Handle block mark swapping. */ + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); + + /* Compile the DMA descriptor - write data. */ + d = mxs_nand_get_dma_desc(nand_info); + d->cmd.data = + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | + (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); + + d->cmd.address = 0; + + d->cmd.pio_words[0] = + GPMI_CTRL0_COMMAND_MODE_WRITE | + GPMI_CTRL0_WORD_LENGTH | + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | + GPMI_CTRL0_ADDRESS_NAND_DATA; + d->cmd.pio_words[1] = 0; + d->cmd.pio_words[2] = + GPMI_ECCCTRL_ENABLE_ECC | + GPMI_ECCCTRL_ECC_CMD_ENCODE | + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; + d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; + + mxs_dma_desc_append(channel, d); + + /* Flush caches */ + mxs_nand_flush_data_buf(nand_info); + + /* Execute the DMA chain. */ + ret = mxs_dma_go(channel); + if (ret) { + printf("MXS NAND: DMA write error\n"); + goto rtn; + } + + ret = mxs_nand_wait_for_bch_complete(); + if (ret) { + printf("MXS NAND: BCH write timeout\n"); + goto rtn; + } + +rtn: + mxs_nand_return_dma_descs(nand_info); + return 0; +} + +/* + * Read OOB from NAND. + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. + */ +static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd->priv; + struct mxs_nand_info *nand_info = chip->priv; + int ret; + + if (ops->mode == MTD_OPS_RAW) + nand_info->raw_oob_mode = 1; + else + nand_info->raw_oob_mode = 0; + + ret = nand_info->hooked_read_oob(mtd, from, ops); + + nand_info->raw_oob_mode = 0; + + return ret; +} + +/* + * Write OOB to NAND. + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. + */ +static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd->priv; + struct mxs_nand_info *nand_info = chip->priv; + int ret; + + if (ops->mode == MTD_OPS_RAW) + nand_info->raw_oob_mode = 1; + else + nand_info->raw_oob_mode = 0; + + ret = nand_info->hooked_write_oob(mtd, to, ops); + + nand_info->raw_oob_mode = 0; + + return ret; +} + +/* + * Mark a block bad in NAND. + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. + */ +static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + struct mxs_nand_info *nand_info = chip->priv; + int ret; + + nand_info->marking_block_bad = 1; + + ret = nand_info->hooked_block_markbad(mtd, ofs); + + nand_info->marking_block_bad = 0; + + return ret; +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark, so all + * write operations take measures to protect it. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * What we do for this specific read operation depends on whether we're doing + * "raw" read, or an ECC-based read. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + * + * Since MTD assumes the OOB is not covered by ECC, there is no pair of + * ECC-based/raw functions for reading or or writing the OOB. The fact that the + * caller wants an ECC-based or raw view of the page is not propagated down to + * this driver. + * + * Since our OOB *is* covered by ECC, we need this information. So, we hook the + * ecc.read_oob and ecc.write_oob function pointers in the owning + * struct mtd_info with our own functions. These hook functions set the + * raw_oob_mode field so that, when control finally arrives here, we'll know + * what to do. + */ +static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + struct mxs_nand_info *nand_info = nand->priv; + + /* + * First, fill in the OOB buffer. If we're doing a raw read, we need to + * get the bytes from the physical page. If we're not doing a raw read, + * we need to fill the buffer with set bits. + */ + if (nand_info->raw_oob_mode) { + /* + * If control arrives here, we're doing a "raw" read. Send the + * command to read the conventional OOB and read it. + */ + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); + } else { + /* + * If control arrives here, we're not doing a "raw" read. Fill + * the OOB buffer with set bits and correct the block mark. + */ + memset(nand->oob_poi, 0xff, mtd->oobsize); + + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + mxs_nand_read_buf(mtd, nand->oob_poi, 1); + } + + return 0; + +} + +/* + * Write OOB data to NAND. + */ +static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + struct mxs_nand_info *nand_info = nand->priv; + uint8_t block_mark = 0; + + /* + * There are fundamental incompatibilities between the i.MX GPMI NFC and + * the NAND Flash MTD model that make it essentially impossible to write + * the out-of-band bytes. + * + * We permit *ONE* exception. If the *intent* of writing the OOB is to + * mark a block bad, we can do that. + */ + + if (!nand_info->marking_block_bad) { + printf("NXS NAND: Writing OOB isn't supported\n"); + return -EIO; + } + + /* Write the block mark. */ + nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + nand->write_buf(mtd, &block_mark, 1); + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + /* Check if it worked. */ + if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +/* + * Claims all blocks are good. + * + * In principle, this function is *only* called when the NAND Flash MTD system + * isn't allowed to keep an in-memory bad block table, so it is forced to ask + * the driver for bad block information. + * + * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so + * this function is *only* called when we take it away. + * + * Thus, this function is only called when we want *all* blocks to look good, + * so it *always* return success. + */ +static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + return 0; +} + +/* + * Nominally, the purpose of this function is to look for or create the bad + * block table. In fact, since the we call this function at the very end of + * the initialization process started by nand_scan(), and we doesn't have a + * more formal mechanism, we "hook" this function to continue init process. + * + * At this point, the physical NAND Flash chips have been identified and + * counted, so we know the physical geometry. This enables us to make some + * important configuration decisions. + * + * The return value of this function propogates directly back to this driver's + * call to nand_scan(). Anything other than zero will cause this driver to + * tear everything down and declare failure. + */ +static int mxs_nand_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct mxs_nand_info *nand_info = nand->priv; + struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; + uint32_t tmp; + + /* Configure BCH and set NFC geometry */ + mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); + + /* Configure layout 0 */ + tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) + << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; + tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) + << BCH_FLASHLAYOUT0_ECC0_OFFSET; + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE + >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; + writel(tmp, &bch_regs->hw_bch_flash0layout0); + + tmp = (mtd->writesize + mtd->oobsize) + << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) + << BCH_FLASHLAYOUT1_ECCN_OFFSET; + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE + >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; + writel(tmp, &bch_regs->hw_bch_flash0layout1); + + /* Set *all* chip selects to use layout 0 */ + writel(0, &bch_regs->hw_bch_layoutselect); + + /* Enable BCH complete interrupt */ + writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); + + /* Hook some operations at the MTD level. */ + if (mtd->_read_oob != mxs_nand_hook_read_oob) { + nand_info->hooked_read_oob = mtd->_read_oob; + mtd->_read_oob = mxs_nand_hook_read_oob; + } + + if (mtd->_write_oob != mxs_nand_hook_write_oob) { + nand_info->hooked_write_oob = mtd->_write_oob; + mtd->_write_oob = mxs_nand_hook_write_oob; + } + + if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { + nand_info->hooked_block_markbad = mtd->_block_markbad; + mtd->_block_markbad = mxs_nand_hook_block_markbad; + } + + /* We use the reference implementation for bad block management. */ + return nand_default_bbt(mtd); +} + +/* + * Allocate DMA buffers + */ +int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) +{ + uint8_t *buf; + const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; + + nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); + + /* DMA buffers */ + buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); + if (!buf) { + printf("MXS NAND: Error allocating DMA buffers\n"); + return -ENOMEM; + } + + memset(buf, 0, nand_info->data_buf_size); + + nand_info->data_buf = buf; + nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; + /* Command buffers */ + nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, + MXS_NAND_COMMAND_BUFFER_SIZE); + if (!nand_info->cmd_buf) { + free(buf); + printf("MXS NAND: Error allocating command buffers\n"); + return -ENOMEM; + } + memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); + nand_info->cmd_queue_len = 0; + + return 0; +} + +/* + * Initializes the NFC hardware. + */ +int mxs_nand_init(struct mxs_nand_info *info) +{ + struct mxs_gpmi_regs *gpmi_regs = + (struct mxs_gpmi_regs *)MXS_GPMI_BASE; + struct mxs_bch_regs *bch_regs = + (struct mxs_bch_regs *)MXS_BCH_BASE; + int i = 0, j; + + info->desc = malloc(sizeof(struct mxs_dma_desc *) * + MXS_NAND_DMA_DESCRIPTOR_COUNT); + if (!info->desc) + goto err1; + + /* Allocate the DMA descriptors. */ + for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { + info->desc[i] = mxs_dma_desc_alloc(); + if (!info->desc[i]) + goto err2; + } + + /* Init the DMA controller. */ + for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; + j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { + if (mxs_dma_init_channel(j)) + goto err3; + } + + /* Reset the GPMI block. */ + mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); + mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); + + /* + * Choose NAND mode, set IRQ polarity, disable write protection and + * select BCH ECC. + */ + clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, + GPMI_CTRL1_GPMI_MODE, + GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | + GPMI_CTRL1_BCH_MODE); + + return 0; + +err3: + for (--j; j >= 0; j--) + mxs_dma_release(j); +err2: + free(info->desc); +err1: + for (--i; i >= 0; i--) + mxs_dma_desc_free(info->desc[i]); + printf("MXS NAND: Unable to allocate DMA descriptors\n"); + return -ENOMEM; +} + +/*! + * This function is called during the driver binding process. + * + * @param pdev the device structure used to store device specific + * information that is used by the suspend, resume and + * remove functions + * + * @return The function always returns 0. + */ +int board_nand_init(struct nand_chip *nand) +{ + struct mxs_nand_info *nand_info; + int err; + + nand_info = malloc(sizeof(struct mxs_nand_info)); + if (!nand_info) { + printf("MXS NAND: Failed to allocate private data\n"); + return -ENOMEM; + } + memset(nand_info, 0, sizeof(struct mxs_nand_info)); + + err = mxs_nand_alloc_buffers(nand_info); + if (err) + goto err1; + + err = mxs_nand_init(nand_info); + if (err) + goto err2; + + memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); + + nand->priv = nand_info; + nand->options |= NAND_NO_SUBPAGE_WRITE; + + nand->cmd_ctrl = mxs_nand_cmd_ctrl; + + nand->dev_ready = mxs_nand_device_ready; + nand->select_chip = mxs_nand_select_chip; + nand->block_bad = mxs_nand_block_bad; + nand->scan_bbt = mxs_nand_scan_bbt; + + nand->read_byte = mxs_nand_read_byte; + + nand->read_buf = mxs_nand_read_buf; + nand->write_buf = mxs_nand_write_buf; + + nand->ecc.read_page = mxs_nand_ecc_read_page; + nand->ecc.write_page = mxs_nand_ecc_write_page; + nand->ecc.read_oob = mxs_nand_ecc_read_oob; + nand->ecc.write_oob = mxs_nand_ecc_write_oob; + + nand->ecc.layout = &fake_ecc_layout; + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.bytes = 9; + nand->ecc.size = 512; + nand->ecc.strength = 8; + + return 0; + +err2: + free(nand_info->data_buf); + free(nand_info->cmd_buf); +err1: + free(nand_info); + return err; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand.c b/qemu/roms/u-boot/drivers/mtd/nand/nand.c new file mode 100644 index 000000000..4cf4c1c70 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand.c @@ -0,0 +1,120 @@ +/* + * (C) Copyright 2005 + * 2N Telekomunikace, a.s. <www.2n.cz> + * Ladislav Michl <michl@2n.cz> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> +#include <nand.h> +#include <errno.h> + +#ifndef CONFIG_SYS_NAND_BASE_LIST +#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } +#endif + +DECLARE_GLOBAL_DATA_PTR; + +int nand_curr_device = -1; + + +nand_info_t nand_info[CONFIG_SYS_MAX_NAND_DEVICE]; + +#ifndef CONFIG_SYS_NAND_SELF_INIT +static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; +static ulong base_address[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; +#endif + +static char dev_name[CONFIG_SYS_MAX_NAND_DEVICE][8]; + +static unsigned long total_nand_size; /* in kiB */ + +/* Register an initialized NAND mtd device with the U-Boot NAND command. */ +int nand_register(int devnum) +{ + struct mtd_info *mtd; + + if (devnum >= CONFIG_SYS_MAX_NAND_DEVICE) + return -EINVAL; + + mtd = &nand_info[devnum]; + + sprintf(dev_name[devnum], "nand%d", devnum); + mtd->name = dev_name[devnum]; + +#ifdef CONFIG_MTD_DEVICE + /* + * Add MTD device so that we can reference it later + * via the mtdcore infrastructure (e.g. ubi). + */ + add_mtd_device(mtd); +#endif + + total_nand_size += mtd->size / 1024; + + if (nand_curr_device == -1) + nand_curr_device = devnum; + + return 0; +} + +#ifndef CONFIG_SYS_NAND_SELF_INIT +static void nand_init_chip(int i) +{ + struct mtd_info *mtd = &nand_info[i]; + struct nand_chip *nand = &nand_chip[i]; + ulong base_addr = base_address[i]; + int maxchips = CONFIG_SYS_NAND_MAX_CHIPS; + + if (maxchips < 1) + maxchips = 1; + + mtd->priv = nand; + nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; + + if (board_nand_init(nand)) + return; + + if (nand_scan(mtd, maxchips)) + return; + + nand_register(i); +} +#endif + +void nand_init(void) +{ +#ifdef CONFIG_SYS_NAND_SELF_INIT + board_nand_init(); +#else + int i; + + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + nand_init_chip(i); +#endif + + printf("%lu MiB\n", total_nand_size / 1024); + +#ifdef CONFIG_SYS_NAND_SELECT_DEVICE + /* + * Select the chip in the board/cpu specific driver + */ + board_nand_select_device(nand_info[nand_curr_device].priv, nand_curr_device); +#endif +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_base.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_base.c new file mode 100644 index 000000000..1ce55fde8 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_base.c @@ -0,0 +1,3438 @@ +/* + * drivers/mtd/nand.c + * + * Overview: + * This is the generic MTD driver for NAND flash devices. It should be + * capable of working with almost all NAND chips currently available. + * Basic support for AG-AND chips is provided. + * + * Additional technical information is available on + * http://www.linux-mtd.infradead.org/doc/nand.html + * + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * TODO: + * Enable cached programming for 2k page size chips + * Check, if mtd->ecctype should be set to MTD_ECC_HW + * if we have HW ECC support. + * The AG-AND chips have nice features for speed improvement, + * which are not supported yet. Read / program 4 pages in one go. + * BBT table is not serialized, has to be fixed + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <common.h> + +#define ENOTSUPP 524 /* Operation is not supported */ + +#include <malloc.h> +#include <watchdog.h> +#include <linux/err.h> +#include <linux/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/nand_bch.h> + +#ifdef CONFIG_MTD_PARTITIONS +#include <linux/mtd/partitions.h> +#endif + +#include <asm/io.h> +#include <asm/errno.h> + +/* + * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting + * a flash. NAND flash is initialized prior to interrupts so standard timers + * can't be used. CONFIG_SYS_NAND_RESET_CNT should be set to a value + * which is greater than (max NAND reset time / NAND status read time). + * A conservative default of 200000 (500 us / 25 ns) is used as a default. + */ +#ifndef CONFIG_SYS_NAND_RESET_CNT +#define CONFIG_SYS_NAND_RESET_CNT 200000 +#endif + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_ecclayout nand_oob_8 = { + .eccbytes = 3, + .eccpos = {0, 1, 2}, + .oobfree = { + {.offset = 3, + .length = 2}, + {.offset = 6, + .length = 2} } +}; + +static struct nand_ecclayout nand_oob_16 = { + .eccbytes = 6, + .eccpos = {0, 1, 2, 3, 6, 7}, + .oobfree = { + {.offset = 8, + . length = 8} } +}; + +static struct nand_ecclayout nand_oob_64 = { + .eccbytes = 24, + .eccpos = { + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { + {.offset = 2, + .length = 38} } +}; + +static struct nand_ecclayout nand_oob_128 = { + .eccbytes = 48, + .eccpos = { + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127}, + .oobfree = { + {.offset = 2, + .length = 78} } +}; + +static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, + int new_state); + +static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops); + +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this); + +static int check_offs_len(struct mtd_info *mtd, + loff_t ofs, uint64_t len) +{ + struct nand_chip *chip = mtd->priv; + int ret = 0; + + /* Start address must align on block boundary */ + if (ofs & ((1 << chip->phys_erase_shift) - 1)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__); + ret = -EINVAL; + } + + /* Length must align on block boundary */ + if (len & ((1 << chip->phys_erase_shift) - 1)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n", + __func__); + ret = -EINVAL; + } + + return ret; +} + +/** + * nand_release_device - [GENERIC] release chip + * @mtd: MTD device structure + * + * Deselect, release chip lock and wake up anyone waiting on the device. + */ +static void nand_release_device(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + + /* De-select the NAND device */ + chip->select_chip(mtd, -1); +} + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @mtd: MTD device structure + * + * Default read function for 8bit buswidth. + */ +uint8_t nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + return readb(chip->IO_ADDR_R); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth with endianness conversion. + * + */ +static uint8_t nand_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); +} + +/** + * nand_read_word - [DEFAULT] read one word from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth without endianness conversion. + */ +static u16 nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + return readw(chip->IO_ADDR_R); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @mtd: MTD device structure + * @chipnr: chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + + switch (chipnr) { + case -1: + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + break; + case 0: + break; + + default: + BUG(); + } +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 8bit buswidth. + */ +void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + for (i = 0; i < len; i++) + writeb(buf[i], chip->IO_ADDR_W); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 8bit buswidth. + */ +void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + for (i = 0; i < len; i++) + buf[i] = readb(chip->IO_ADDR_R); +} + +/** + * nand_verify_buf - [DEFAULT] Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * Default verify function for 8bit buswidth. + */ +static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + + for (i = 0; i < len; i++) + if (buf[i] != readb(chip->IO_ADDR_R)) + return -EFAULT; + return 0; +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 16bit buswidth. + */ +void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + writew(p[i], chip->IO_ADDR_W); + +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 16bit buswidth. + */ +void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + p[i] = readw(chip->IO_ADDR_R); +} + +/** + * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * Default verify function for 16bit buswidth. + */ +static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + if (p[i] != readw(chip->IO_ADDR_R)) + return -EFAULT; + + return 0; +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * + * Check, if the block is bad. + */ +static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + int page, chipnr, res = 0, i = 0; + struct nand_chip *chip = mtd->priv; + u16 bad; + + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) + ofs += mtd->erasesize - mtd->writesize; + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + if (getchip) { + chipnr = (int)(ofs >> chip->chip_shift); + + nand_get_device(chip, mtd, FL_READING); + + /* Select the NAND device */ + chip->select_chip(mtd, chipnr); + } + + do { + if (chip->options & NAND_BUSWIDTH_16) { + chip->cmdfunc(mtd, NAND_CMD_READOOB, + chip->badblockpos & 0xFE, page); + bad = cpu_to_le16(chip->read_word(mtd)); + if (chip->badblockpos & 0x1) + bad >>= 8; + else + bad &= 0xFF; + } else { + chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, + page); + bad = chip->read_byte(mtd); + } + + if (likely(chip->badblockbits == 8)) + res = bad != 0xFF; + else + res = hweight8(bad) < chip->badblockbits; + ofs += mtd->writesize; + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + i++; + } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); + + if (getchip) + nand_release_device(mtd); + + return res; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This is the default implementation, which can be overridden by a hardware + * specific driver. We try operations in the following order, according to our + * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH): + * (1) erase the affected block, to allow OOB marker to be written cleanly + * (2) update in-memory BBT + * (3) write bad block marker to OOB area of affected block + * (4) update flash-based BBT + * Note that we retain the first error encountered in (3) or (4), finish the + * procedures, and dump the error in the end. +*/ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + uint8_t buf[2] = { 0, 0 }; + int block, res, ret = 0, i = 0; + int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM); + + if (write_oob) { + struct erase_info einfo; + + /* Attempt erase before marking OOB */ + memset(&einfo, 0, sizeof(einfo)); + einfo.mtd = mtd; + einfo.addr = ofs; + einfo.len = 1 << chip->phys_erase_shift; + nand_erase_nand(mtd, &einfo, 0); + } + + /* Get block number */ + block = (int)(ofs >> chip->bbt_erase_shift); + /* Mark block bad in memory-based BBT */ + if (chip->bbt) + chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* Write bad block marker to OOB */ + if (write_oob) { + struct mtd_oob_ops ops; + loff_t wr_ofs = ofs; + + nand_get_device(chip, mtd, FL_WRITING); + + ops.datbuf = NULL; + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + ops.ooboffs &= ~0x01; + ops.len = ops.ooblen = 2; + } else { + ops.len = ops.ooblen = 1; + } + ops.mode = MTD_OPS_PLACE_OOB; + + /* Write to first/last page(s) if necessary */ + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) + wr_ofs += mtd->erasesize - mtd->writesize; + do { + res = nand_do_write_oob(mtd, wr_ofs, &ops); + if (!ret) + ret = res; + + i++; + wr_ofs += mtd->writesize; + } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); + + nand_release_device(mtd); + } + + /* Update flash-based bad block table */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + res = nand_update_bbt(mtd, ofs); + if (!ret) + ret = res; + } + + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} + +/** + * nand_check_wp - [GENERIC] check if the chip is write protected + * @mtd: MTD device structure + * + * Check, if the device is write protected. The function expects, that the + * device is already selected. + */ +static int nand_check_wp(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + + /* Broken xD cards report WP despite being writable */ + if (chip->options & NAND_BROKEN_XD) + return 0; + + /* Check the WP bit */ + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * @allowbbt: 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, + int allowbbt) +{ + struct nand_chip *chip = mtd->priv; + + if (!(chip->options & NAND_BBT_SCANNED)) { + chip->options |= NAND_BBT_SCANNED; + chip->scan_bbt(mtd); + } + + if (!chip->bbt) + return chip->block_bad(mtd, ofs, getchip); + + /* Return info from the table */ + return nand_isbad_bbt(mtd, ofs, allowbbt); +} + +/* Wait for the ready pin, after a command. The timeout is caught later. */ +void nand_wait_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + u32 timeo = (CONFIG_SYS_HZ * 20) / 1000; + u32 time_start; + + time_start = get_timer(0); + + /* Wait until command is processed or timeout occurs */ + while (get_timer(time_start) < timeo) { + if (chip->dev_ready) + if (chip->dev_ready(mtd)) + break; + } +} + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page devices + * (256/512 Bytes per page). + */ +static void nand_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + register struct nand_chip *chip = mtd->priv; + int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; + uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT; + + /* Write out the command to the device */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + chip->cmd_ctrl(mtd, readcmd, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + chip->cmd_ctrl(mtd, command, ctrl); + + /* Address cycle, when necessary */ + ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + chip->cmd_ctrl(mtd, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + if (page_addr != -1) { + chip->cmd_ctrl(mtd, page_addr, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); + /* One more address cycle for devices > 32MiB */ + if (chip->chipsize > (32 << 20)) + chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); + } + chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status and sequential + * in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (chip->dev_ready) + break; + udelay(chip->chip_delay); + chip->cmd_ctrl(mtd, NAND_CMD_STATUS, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, + NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + while (!(chip->read_byte(mtd) & NAND_STATUS_READY) && + (rst_sts_cnt--)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!chip->dev_ready) { + udelay(chip->chip_delay); + return; + } + } + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(mtd); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page + * devices. We don't have the separate regions as we have in the small page + * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. + */ +static void nand_command_lp(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + register struct nand_chip *chip = mtd->priv; + uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT; + + /* Emulate NAND_CMD_READOOB */ + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Command latch cycle */ + chip->cmd_ctrl(mtd, command & 0xff, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + + if (column != -1 || page_addr != -1) { + int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + chip->cmd_ctrl(mtd, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + chip->cmd_ctrl(mtd, column >> 8, ctrl); + } + if (page_addr != -1) { + chip->cmd_ctrl(mtd, page_addr, ctrl); + chip->cmd_ctrl(mtd, page_addr >> 8, + NAND_NCE | NAND_ALE); + /* One more address cycle for devices > 128MiB */ + if (chip->chipsize > (128 << 20)) + chip->cmd_ctrl(mtd, page_addr >> 16, + NAND_NCE | NAND_ALE); + } + } + chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status, sequential + * in, and deplete1 need no delay. + */ + switch (command) { + + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + case NAND_CMD_DEPLETE1: + return; + + case NAND_CMD_STATUS_ERROR: + case NAND_CMD_STATUS_ERROR0: + case NAND_CMD_STATUS_ERROR1: + case NAND_CMD_STATUS_ERROR2: + case NAND_CMD_STATUS_ERROR3: + /* Read error status commands require only a short delay */ + udelay(chip->chip_delay); + return; + + case NAND_CMD_RESET: + if (chip->dev_ready) + break; + udelay(chip->chip_delay); + chip->cmd_ctrl(mtd, NAND_CMD_STATUS, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + while (!(chip->read_byte(mtd) & NAND_STATUS_READY) && + (rst_sts_cnt--)); + return; + + case NAND_CMD_RNDOUT: + /* No ready / busy check necessary */ + chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + return; + + case NAND_CMD_READ0: + chip->cmd_ctrl(mtd, NAND_CMD_READSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay. + */ + if (!chip->dev_ready) { + udelay(chip->chip_delay); + return; + } + } + + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(mtd); +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @chip: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested + * + * Get the device and lock it for exclusive access + */ +static int +nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) +{ + chip->state = new_state; + return 0; +} + +/** + * nand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * + * Wait for command done. This applies to erase and program only. Erase can + * take up to 400ms and program up to 20ms according to general NAND and + * SmartMedia specs. + */ +static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + unsigned long timeo; + int state = chip->state; + u32 time_start; + + if (state == FL_ERASING) + timeo = (CONFIG_SYS_HZ * 400) / 1000; + else + timeo = (CONFIG_SYS_HZ * 20) / 1000; + + if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) + chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); + else + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + + time_start = get_timer(0); + + while (1) { + if (get_timer(time_start) > timeo) { + printf("Timeout!"); + return 0x01; + } + + if (chip->dev_ready) { + if (chip->dev_ready(mtd)) + break; + } else { + if (chip->read_byte(mtd) & NAND_STATUS_READY) + break; + } + } +#ifdef PPCHAMELON_NAND_TIMER_HACK + time_start = get_timer(0); + while (get_timer(time_start) < 10) + ; +#endif /* PPCHAMELON_NAND_TIMER_HACK */ + + return (int)chip->read_byte(mtd); +} + +/** + * nand_read_page_raw - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + chip->read_buf(mtd, buf, mtd->writesize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/** + * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * We need a special oob layout and handling even when OOB isn't used. + */ +static int nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + chip->read_buf(mtd, buf, eccsize); + buf += eccsize; + + if (chip->ecc.prepad) { + chip->read_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->read_buf(mtd, oob, eccbytes); + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->read_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) + chip->read_buf(mtd, oob, size); + + return 0; +} + +/** + * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + */ +static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + chip->ecc.read_page_raw(mtd, chip, buf, 1, page); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/** + * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data + */ +static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) +{ + int start_step, end_step, num_steps; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *p; + int data_col_addr, i, gaps = 0; + int datafrag_len, eccfrag_len, aligned_len, aligned_pos; + int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; + int index = 0; + + /* Column address within the page aligned to ECC size (256bytes) */ + start_step = data_offs / chip->ecc.size; + end_step = (data_offs + readlen - 1) / chip->ecc.size; + num_steps = end_step - start_step + 1; + + /* Data size aligned to ECC ecc.size */ + datafrag_len = num_steps * chip->ecc.size; + eccfrag_len = num_steps * chip->ecc.bytes; + + data_col_addr = start_step * chip->ecc.size; + /* If we read not a page aligned data */ + if (data_col_addr != 0) + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1); + + p = bufpoi + data_col_addr; + chip->read_buf(mtd, p, datafrag_len); + + /* Calculate ECC */ + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) + chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); + + /* + * The performance is faster if we position offsets according to + * ecc.pos. Let's make sure that there are no gaps in ECC positions. + */ + for (i = 0; i < eccfrag_len - 1; i++) { + if (eccpos[i + start_step * chip->ecc.bytes] + 1 != + eccpos[i + start_step * chip->ecc.bytes + 1]) { + gaps = 1; + break; + } + } + if (gaps) { + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + } else { + /* + * Send the command to read the particular ECC bytes take care + * about buswidth alignment in read_buf. + */ + index = start_step * chip->ecc.bytes; + + aligned_pos = eccpos[index] & ~(busw - 1); + aligned_len = eccfrag_len; + if (eccpos[index] & (busw - 1)) + aligned_len++; + if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) + aligned_len++; + + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + aligned_pos, -1); + chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); + } + + for (i = 0; i < eccfrag_len; i++) + chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; + + p = bufpoi + data_col_addr; + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { + int stat; + + stat = chip->ecc.correct(mtd, p, + &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/** + * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers which need a special oob layout. + */ +static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + } + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/** + * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Hardware ECC for large page chips, require OOB to be read first. For this + * ECC mode, the write_page method is re-used from ECC_HW. These methods + * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with + * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from + * the data area, by overwriting the NAND manufacturer bad block markings. + */ +static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *ecc_calc = chip->buffers->ecccalc; + + /* Read the OOB area first */ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/** + * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + + if (chip->ecc.prepad) { + chip->read_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->ecc.hwctl(mtd, NAND_ECC_READSYN); + chip->read_buf(mtd, oob, eccbytes); + stat = chip->ecc.correct(mtd, p, oob, NULL); + + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->read_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) + chip->read_buf(mtd, oob, i); + + return 0; +} + +/** + * nand_transfer_oob - [INTERN] Transfer oob to client buffer + * @chip: nand chip structure + * @oob: oob destination address + * @ops: oob ops structure + * @len: size of oob to transfer + */ +static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, + struct mtd_oob_ops *ops, size_t len) +{ + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(oob, chip->oob_poi + ops->ooboffs, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: { + struct nand_oobfree *free = chip->ecc.layout->oobfree; + uint32_t boffs = 0, roffs = ops->ooboffs; + size_t bytes = 0; + + for (; free->length && len; free++, len -= bytes) { + /* Read request not from offset 0? */ + if (unlikely(roffs)) { + if (roffs >= free->length) { + roffs -= free->length; + continue; + } + boffs = free->offset + roffs; + bytes = min_t(size_t, len, + (free->length - roffs)); + roffs = 0; + } else { + bytes = min_t(size_t, len, free->length); + boffs = free->offset; + } + memcpy(oob, chip->oob_poi + boffs, bytes); + oob += bytes; + } + return oob; + } + default: + BUG(); + } + return NULL; +} + +/** + * nand_do_read_ops - [INTERN] Read data with ECC + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob ops structure + * + * Internal function. Called with chip held. + */ +static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + int chipnr, page, realpage, col, bytes, aligned, oob_required; + struct nand_chip *chip = mtd->priv; + struct mtd_ecc_stats stats; + int ret = 0; + uint32_t readlen = ops->len; + uint32_t oobreadlen = ops->ooblen; + uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ? + mtd->oobavail : mtd->oobsize; + + uint8_t *bufpoi, *oob, *buf; + unsigned int max_bitflips = 0; + + stats = mtd->ecc_stats; + + chipnr = (int)(from >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + col = (int)(from & (mtd->writesize - 1)); + + buf = ops->datbuf; + oob = ops->oobbuf; + oob_required = oob ? 1 : 0; + + while (1) { + WATCHDOG_RESET(); + + bytes = min(mtd->writesize - col, readlen); + aligned = (bytes == mtd->writesize); + + /* Is the current page in the buffer? */ + if (realpage != chip->pagebuf || oob) { + bufpoi = aligned ? buf : chip->buffers->databuf; + + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); + + /* + * Now read the page into the buffer. Absent an error, + * the read methods return max bitflips per ecc step. + */ + if (unlikely(ops->mode == MTD_OPS_RAW)) + ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, + oob_required, + page); + else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && + !oob) + ret = chip->ecc.read_subpage(mtd, chip, + col, bytes, bufpoi); + else + ret = chip->ecc.read_page(mtd, chip, bufpoi, + oob_required, page); + if (ret < 0) { + if (!aligned) + /* Invalidate page cache */ + chip->pagebuf = -1; + break; + } + + max_bitflips = max_t(unsigned int, max_bitflips, ret); + + /* Transfer not aligned data */ + if (!aligned) { + if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && + !(mtd->ecc_stats.failed - stats.failed) && + (ops->mode != MTD_OPS_RAW)) { + chip->pagebuf = realpage; + chip->pagebuf_bitflips = ret; + } else { + /* Invalidate page cache */ + chip->pagebuf = -1; + } + memcpy(buf, chip->buffers->databuf + col, bytes); + } + + buf += bytes; + + if (unlikely(oob)) { + int toread = min(oobreadlen, max_oobsize); + + if (toread) { + oob = nand_transfer_oob(chip, + oob, ops, toread); + oobreadlen -= toread; + } + } + } else { + memcpy(buf, chip->buffers->databuf + col, bytes); + buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, + chip->pagebuf_bitflips); + } + + readlen -= bytes; + + if (!readlen) + break; + + /* For subsequent reads align to page boundary */ + col = 0; + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + + ops->retlen = ops->len - (size_t) readlen; + if (oob) + ops->oobretlen = ops->ooblen - oobreadlen; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return max_bitflips; +} + +/** + * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data + * + * Get hold of the chip and call nand_do_read. + */ +static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, uint8_t *buf) +{ + struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; + int ret; + + nand_get_device(chip, mtd, FL_READING); + ops.len = len; + ops.datbuf = buf; + ops.oobbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + ret = nand_do_read_ops(mtd, from, &ops); + *retlen = ops.retlen; + nand_release_device(mtd); + return ret; +} + +/** + * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + */ +static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/** + * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC + * with syndromes + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + */ +static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + uint8_t *buf = chip->oob_poi; + int length = mtd->oobsize; + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size; + uint8_t *bufpoi = buf; + int i, toread, sndrnd = 0, pos; + + chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page); + for (i = 0; i < chip->ecc.steps; i++) { + if (sndrnd) { + pos = eccsize + i * (eccsize + chunk); + if (mtd->writesize > 512) + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); + else + chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page); + } else + sndrnd = 1; + toread = min_t(int, length, chunk); + chip->read_buf(mtd, bufpoi, toread); + bufpoi += toread; + length -= toread; + } + if (length > 0) + chip->read_buf(mtd, bufpoi, length); + + return 0; +} + +/** + * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write + */ +static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int status = 0; + const uint8_t *buf = chip->oob_poi; + int length = mtd->oobsize; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + chip->write_buf(mtd, buf, length); + /* Send command to program the OOB data */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/** + * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC + * with syndrome - only for large page flash + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write + */ +static int nand_write_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size, length = mtd->oobsize; + int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps; + const uint8_t *bufpoi = chip->oob_poi; + + /* + * data-ecc-data-ecc ... ecc-oob + * or + * data-pad-ecc-pad-data-pad .... ecc-pad-oob + */ + if (!chip->ecc.prepad && !chip->ecc.postpad) { + pos = steps * (eccsize + chunk); + steps = 0; + } else + pos = eccsize; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); + for (i = 0; i < steps; i++) { + if (sndcmd) { + if (mtd->writesize <= 512) { + uint32_t fill = 0xFFFFFFFF; + + len = eccsize; + while (len > 0) { + int num = min_t(int, len, 4); + chip->write_buf(mtd, (uint8_t *)&fill, + num); + len -= num; + } + } else { + pos = eccsize + i * (eccsize + chunk); + chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); + } + } else + sndcmd = 1; + len = min_t(int, length, chunk); + chip->write_buf(mtd, bufpoi, len); + bufpoi += len; + length -= len; + } + if (length > 0) + chip->write_buf(mtd, bufpoi, length); + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/** + * nand_do_read_oob - [INTERN] NAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operations description structure + * + * NAND read out-of-band data from the spare area. + */ +static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + int page, realpage, chipnr; + struct nand_chip *chip = mtd->priv; + struct mtd_ecc_stats stats; + int readlen = ops->ooblen; + int len; + uint8_t *buf = ops->oobbuf; + int ret = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n", + __func__, (unsigned long long)from, readlen); + + stats = mtd->ecc_stats; + + if (ops->mode == MTD_OPS_AUTO_OOB) + len = chip->ecc.layout->oobavail; + else + len = mtd->oobsize; + + if (unlikely(ops->ooboffs >= len)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read " + "outside oob\n", __func__); + return -EINVAL; + } + + /* Do not allow reads past end of device */ + if (unlikely(from >= mtd->size || + ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - + (from >> chip->page_shift)) * len)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end " + "of device\n", __func__); + return -EINVAL; + } + + chipnr = (int)(from >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* Shift to get page */ + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + while (1) { + WATCHDOG_RESET(); + if (ops->mode == MTD_OPS_RAW) + ret = chip->ecc.read_oob_raw(mtd, chip, page); + else + ret = chip->ecc.read_oob(mtd, chip, page); + + if (ret < 0) + break; + + len = min(len, readlen); + buf = nand_transfer_oob(chip, buf, ops, len); + + readlen -= len; + if (!readlen) + break; + + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + + ops->oobretlen = ops->ooblen - readlen; + + if (ret < 0) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; +} + +/** + * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * NAND read data and/or out-of-band data. + */ +static int nand_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd->priv; + int ret = -ENOTSUPP; + + ops->retlen = 0; + + /* Do not allow reads past end of device */ + if (ops->datbuf && (from + ops->len) > mtd->size) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read " + "beyond end of device\n", __func__); + return -EINVAL; + } + + nand_get_device(chip, mtd, FL_READING); + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: + break; + + default: + goto out; + } + + if (!ops->datbuf) + ret = nand_do_read_oob(mtd, from, ops); + else + ret = nand_do_read_ops(mtd, from, ops); + +out: + nand_release_device(mtd); + return ret; +} + + +/** + * nand_write_page_raw - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + chip->write_buf(mtd, buf, mtd->writesize); + if (oob_required) + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/** + * nand_write_page_raw_syndrome - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * We need a special oob layout and handling even when ECC isn't checked. + */ +static int nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + chip->write_buf(mtd, buf, eccsize); + buf += eccsize; + + if (chip->ecc.prepad) { + chip->write_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->read_buf(mtd, oob, eccbytes); + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->write_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) + chip->write_buf(mtd, oob, size); + + return 0; +} +/** + * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->buffers->ecccalc; + const uint8_t *p = buf; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + /* Software ECC calculation */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + return chip->ecc.write_page_raw(mtd, chip, buf, 1); +} + +/** + * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->buffers->ecccalc; + const uint8_t *p = buf; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + chip->write_buf(mtd, p, eccsize); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + } + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/** + * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + const uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + chip->write_buf(mtd, p, eccsize); + + if (chip->ecc.prepad) { + chip->write_buf(mtd, oob, chip->ecc.prepad); + oob += chip->ecc.prepad; + } + + chip->ecc.calculate(mtd, p, oob); + chip->write_buf(mtd, oob, eccbytes); + oob += eccbytes; + + if (chip->ecc.postpad) { + chip->write_buf(mtd, oob, chip->ecc.postpad); + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) + chip->write_buf(mtd, oob, i); + + return 0; +} + +/** + * nand_write_page - [REPLACEABLE] write one page + * @mtd: MTD device structure + * @chip: NAND chip descriptor + * @buf: the data to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * @cached: cached programming + * @raw: use _raw version of write_page + */ +static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page, + int cached, int raw) +{ + int status; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + + if (unlikely(raw)) + status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); + else + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; + + /* + * Cached progamming disabled for now. Not sure if it's worth the + * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). + */ + cached = 0; + + if (!cached || !(chip->options & NAND_CACHEPRG)) { + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + /* + * See if operation failed and additional status checks are + * available. + */ + if ((status & NAND_STATUS_FAIL) && (chip->errstat)) + status = chip->errstat(mtd, chip, FL_WRITING, status, + page); + + if (status & NAND_STATUS_FAIL) + return -EIO; + } else { + chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + } + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE + /* Send command to read back the data */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + if (chip->verify_buf(mtd, buf, mtd->writesize)) + return -EIO; + + /* Make sure the next page prog is preceded by a status read */ + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); +#endif + return 0; +} + +/** + * nand_fill_oob - [INTERN] Transfer client buffer to oob + * @mtd: MTD device structure + * @oob: oob data buffer + * @len: oob data write length + * @ops: oob ops structure + */ +static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd->priv; + + /* + * Initialise to all 0xFF, to avoid the possibility of left over OOB + * data from a previous OOB read. + */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(chip->oob_poi + ops->ooboffs, oob, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: { + struct nand_oobfree *free = chip->ecc.layout->oobfree; + uint32_t boffs = 0, woffs = ops->ooboffs; + size_t bytes = 0; + + for (; free->length && len; free++, len -= bytes) { + /* Write request not from offset 0? */ + if (unlikely(woffs)) { + if (woffs >= free->length) { + woffs -= free->length; + continue; + } + boffs = free->offset + woffs; + bytes = min_t(size_t, len, + (free->length - woffs)); + woffs = 0; + } else { + bytes = min_t(size_t, len, free->length); + boffs = free->offset; + } + memcpy(chip->oob_poi + boffs, oob, bytes); + oob += bytes; + } + return oob; + } + default: + BUG(); + } + return NULL; +} + +#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) + +/** + * nand_do_write_ops - [INTERN] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operations description structure + * + * NAND write with ECC. + */ +static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int chipnr, realpage, page, blockmask, column; + struct nand_chip *chip = mtd->priv; + uint32_t writelen = ops->len; + + uint32_t oobwritelen = ops->ooblen; + uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ? + mtd->oobavail : mtd->oobsize; + + uint8_t *oob = ops->oobbuf; + uint8_t *buf = ops->datbuf; + int ret, subpage; + int oob_required = oob ? 1 : 0; + + ops->retlen = 0; + if (!writelen) + return 0; + + column = to & (mtd->writesize - 1); + subpage = column || (writelen & (mtd->writesize - 1)); + + if (subpage && oob) + return -EINVAL; + + chipnr = (int)(to >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n"); + return -EIO; + } + + realpage = (int)(to >> chip->page_shift); + page = realpage & chip->pagemask; + blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; + + /* Invalidate the page cache, when we write to the cached page */ + if (to <= (chip->pagebuf << chip->page_shift) && + (chip->pagebuf << chip->page_shift) < (to + ops->len)) + chip->pagebuf = -1; + + /* Don't allow multipage oob writes with offset */ + if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) + return -EINVAL; + + while (1) { + WATCHDOG_RESET(); + + int bytes = mtd->writesize; + int cached = writelen > bytes && page != blockmask; + uint8_t *wbuf = buf; + + /* Partial page write? */ + if (unlikely(column || writelen < mtd->writesize)) { + cached = 0; + bytes = min_t(int, bytes - column, (int) writelen); + chip->pagebuf = -1; + memset(chip->buffers->databuf, 0xff, mtd->writesize); + memcpy(&chip->buffers->databuf[column], buf, bytes); + wbuf = chip->buffers->databuf; + } + + if (unlikely(oob)) { + size_t len = min(oobwritelen, oobmaxlen); + oob = nand_fill_oob(mtd, oob, len, ops); + oobwritelen -= len; + } else { + /* We still need to erase leftover OOB data */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + } + + ret = chip->write_page(mtd, chip, wbuf, oob_required, page, + cached, (ops->mode == MTD_OPS_RAW)); + if (ret) + break; + + writelen -= bytes; + if (!writelen) + break; + + column = 0; + buf += bytes; + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + + ops->retlen = ops->len - writelen; + if (unlikely(oob)) + ops->oobretlen = ops->ooblen; + return ret; +} + +/** + * nand_write - [MTD Interface] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * NAND write with ECC. + */ +static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const uint8_t *buf) +{ + struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; + int ret; + + nand_get_device(chip, mtd, FL_WRITING); + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.oobbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + ret = nand_do_write_ops(mtd, to, &ops); + *retlen = ops.retlen; + nand_release_device(mtd); + return ret; +} + +/** + * nand_do_write_oob - [MTD Interface] NAND write out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + * + * NAND write out-of-band. + */ +static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int chipnr, page, status, len; + struct nand_chip *chip = mtd->priv; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", + __func__, (unsigned int)to, (int)ops->ooblen); + + if (ops->mode == MTD_OPS_AUTO_OOB) + len = chip->ecc.layout->oobavail; + else + len = mtd->oobsize; + + /* Do not allow write past end of page */ + if ((ops->ooboffs + ops->ooblen) > len) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write " + "past end of page\n", __func__); + return -EINVAL; + } + + if (unlikely(ops->ooboffs >= len)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start " + "write outside oob\n", __func__); + return -EINVAL; + } + + /* Do not allow write past end of device */ + if (unlikely(to >= mtd->size || + ops->ooboffs + ops->ooblen > + ((mtd->size >> chip->page_shift) - + (to >> chip->page_shift)) * len)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " + "end of device\n", __func__); + return -EINVAL; + } + + chipnr = (int)(to >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* Shift to get page */ + page = (int)(to >> chip->page_shift); + + /* + * Reset the chip. Some chips (like the Toshiba TC5832DC found in one + * of my DiskOnChip 2000 test units) will clear the whole data page too + * if we don't do this. I have no clue why, but I seem to have 'fixed' + * it in the doc2000 driver in August 1999. dwmw2. + */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) + return -EROFS; + + /* Invalidate the page cache, if we write to the cached page */ + if (page == chip->pagebuf) + chip->pagebuf = -1; + + nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); + + if (ops->mode == MTD_OPS_RAW) + status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); + else + status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); + + if (status) + return status; + + ops->oobretlen = ops->ooblen; + + return 0; +} + +/** + * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + */ +static int nand_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd->priv; + int ret = -ENOTSUPP; + + ops->retlen = 0; + + /* Do not allow writes past end of device */ + if (ops->datbuf && (to + ops->len) > mtd->size) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " + "end of device\n", __func__); + return -EINVAL; + } + + nand_get_device(chip, mtd, FL_WRITING); + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: + break; + + default: + goto out; + } + + if (!ops->datbuf) + ret = nand_do_write_oob(mtd, to, ops); + else + ret = nand_do_write_ops(mtd, to, ops); + +out: + nand_release_device(mtd); + return ret; +} + +/** + * single_erase_cmd - [GENERIC] NAND standard block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased + * + * Standard erase command for NAND chips. + */ +static void single_erase_cmd(struct mtd_info *mtd, int page) +{ + struct nand_chip *chip = mtd->priv; + /* Send commands to erase a block */ + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * multi_erase_cmd - [GENERIC] AND specific block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased + * + * AND multi block erase command function. Erase 4 consecutive blocks. + */ +static void multi_erase_cmd(struct mtd_info *mtd, int page) +{ + struct nand_chip *chip = mtd->priv; + /* Send commands to erase a block */ + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * + * Erase one ore more blocks. + */ +static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return nand_erase_nand(mtd, instr, 0); +} + +#define BBT_PAGE_MASK 0xffffff3f +/** + * nand_erase_nand - [INTERN] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area + * + * Erase one ore more blocks. + */ +int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, + int allowbbt) +{ + int page, status, pages_per_block, ret, chipnr; + struct nand_chip *chip = mtd->priv; + loff_t rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS] = {0}; + unsigned int bbt_masked_page = 0xffffffff; + loff_t len; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", + __func__, (unsigned long long)instr->addr, + (unsigned long long)instr->len); + + if (check_offs_len(mtd, instr->addr, instr->len)) + return -EINVAL; + + /* Grab the lock and see if the device is available */ + nand_get_device(chip, mtd, FL_ERASING); + + /* Shift to get first page */ + page = (int)(instr->addr >> chip->page_shift); + chipnr = (int)(instr->addr >> chip->chip_shift); + + /* Calculate pages in each block */ + pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); + + /* Select the NAND device */ + chip->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", + __func__); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* + * If BBT requires refresh, set the BBT page mask to see if the BBT + * should be rewritten. Otherwise the mask is set to 0xffffffff which + * can not be matched. This is also done when the bbt is actually + * erased to avoid recursive updates. + */ + if (chip->options & BBT_AUTO_REFRESH && !allowbbt) + bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; + + /* Loop through the pages */ + len = instr->len; + + instr->state = MTD_ERASING; + + while (len) { + WATCHDOG_RESET(); + /* Check if we have a bad block, we do not erase bad blocks! */ + if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) << + chip->page_shift, 0, allowbbt)) { + pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", + __func__, page); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* + * Invalidate the page cache, if we erase the block which + * contains the current cached page. + */ + if (page <= chip->pagebuf && chip->pagebuf < + (page + pages_per_block)) + chip->pagebuf = -1; + + chip->erase_cmd(mtd, page & chip->pagemask); + + status = chip->waitfunc(mtd, chip); + + /* + * See if operation failed and additional status checks are + * available + */ + if ((status & NAND_STATUS_FAIL) && (chip->errstat)) + status = chip->errstat(mtd, chip, FL_ERASING, + status, page); + + /* See if block erase succeeded */ + if (status & NAND_STATUS_FAIL) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, " + "page 0x%08x\n", __func__, page); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = + ((loff_t)page << chip->page_shift); + goto erase_exit; + } + + /* + * If BBT requires refresh, set the BBT rewrite flag to the + * page being erased. + */ + if (bbt_masked_page != 0xffffffff && + (page & BBT_PAGE_MASK) == bbt_masked_page) + rewrite_bbt[chipnr] = + ((loff_t)page << chip->page_shift); + + /* Increment page address and decrement length */ + len -= (1 << chip->phys_erase_shift); + page += pages_per_block; + + /* Check, if we cross a chip boundary */ + if (len && !(page & chip->pagemask)) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + + /* + * If BBT requires refresh and BBT-PERCHIP, set the BBT + * page mask to see if this BBT should be rewritten. + */ + if (bbt_masked_page != 0xffffffff && + (chip->bbt_td->options & NAND_BBT_PERCHIP)) + bbt_masked_page = chip->bbt_td->pages[chipnr] & + BBT_PAGE_MASK; + } + } + instr->state = MTD_ERASE_DONE; + +erase_exit: + + ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; + + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + /* Do call back function */ + if (!ret) + mtd_erase_callback(instr); + + /* + * If BBT requires refresh and erase was successful, rewrite any + * selected bad block tables. + */ + if (bbt_masked_page == 0xffffffff || ret) + return ret; + + for (chipnr = 0; chipnr < chip->numchips; chipnr++) { + if (!rewrite_bbt[chipnr]) + continue; + /* Update the BBT for chip */ + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt " + "(%d:0x%0llx 0x%0x)\n", __func__, chipnr, + rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]); + nand_update_bbt(mtd, rewrite_bbt[chipnr]); + } + + /* Return more or less happy */ + return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd: MTD device structure + * + * Sync is actually a wait for chip ready function. + */ +static void nand_sync(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__); + + /* Grab the lock and see if the device is available */ + nand_get_device(chip, mtd, FL_SYNCING); + /* Release it and go back */ + nand_release_device(mtd); +} + +/** + * nand_block_isbad - [MTD Interface] Check if block at offset is bad + * @mtd: MTD device structure + * @offs: offset relative to mtd start + */ +static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) +{ + return nand_block_checkbad(mtd, offs, 1, 0); +} + +/** + * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + */ +static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + int ret; + + ret = nand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ + if (ret > 0) + return 0; + return ret; + } + + return chip->block_markbad(mtd, ofs); +} + + /** + * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + int status; + + if (!chip->onfi_version) + return -EINVAL; + + chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); + chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN); + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + return 0; +} + +/** + * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + if (!chip->onfi_version) + return -EINVAL; + + /* clear the sub feature parameters */ + memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN); + + chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); + chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN); + return 0; +} + +/* Set default functions */ +static void nand_set_defaults(struct nand_chip *chip, int busw) +{ + /* check for proper chip_delay setup, set 20us if not */ + if (!chip->chip_delay) + chip->chip_delay = 20; + + /* check, if a user supplied command function given */ + if (chip->cmdfunc == NULL) + chip->cmdfunc = nand_command; + + /* check, if a user supplied wait function given */ + if (chip->waitfunc == NULL) + chip->waitfunc = nand_wait; + + if (!chip->select_chip) + chip->select_chip = nand_select_chip; + if (!chip->read_byte) + chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; + if (!chip->read_word) + chip->read_word = nand_read_word; + if (!chip->block_bad) + chip->block_bad = nand_block_bad; + if (!chip->block_markbad) + chip->block_markbad = nand_default_block_markbad; + if (!chip->write_buf) + chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; + if (!chip->read_buf) + chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; + if (!chip->verify_buf) + chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; + if (!chip->scan_bbt) + chip->scan_bbt = nand_default_bbt; + if (!chip->controller) + chip->controller = &chip->hwcontrol; +} + +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION +/* Sanitize ONFI strings so we can safely print them */ +static void sanitize_string(char *s, size_t len) +{ + ssize_t i; + + /* Null terminate */ + s[len - 1] = 0; + + /* Remove non printable chars */ + for (i = 0; i < len - 1; i++) { + if (s[i] < ' ' || s[i] > 127) + s[i] = '?'; + } + + /* Remove trailing spaces */ + strim(s); +} + +static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) +{ + int i; + while (len--) { + crc ^= *p++ << 8; + for (i = 0; i < 8; i++) + crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); + } + + return crc; +} + +/* + * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, + int *busw) +{ + struct nand_onfi_params *p = &chip->onfi_params; + int i; + int val; + + /* Try ONFI for unknown chip or LP */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); + if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || + chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') + return 0; + + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); + for (i = 0; i < 3; i++) { + chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == + le16_to_cpu(p->crc)) { + pr_info("ONFI param page %d valid\n", i); + break; + } + } + + if (i == 3) + return 0; + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 5)) + chip->onfi_version = 23; + else if (val & (1 << 4)) + chip->onfi_version = 22; + else if (val & (1 << 3)) + chip->onfi_version = 21; + else if (val & (1 << 2)) + chip->onfi_version = 20; + else if (val & (1 << 1)) + chip->onfi_version = 10; + else + chip->onfi_version = 0; + + if (!chip->onfi_version) { + pr_info("%s: unsupported ONFI version: %d\n", __func__, val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + mtd->writesize = le32_to_cpu(p->byte_per_page); + mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + chip->chipsize = le32_to_cpu(p->blocks_per_lun); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + *busw = 0; + if (le16_to_cpu(p->features) & 1) + *busw = NAND_BUSWIDTH_16; + + pr_info("ONFI flash detected\n"); + return 1; +} +#else +static inline int nand_flash_detect_onfi(struct mtd_info *mtd, + struct nand_chip *chip, + int *busw) +{ + return 0; +} +#endif + +/* + * nand_id_has_period - Check if an ID string has a given wraparound period + * @id_data: the ID string + * @arrlen: the length of the @id_data array + * @period: the period of repitition + * + * Check if an ID string is repeated within a given sequence of bytes at + * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a + * period of 2). This is a helper function for nand_id_len(). Returns non-zero + * if the repetition has a period of @period; otherwise, returns zero. + */ +static int nand_id_has_period(u8 *id_data, int arrlen, int period) +{ + int i, j; + for (i = 0; i < period; i++) + for (j = i + period; j < arrlen; j += period) + if (id_data[i] != id_data[j]) + return 0; + return 1; +} + +/* + * nand_id_len - Get the length of an ID string returned by CMD_READID + * @id_data: the ID string + * @arrlen: the length of the @id_data array + + * Returns the length of the ID string, according to known wraparound/trailing + * zero patterns. If no pattern exists, returns the length of the array. + */ +static int nand_id_len(u8 *id_data, int arrlen) +{ + int last_nonzero, period; + + /* Find last non-zero byte */ + for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) + if (id_data[last_nonzero]) + break; + + /* All zeros */ + if (last_nonzero < 0) + return 0; + + /* Calculate wraparound period */ + for (period = 1; period < arrlen; period++) + if (nand_id_has_period(id_data, arrlen, period)) + break; + + /* There's a repeated pattern */ + if (period < arrlen) + return period; + + /* There are trailing zeros */ + if (last_nonzero < arrlen - 1) + return last_nonzero + 1; + + /* No pattern detected */ + return arrlen; +} + +/* + * Many new NAND share similar device ID codes, which represent the size of the + * chip. The rest of the parameters must be decoded according to generic or + * manufacturer-specific "extended ID" decoding patterns. + */ +static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, + u8 id_data[8], int *busw) +{ + int extid, id_len; + /* The 3rd id byte holds MLC / multichip data */ + chip->cellinfo = id_data[2]; + /* The 4th id byte is the important one */ + extid = id_data[3]; + + id_len = nand_id_len(id_data, 8); + + /* + * Field definitions are in the following datasheets: + * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) + * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) + * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) + * + * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung + * ID to decide what to do. + */ + if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && + (chip->cellinfo & NAND_CI_CELLTYPE_MSK) && + id_data[5] != 0x00) { + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 1: + mtd->oobsize = 128; + break; + case 2: + mtd->oobsize = 218; + break; + case 3: + mtd->oobsize = 400; + break; + case 4: + mtd->oobsize = 436; + break; + case 5: + mtd->oobsize = 512; + break; + case 6: + default: /* Other cases are "reserved" (unknown) */ + mtd->oobsize = 640; + break; + } + extid >>= 2; + /* Calc blocksize */ + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + *busw = 0; + } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && + (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { + unsigned int tmp; + + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + default: + mtd->oobsize = 640; + break; + } + extid >>= 2; + /* Calc blocksize */ + tmp = ((extid >> 1) & 0x04) | (extid & 0x03); + if (tmp < 0x03) + mtd->erasesize = (128 * 1024) << tmp; + else if (tmp == 0x03) + mtd->erasesize = 768 * 1024; + else + mtd->erasesize = (64 * 1024) << tmp; + *busw = 0; + } else { + /* Calc pagesize */ + mtd->writesize = 1024 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x01)) * + (mtd->writesize >> 9); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; + } +} + + /* + * Old devices have chip data hardcoded in the device ID table. nand_decode_id + * decodes a matching ID table entry and assigns the MTD size parameters for + * the chip. + */ +static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, + const struct nand_flash_dev *type, u8 id_data[8], + int *busw) +{ + int maf_id = id_data[0]; + + mtd->erasesize = type->erasesize; + mtd->writesize = type->pagesize; + mtd->oobsize = mtd->writesize / 32; + *busw = type->options & NAND_BUSWIDTH_16; + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 + && id_data[6] == 0x00 && id_data[7] == 0x00 + && mtd->writesize == 512) { + mtd->erasesize = 128 * 1024; + mtd->erasesize <<= ((id_data[3] & 0x03) << 1); + } +} + + /* + * Set the bad block marker/indicator (BBM/BBI) patterns according to some + * heuristic patterns using various detected parameters (e.g., manufacturer, + * page size, cell-type information). + */ +static void nand_decode_bbm_options(struct mtd_info *mtd, + struct nand_chip *chip, u8 id_data[8]) +{ + int maf_id = id_data[0]; + + /* Set the bad block position */ + if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) + chip->badblockpos = NAND_LARGE_BADBLOCK_POS; + else + chip->badblockpos = NAND_SMALL_BADBLOCK_POS; + + /* + * Bad block marker is stored in the last page of each block on Samsung + * and Hynix MLC devices; stored in first two pages of each block on + * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, + * AMD/Spansion, and Macronix. All others scan only the first page. + */ + if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX || + maf_id == NAND_MFR_TOSHIBA || + maf_id == NAND_MFR_AMD || + maf_id == NAND_MFR_MACRONIX)) || + (mtd->writesize == 2048 && + maf_id == NAND_MFR_MICRON)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; +} + +/* + * Get the flash and manufacturer id and lookup if the type is supported. + */ +static const struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, + struct nand_chip *chip, + int busw, + int *maf_id, int *dev_id, + const struct nand_flash_dev *type) +{ + const char *name; + int i, maf_idx; + u8 id_data[8]; + + /* Select the device */ + chip->select_chip(mtd, 0); + + /* + * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) + * after power-up. + */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* Send the command for reading device ID */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + + /* Read manufacturer and device IDs */ + *maf_id = chip->read_byte(mtd); + *dev_id = chip->read_byte(mtd); + + /* + * Try again to make sure, as some systems the bus-hold or other + * interface concerns can cause random data which looks like a + * possibly credible NAND flash to appear. If the two results do + * not match, ignore the device completely. + */ + + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + + /* Read entire ID string */ + for (i = 0; i < 8; i++) + id_data[i] = chip->read_byte(mtd); + + if (id_data[0] != *maf_id || id_data[1] != *dev_id) { + pr_info("%s: second ID read did not match " + "%02x,%02x against %02x,%02x\n", __func__, + *maf_id, *dev_id, id_data[0], id_data[1]); + return ERR_PTR(-ENODEV); + } + + if (!type) + type = nand_flash_ids; + + for (; type->name != NULL; type++) + if (*dev_id == type->id) + break; + + chip->onfi_version = 0; + if (!type->name || !type->pagesize) { + /* Check is chip is ONFI compliant */ + if (nand_flash_detect_onfi(mtd, chip, &busw)) + goto ident_done; + } + + if (!type->name) + return ERR_PTR(-ENODEV); + + if (!mtd->name) + mtd->name = type->name; + + chip->chipsize = (uint64_t)type->chipsize << 20; + + if (!type->pagesize && chip->init_size) { + /* Set the pagesize, oobsize, erasesize by the driver */ + busw = chip->init_size(mtd, chip, id_data); + } else if (!type->pagesize) { + /* Decode parameters from extended ID */ + nand_decode_ext_id(mtd, chip, id_data, &busw); + } else { + nand_decode_id(mtd, chip, type, id_data, &busw); + } + /* Get chip options, preserve non chip based options */ + chip->options |= type->options; + + /* + * Check if chip is not a Samsung device. Do not clear the + * options for chips which do not have an extended id. + */ + if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) + chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; +ident_done: + + /* Try to identify manufacturer */ + for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { + if (nand_manuf_ids[maf_idx].id == *maf_id) + break; + } + + /* + * Check, if buswidth is correct. Hardware drivers should set + * chip correct! + */ + if (busw != (chip->options & NAND_BUSWIDTH_16)) { + pr_info("NAND device: Manufacturer ID:" + " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, + *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); + pr_warn("NAND bus width %d instead %d bit\n", + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, + busw ? 16 : 8); + return ERR_PTR(-EINVAL); + } + + nand_decode_bbm_options(mtd, chip, id_data); + + /* Calculate the address shift from the page size */ + chip->page_shift = ffs(mtd->writesize) - 1; + /* Convert chipsize to number of pages per chip -1 */ + chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; + + chip->bbt_erase_shift = chip->phys_erase_shift = + ffs(mtd->erasesize) - 1; + if (chip->chipsize & 0xffffffff) + chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; + else { + chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); + chip->chip_shift += 32 - 1; + } + + chip->badblockbits = 8; + + /* Check for AND chips with 4 page planes */ + if (chip->options & NAND_4PAGE_ARRAY) + chip->erase_cmd = multi_erase_cmd; + else + chip->erase_cmd = single_erase_cmd; + + /* Do not replace user supplied command function! */ + if (mtd->writesize > 512 && chip->cmdfunc == nand_command) + chip->cmdfunc = nand_command_lp; + + name = type->name; +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION + if (chip->onfi_version) + name = chip->onfi_params.model; +#endif + pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s)," + " page size: %d, OOB size: %d\n", + *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, + name, + mtd->writesize, mtd->oobsize); + + return type; +} + +/** + * nand_scan_ident - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * @table: alternative NAND ID table + * + * This is the first phase of the normal nand_scan() function. It reads the + * flash ID and sets up MTD fields accordingly. + * + * The mtd->owner field must be set to the module of the caller. + */ +int nand_scan_ident(struct mtd_info *mtd, int maxchips, + const struct nand_flash_dev *table) +{ + int i, busw, nand_maf_id, nand_dev_id; + struct nand_chip *chip = mtd->priv; + const struct nand_flash_dev *type; + + /* Get buswidth to select the correct functions */ + busw = chip->options & NAND_BUSWIDTH_16; + /* Set the default functions */ + nand_set_defaults(chip, busw); + + /* Read the flash type */ + type = nand_get_flash_type(mtd, chip, busw, + &nand_maf_id, &nand_dev_id, table); + + if (IS_ERR(type)) { +#ifndef CONFIG_SYS_NAND_QUIET_TEST + pr_warn("No NAND device found\n"); +#endif + chip->select_chip(mtd, -1); + return PTR_ERR(type); + } + + /* Check for a chip array */ + for (i = 1; i < maxchips; i++) { + chip->select_chip(mtd, i); + /* See comment in nand_get_flash_type for reset */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + /* Send the command for reading device ID */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + /* Read manufacturer and device IDs */ + if (nand_maf_id != chip->read_byte(mtd) || + nand_dev_id != chip->read_byte(mtd)) + break; + } +#ifdef DEBUG + if (i > 1) + pr_info("%d NAND chips detected\n", i); +#endif + + /* Store the number of chips and calc total size for mtd */ + chip->numchips = i; + mtd->size = i * chip->chipsize; + + return 0; +} + + +/** + * nand_scan_tail - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * + * This is the second phase of the normal nand_scan() function. It fills out + * all the uninitialized function pointers with the defaults and scans for a + * bad block table if appropriate. + */ +int nand_scan_tail(struct mtd_info *mtd) +{ + int i; + struct nand_chip *chip = mtd->priv; + + /* New bad blocks should be marked in OOB, flash-based BBT, or both */ + BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && + !(chip->bbt_options & NAND_BBT_USE_FLASH)); + + if (!(chip->options & NAND_OWN_BUFFERS)) + chip->buffers = memalign(ARCH_DMA_MINALIGN, + sizeof(*chip->buffers)); + if (!chip->buffers) + return -ENOMEM; + + /* Set the internal oob buffer location, just after the page data */ + chip->oob_poi = chip->buffers->databuf + mtd->writesize; + + /* + * If no default placement scheme is given, select an appropriate one. + */ + if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { + switch (mtd->oobsize) { + case 8: + chip->ecc.layout = &nand_oob_8; + break; + case 16: + chip->ecc.layout = &nand_oob_16; + break; + case 64: + chip->ecc.layout = &nand_oob_64; + break; + case 128: + chip->ecc.layout = &nand_oob_128; + break; + default: + pr_warn("No oob scheme defined for oobsize %d\n", + mtd->oobsize); + } + } + + if (!chip->write_page) + chip->write_page = nand_write_page; + + /* set for ONFI nand */ + if (!chip->onfi_set_features) + chip->onfi_set_features = nand_onfi_set_features; + if (!chip->onfi_get_features) + chip->onfi_get_features = nand_onfi_get_features; + + /* + * Check ECC mode, default to software if 3byte/512byte hardware ECC is + * selected and we have 256 byte pagesize fallback to software ECC + */ + + switch (chip->ecc.mode) { + case NAND_ECC_HW_OOB_FIRST: + /* Similar to NAND_ECC_HW, but a separate read_page handle */ + if (!chip->ecc.calculate || !chip->ecc.correct || + !chip->ecc.hwctl) { + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); + BUG(); + } + if (!chip->ecc.read_page) + chip->ecc.read_page = nand_read_page_hwecc_oob_first; + + case NAND_ECC_HW: + /* Use standard hwecc read page function? */ + if (!chip->ecc.read_page) + chip->ecc.read_page = nand_read_page_hwecc; + if (!chip->ecc.write_page) + chip->ecc.write_page = nand_write_page_hwecc; + if (!chip->ecc.read_page_raw) + chip->ecc.read_page_raw = nand_read_page_raw; + if (!chip->ecc.write_page_raw) + chip->ecc.write_page_raw = nand_write_page_raw; + if (!chip->ecc.read_oob) + chip->ecc.read_oob = nand_read_oob_std; + if (!chip->ecc.write_oob) + chip->ecc.write_oob = nand_write_oob_std; + + case NAND_ECC_HW_SYNDROME: + if ((!chip->ecc.calculate || !chip->ecc.correct || + !chip->ecc.hwctl) && + (!chip->ecc.read_page || + chip->ecc.read_page == nand_read_page_hwecc || + !chip->ecc.write_page || + chip->ecc.write_page == nand_write_page_hwecc)) { + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); + BUG(); + } + /* Use standard syndrome read/write page function? */ + if (!chip->ecc.read_page) + chip->ecc.read_page = nand_read_page_syndrome; + if (!chip->ecc.write_page) + chip->ecc.write_page = nand_write_page_syndrome; + if (!chip->ecc.read_page_raw) + chip->ecc.read_page_raw = nand_read_page_raw_syndrome; + if (!chip->ecc.write_page_raw) + chip->ecc.write_page_raw = nand_write_page_raw_syndrome; + if (!chip->ecc.read_oob) + chip->ecc.read_oob = nand_read_oob_syndrome; + if (!chip->ecc.write_oob) + chip->ecc.write_oob = nand_write_oob_syndrome; + + if (mtd->writesize >= chip->ecc.size) { + if (!chip->ecc.strength) { + pr_warn("Driver must set ecc.strength when using hardware ECC\n"); + BUG(); + } + break; + } + pr_warn("%d byte HW ECC not possible on " + "%d byte page size, fallback to SW ECC\n", + chip->ecc.size, mtd->writesize); + chip->ecc.mode = NAND_ECC_SOFT; + + case NAND_ECC_SOFT: + chip->ecc.calculate = nand_calculate_ecc; + chip->ecc.correct = nand_correct_data; + chip->ecc.read_page = nand_read_page_swecc; + chip->ecc.read_subpage = nand_read_subpage; + chip->ecc.write_page = nand_write_page_swecc; + chip->ecc.read_page_raw = nand_read_page_raw; + chip->ecc.write_page_raw = nand_write_page_raw; + chip->ecc.read_oob = nand_read_oob_std; + chip->ecc.write_oob = nand_write_oob_std; + if (!chip->ecc.size) + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + break; + + case NAND_ECC_SOFT_BCH: + if (!mtd_nand_has_bch()) { + pr_warn("CONFIG_MTD_ECC_BCH not enabled\n"); + return -EINVAL; + } + chip->ecc.calculate = nand_bch_calculate_ecc; + chip->ecc.correct = nand_bch_correct_data; + chip->ecc.read_page = nand_read_page_swecc; + chip->ecc.read_subpage = nand_read_subpage; + chip->ecc.write_page = nand_write_page_swecc; + chip->ecc.read_page_raw = nand_read_page_raw; + chip->ecc.write_page_raw = nand_write_page_raw; + chip->ecc.read_oob = nand_read_oob_std; + chip->ecc.write_oob = nand_write_oob_std; + /* + * Board driver should supply ecc.size and ecc.bytes values to + * select how many bits are correctable; see nand_bch_init() + * for details. Otherwise, default to 4 bits for large page + * devices. + */ + if (!chip->ecc.size && (mtd->oobsize >= 64)) { + chip->ecc.size = 512; + chip->ecc.bytes = 7; + } + chip->ecc.priv = nand_bch_init(mtd, + chip->ecc.size, + chip->ecc.bytes, + &chip->ecc.layout); + if (!chip->ecc.priv) + pr_warn("BCH ECC initialization failed!\n"); + chip->ecc.strength = + chip->ecc.bytes * 8 / fls(8 * chip->ecc.size); + break; + + case NAND_ECC_NONE: + pr_warn("NAND_ECC_NONE selected by board driver. " + "This is not recommended !!\n"); + chip->ecc.read_page = nand_read_page_raw; + chip->ecc.write_page = nand_write_page_raw; + chip->ecc.read_oob = nand_read_oob_std; + chip->ecc.read_page_raw = nand_read_page_raw; + chip->ecc.write_page_raw = nand_write_page_raw; + chip->ecc.write_oob = nand_write_oob_std; + chip->ecc.size = mtd->writesize; + chip->ecc.bytes = 0; + break; + + default: + pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); + BUG(); + } + + /* For many systems, the standard OOB write also works for raw */ + if (!chip->ecc.read_oob_raw) + chip->ecc.read_oob_raw = chip->ecc.read_oob; + if (!chip->ecc.write_oob_raw) + chip->ecc.write_oob_raw = chip->ecc.write_oob; + + /* + * The number of bytes available for a client to place data into + * the out of band area. + */ + chip->ecc.layout->oobavail = 0; + for (i = 0; chip->ecc.layout->oobfree[i].length + && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++) + chip->ecc.layout->oobavail += + chip->ecc.layout->oobfree[i].length; + mtd->oobavail = chip->ecc.layout->oobavail; + + /* + * Set the number of read / write steps for one page depending on ECC + * mode. + */ + chip->ecc.steps = mtd->writesize / chip->ecc.size; + if (chip->ecc.steps * chip->ecc.size != mtd->writesize) { + pr_warn("Invalid ECC parameters\n"); + BUG(); + } + chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; + + /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && + !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { + switch (chip->ecc.steps) { + case 2: + mtd->subpage_sft = 1; + break; + case 4: + case 8: + case 16: + mtd->subpage_sft = 2; + break; + } + } + chip->subpagesize = mtd->writesize >> mtd->subpage_sft; + + /* Initialize state */ + chip->state = FL_READY; + + /* De-select the device */ + chip->select_chip(mtd, -1); + + /* Invalidate the pagebuffer reference */ + chip->pagebuf = -1; + + /* Large page NAND with SOFT_ECC should support subpage reads */ + if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9)) + chip->options |= NAND_SUBPAGE_READ; + + /* Fill in remaining MTD driver data */ + mtd->type = MTD_NANDFLASH; + mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : + MTD_CAP_NANDFLASH; + mtd->_erase = nand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_read = nand_read; + mtd->_write = nand_write; + mtd->_read_oob = nand_read_oob; + mtd->_write_oob = nand_write_oob; + mtd->_sync = nand_sync; + mtd->_lock = NULL; + mtd->_unlock = NULL; + mtd->_block_isbad = nand_block_isbad; + mtd->_block_markbad = nand_block_markbad; + + /* propagate ecc info to mtd_info */ + mtd->ecclayout = chip->ecc.layout; + mtd->ecc_strength = chip->ecc.strength; + /* + * Initialize bitflip_threshold to its default prior scan_bbt() call. + * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be + * properly set. + */ + if (!mtd->bitflip_threshold) + mtd->bitflip_threshold = mtd->ecc_strength; + + /* Check, if we should skip the bad block table scan */ + if (chip->options & NAND_SKIP_BBTSCAN) + chip->options |= NAND_BBT_SCANNED; + + return 0; +} + +/** + * nand_scan - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * + * This fills out all the uninitialized function pointers with the defaults. + * The flash ID is read and the mtd/chip structures are filled with the + * appropriate values. The mtd->owner field must be set to the module of the + * caller. + */ +int nand_scan(struct mtd_info *mtd, int maxchips) +{ + int ret; + + ret = nand_scan_ident(mtd, maxchips, NULL); + if (!ret) + ret = nand_scan_tail(mtd); + return ret; +} + +/** + * nand_release - [NAND Interface] Free resources held by the NAND device + * @mtd: MTD device structure + */ +void nand_release(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + + if (chip->ecc.mode == NAND_ECC_SOFT_BCH) + nand_bch_free((struct nand_bch_control *)chip->ecc.priv); + +#ifdef CONFIG_MTD_PARTITIONS + /* Deregister partitions */ + del_mtd_partitions(mtd); +#endif + + /* Free bad block table memory */ + kfree(chip->bbt); + if (!(chip->options & NAND_OWN_BUFFERS)) + kfree(chip->buffers); + + /* Free bad block descriptor memory */ + if (chip->badblock_pattern && chip->badblock_pattern->options + & NAND_BBT_DYNAMICSTRUCT) + kfree(chip->badblock_pattern); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_bbt.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_bbt.c new file mode 100644 index 000000000..8ef58451d --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_bbt.c @@ -0,0 +1,1397 @@ +/* + * drivers/mtd/nand_bbt.c + * + * Overview: + * Bad block table support for the NAND driver + * + * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table + * depending on the options in the BBT descriptor(s). If no flash based BBT + * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory + * marked good / bad blocks. This information is used to create a memory BBT. + * Once a new bad block is discovered then the "factory" information is updated + * on the device. + * If a flash based BBT is specified then the function first tries to find the + * BBT on flash. If a BBT is found then the contents are read and the memory + * based BBT is created. If a mirrored BBT is selected then the mirror is + * searched too and the versions are compared. If the mirror has a greater + * version number, then the mirror BBT is used to build the memory based BBT. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the BBTs is out of date or does not exist it is (re)created. + * If no BBT exists at all then the device is scanned for factory marked + * good / bad blocks and the bad block tables are created. + * + * For manufacturer created BBTs like the one found on M-SYS DOC devices + * the BBT is searched and read but never created + * + * The auto generated bad block table is located in the last good blocks + * of the device. The table is mirrored, so it can be updated eventually. + * The table is marked in the OOB area with an ident pattern and a version + * number which indicates which of both tables is more up to date. If the NAND + * controller needs the complete OOB area for the ECC information then the + * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of + * course): it moves the ident pattern and the version byte into the data area + * and the OOB area will remain untouched. + * + * The table uses 2 bits per block + * 11b: block is good + * 00b: block is factory marked bad + * 01b, 10b: block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b: block is good + * 01b: block is marked bad due to wear + * 10b: block is reserved (to protect the bbt area) + * 11b: block is factory marked bad + * + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space necessary for a bbt in FLASH does not exceed a block boundary + * + */ + +#include <common.h> +#include <malloc.h> +#include <linux/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/bbm.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/bitops.h> +#include <linux/string.h> + +#include <asm/errno.h> + +static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +{ + if (memcmp(buf, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. If the SCAN_EMPTY option is set then check, if + * all bytes except the pattern area contain 0xff. + */ +static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + int end = 0; + uint8_t *p = buf; + + if (td->options & NAND_BBT_NO_OOB) + return check_pattern_no_oob(buf, td); + + end = paglen + td->offs; + if (td->options & NAND_BBT_SCANEMPTY) + if (memchr_inv(p, 0xff, end)) + return -1; + p += end; + + /* Compare the pattern */ + if (memcmp(p, td->pattern, td->len)) + return -1; + + if (td->options & NAND_BBT_SCANEMPTY) { + p += td->len; + end += td->len; + if (memchr_inv(p, 0xff, len - end)) + return -1; + } + return 0; +} + +/** + * check_short_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. Same as check_pattern, but no optional empty + * check. + */ +static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) +{ + /* Compare the pattern */ + if (memcmp(buf + td->offs, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * add_marker_len - compute the length of the marker in data area + * @td: BBT descriptor used for computation + * + * The length will be 0 if the marker is located in OOB area. + */ +static u32 add_marker_len(struct nand_bbt_descr *td) +{ + u32 len; + + if (!(td->options & NAND_BBT_NO_OOB)) + return 0; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + return len; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @mtd: MTD device structure + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @td: the bbt describtion table + * @offs: offset in the memory table + * + * Read the bad block table starting from page. + */ +static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, + struct nand_bbt_descr *td, int offs) +{ + int res, ret = 0, i, j, act = 0; + struct nand_chip *this = mtd->priv; + size_t retlen, len, totlen; + loff_t from; + int bits = td->options & NAND_BBT_NRBITS_MSK; + uint8_t msk = (uint8_t)((1 << bits) - 1); + u32 marker_len; + int reserved_block_code = td->reserved_block_code; + + totlen = (num * bits) >> 3; + marker_len = add_marker_len(td); + from = ((loff_t)page) << this->page_shift; + + while (totlen) { + len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); + if (marker_len) { + /* + * In case the BBT marker is not in the OOB area it + * will be just in the first page. + */ + len -= marker_len; + from += marker_len; + marker_len = 0; + } + res = mtd_read(mtd, from, len, &retlen, buf); + if (res < 0) { + if (mtd_is_eccerr(res)) { + pr_info("nand_bbt: ECC error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + return res; + } else if (mtd_is_bitflip(res)) { + pr_info("nand_bbt: corrected error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + ret = res; + } else { + pr_info("nand_bbt: error reading BBT\n"); + return res; + } + } + + /* Analyse data */ + for (i = 0; i < len; i++) { + uint8_t dat = buf[i]; + for (j = 0; j < 8; j += bits, act += 2) { + uint8_t tmp = (dat >> j) & msk; + if (tmp == msk) + continue; + if (reserved_block_code && (tmp == reserved_block_code)) { + pr_info("nand_read_bbt: reserved block at 0x%012llx\n", + (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); + mtd->ecc_stats.bbtblocks++; + continue; + } + pr_info("nand_read_bbt: Bad block at 0x%012llx\n", + (loff_t)((offs << 2) + (act >> 1)) + << this->bbt_erase_shift); + /* Factory marked bad or worn out? */ + if (tmp == 0) + this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); + else + this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); + mtd->ecc_stats.badblocks++; + } + } + totlen -= len; + from += len; + } + return ret; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips; applies only if + * NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page. We assume + * that the bbt bits are in consecutive order. + */ +static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) +{ + struct nand_chip *this = mtd->priv; + int res = 0, i; + + if (td->options & NAND_BBT_PERCHIP) { + int offs = 0; + for (i = 0; i < this->numchips; i++) { + if (chip == -1 || chip == i) + res = read_bbt(mtd, buf, td->pages[i], + this->chipsize >> this->bbt_erase_shift, + td, offs); + if (res) + return res; + offs += this->chipsize >> (this->bbt_erase_shift + 2); + } + } else { + res = read_bbt(mtd, buf, td->pages[0], + mtd->size >> this->bbt_erase_shift, td, 0); + if (res) + return res; + } + return 0; +} + +/* BBT marker is in the first page, no OOB */ +static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + struct nand_bbt_descr *td) +{ + size_t retlen; + size_t len; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + + return mtd_read(mtd, offs, len, &retlen, buf); +} + +/** + * scan_read_oob - [GENERIC] Scan data+OOB region to buffer + * @mtd: MTD device structure + * @buf: temporary buffer + * @offs: offset at which to scan + * @len: length of data region to read + * + * Scan read data from data+OOB. May traverse multiple pages, interleaving + * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" + * ECC condition (error or bitflip). May quit on the first (non-ECC) error. + */ +static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + size_t len) +{ + struct mtd_oob_ops ops; + int res, ret = 0; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + + while (len > 0) { + ops.datbuf = buf; + ops.len = min(len, (size_t)mtd->writesize); + ops.oobbuf = buf + ops.len; + + res = mtd_read_oob(mtd, offs, &ops); + if (res) { + if (!mtd_is_bitflip_or_eccerr(res)) + return res; + else if (mtd_is_eccerr(res) || !ret) + ret = res; + } + + buf += mtd->oobsize + mtd->writesize; + len -= mtd->writesize; + offs += mtd->writesize; + } + return ret; +} + +static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + size_t len, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return scan_read_data(mtd, buf, offs, td); + else + return scan_read_oob(mtd, buf, offs, len); +} + +/* Scan write data with oob to flash */ +static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, + uint8_t *buf, uint8_t *oob) +{ + struct mtd_oob_ops ops; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + ops.datbuf = buf; + ops.oobbuf = oob; + ops.len = len; + + return mtd_write_oob(mtd, offs, &ops); +} + +static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + u32 ver_offs = td->veroffs; + + if (!(td->options & NAND_BBT_NO_OOB)) + ver_offs += mtd->writesize; + return ver_offs; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page. We + * assume that the bbt bits are in consecutive order. + */ +static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ + struct nand_chip *this = mtd->priv; + + /* Read the primary version, if available */ + if (td->options & NAND_BBT_VERSION) { + scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, + mtd->writesize, td); + td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + td->pages[0], td->version[0]); + } + + /* Read the mirror version, if available */ + if (md && (md->options & NAND_BBT_VERSION)) { + scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, + mtd->writesize, md); + md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + md->pages[0], md->version[0]); + } +} + +/* Scan a given block full */ +static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, + loff_t offs, uint8_t *buf, size_t readlen, + int scanlen, int numpages) +{ + int ret, j; + + ret = scan_read_oob(mtd, buf, offs, readlen); + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) + return ret; + + for (j = 0; j < numpages; j++, buf += scanlen) { + if (check_pattern(buf, scanlen, mtd->writesize, bd)) + return 1; + } + return 0; +} + +/* Scan a given block partially */ +static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, + loff_t offs, uint8_t *buf, int numpages) +{ + struct mtd_oob_ops ops; + int j, ret; + + ops.ooblen = mtd->oobsize; + ops.oobbuf = buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + for (j = 0; j < numpages; j++) { + /* + * Read the full oob until read_oob is fixed to handle single + * byte reads for 16 bit buswidth. + */ + ret = mtd_read_oob(mtd, offs, &ops); + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) + return ret; + + if (check_short_pattern(buf, bd)) + return 1; + + offs += mtd->writesize; + } + return 0; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips; applies only + * if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device for the given good/bad block + * identify pattern. + */ +static int create_bbt(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *bd, int chip) +{ + struct nand_chip *this = mtd->priv; + int i, numblocks, numpages, scanlen; + int startblock; + loff_t from; + size_t readlen; + + pr_info("Scanning device for bad blocks\n"); + + if (bd->options & NAND_BBT_SCANALLPAGES) + numpages = 1 << (this->bbt_erase_shift - this->page_shift); + else if (bd->options & NAND_BBT_SCAN2NDPAGE) + numpages = 2; + else + numpages = 1; + + if (!(bd->options & NAND_BBT_SCANEMPTY)) { + /* We need only read few bytes from the OOB area */ + scanlen = 0; + readlen = bd->len; + } else { + /* Full page content should be read */ + scanlen = mtd->writesize + mtd->oobsize; + readlen = numpages * mtd->writesize; + } + + if (chip == -1) { + /* + * Note that numblocks is 2 * (real numblocks) here, see i+=2 + * below as it makes shifting and masking less painful + */ + numblocks = mtd->size >> (this->bbt_erase_shift - 1); + startblock = 0; + from = 0; + } else { + if (chip >= this->numchips) { + pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", + chip + 1, this->numchips); + return -EINVAL; + } + numblocks = this->chipsize >> (this->bbt_erase_shift - 1); + startblock = chip * numblocks; + numblocks += startblock; + from = (loff_t)startblock << (this->bbt_erase_shift - 1); + } + + if (this->bbt_options & NAND_BBT_SCANLASTPAGE) + from += mtd->erasesize - (mtd->writesize * numpages); + + for (i = startblock; i < numblocks;) { + int ret; + + BUG_ON(bd->options & NAND_BBT_NO_OOB); + + if (bd->options & NAND_BBT_SCANALLPAGES) + ret = scan_block_full(mtd, bd, from, buf, readlen, + scanlen, numpages); + else + ret = scan_block_fast(mtd, bd, from, buf, numpages); + + if (ret < 0) + return ret; + + if (ret) { + this->bbt[i >> 3] |= 0x03 << (i & 0x6); + pr_warn("Bad eraseblock %d at 0x%012llx\n", + i >> 1, (unsigned long long)from); + mtd->ecc_stats.badblocks++; + } + + i += 2; + from += (1 << this->bbt_erase_shift); + } + return 0; +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. Search is + * preformed either from the beginning up or from the end of the device + * downwards. The search starts always at the start of a block. If the option + * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains + * the bad block information of this chip. This is necessary to provide support + * for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page in a block. + */ +static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd->priv; + int i, chips; + int startblock, block, dir; + int scanlen = mtd->writesize + mtd->oobsize; + int bbtblocks; + int blocktopage = this->bbt_erase_shift - this->page_shift; + + /* Search direction top -> down? */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = (mtd->size >> this->bbt_erase_shift) - 1; + dir = -1; + } else { + startblock = 0; + dir = 1; + } + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + bbtblocks = this->chipsize >> this->bbt_erase_shift; + startblock &= bbtblocks - 1; + } else { + chips = 1; + bbtblocks = mtd->size >> this->bbt_erase_shift; + } + + for (i = 0; i < chips; i++) { + /* Reset version information */ + td->version[i] = 0; + td->pages[i] = -1; + /* Scan the maximum number of blocks */ + for (block = 0; block < td->maxblocks; block++) { + + int actblock = startblock + dir * block; + loff_t offs = (loff_t)actblock << this->bbt_erase_shift; + + /* Read first page */ + scan_read(mtd, buf, offs, mtd->writesize, td); + if (!check_pattern(buf, scanlen, mtd->writesize, td)) { + td->pages[i] = actblock << blocktopage; + if (td->options & NAND_BBT_VERSION) { + offs = bbt_get_ver_offs(mtd, td); + td->version[i] = buf[offs]; + } + break; + } + } + startblock += this->chipsize >> this->bbt_erase_shift; + } + /* Check, if we found a bbt for each requested chip */ + for (i = 0; i < chips; i++) { + if (td->pages[i] == -1) + pr_warn("Bad block table not found for chip %d\n", i); + else + pr_info("Bad block table found at page %d, version 0x%02X\n", td->pages[i], + td->version[i]); + } + return 0; +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Search and read the bad block table(s). + */ +static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, + struct nand_bbt_descr *md) +{ + /* Search the primary table */ + search_bbt(mtd, buf, td); + + /* Search the mirror table */ + if (md) + search_bbt(mtd, buf, md); +} + +/** + * write_bbt - [GENERIC] (Re)write the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all + * + * (Re)write the bad block table. + */ +static int write_bbt(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md, + int chipsel) +{ + struct nand_chip *this = mtd->priv; + struct erase_info einfo; + int i, j, res, chip = 0; + int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; + int nrchips, bbtoffs, pageoffs, ooboffs; + uint8_t msk[4]; + uint8_t rcode = td->reserved_block_code; + size_t retlen, len = 0; + loff_t to; + struct mtd_oob_ops ops; + + ops.ooblen = mtd->oobsize; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + if (!rcode) + rcode = 0xff; + /* Write bad block table per chip rather than per device? */ + if (td->options & NAND_BBT_PERCHIP) { + numblocks = (int)(this->chipsize >> this->bbt_erase_shift); + /* Full device write or specific chip? */ + if (chipsel == -1) { + nrchips = this->numchips; + } else { + nrchips = chipsel + 1; + chip = chipsel; + } + } else { + numblocks = (int)(mtd->size >> this->bbt_erase_shift); + nrchips = 1; + } + + /* Loop through the chips */ + for (; chip < nrchips; chip++) { + /* + * There was already a version of the table, reuse the page + * This applies for absolute placement too, as we have the + * page nr. in td->pages. + */ + if (td->pages[chip] != -1) { + page = td->pages[chip]; + goto write; + } + + /* + * Automatic placement of the bad block table. Search direction + * top -> down? + */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = numblocks * (chip + 1) - 1; + dir = -1; + } else { + startblock = chip * numblocks; + dir = 1; + } + + for (i = 0; i < td->maxblocks; i++) { + int block = startblock + dir * i; + /* Check, if the block is bad */ + switch ((this->bbt[block >> 2] >> + (2 * (block & 0x03))) & 0x03) { + case 0x01: + case 0x03: + continue; + } + page = block << + (this->bbt_erase_shift - this->page_shift); + /* Check, if the block is used by the mirror table */ + if (!md || md->pages[chip] != page) + goto write; + } + pr_err("No space left to write bad block table\n"); + return -ENOSPC; + write: + + /* Set up shift count and masks for the flash table */ + bits = td->options & NAND_BBT_NRBITS_MSK; + msk[2] = ~rcode; + switch (bits) { + case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x01; + break; + case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x03; + break; + case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; + msk[3] = 0x0f; + break; + case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; + msk[3] = 0xff; + break; + default: return -EINVAL; + } + + bbtoffs = chip * (numblocks >> 2); + + to = ((loff_t)page) << this->page_shift; + + /* Must we save the block contents? */ + if (td->options & NAND_BBT_SAVECONTENT) { + /* Make it block aligned */ + to &= ~((loff_t)((1 << this->bbt_erase_shift) - 1)); + len = 1 << this->bbt_erase_shift; + res = mtd_read(mtd, to, len, &retlen, buf); + if (res < 0) { + if (retlen != len) { + pr_info("nand_bbt: error reading block " + "for writing the bad block table\n"); + return res; + } + pr_warn("nand_bbt: ECC error while reading " + "block for writing bad block table\n"); + } + /* Read oob data */ + ops.ooblen = (len >> this->page_shift) * mtd->oobsize; + ops.oobbuf = &buf[len]; + res = mtd_read_oob(mtd, to + mtd->writesize, &ops); + if (res < 0 || ops.oobretlen != ops.ooblen) + goto outerr; + + /* Calc the byte offset in the buffer */ + pageoffs = page - (int)(to >> this->page_shift); + offs = pageoffs << this->page_shift; + /* Preset the bbt area with 0xff */ + memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); + ooboffs = len + (pageoffs * mtd->oobsize); + + } else if (td->options & NAND_BBT_NO_OOB) { + ooboffs = 0; + offs = td->len; + /* The version byte */ + if (td->options & NAND_BBT_VERSION) + offs++; + /* Calc length */ + len = (size_t)(numblocks >> sft); + len += offs; + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len); + /* Pattern is located at the begin of first page */ + memcpy(buf, td->pattern, td->len); + } else { + /* Calc length */ + len = (size_t)(numblocks >> sft); + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len + + (len >> this->page_shift)* mtd->oobsize); + offs = 0; + ooboffs = len; + /* Pattern is located in oob area of first page */ + memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); + } + + if (td->options & NAND_BBT_VERSION) + buf[ooboffs + td->veroffs] = td->version[chip]; + + /* Walk through the memory table */ + for (i = 0; i < numblocks;) { + uint8_t dat; + dat = this->bbt[bbtoffs + (i >> 2)]; + for (j = 0; j < 4; j++, i++) { + int sftcnt = (i << (3 - sft)) & sftmsk; + /* Do not store the reserved bbt blocks! */ + buf[offs + (i >> sft)] &= + ~(msk[dat & 0x03] << sftcnt); + dat >>= 2; + } + } + + memset(&einfo, 0, sizeof(einfo)); + einfo.mtd = mtd; + einfo.addr = to; + einfo.len = 1 << this->bbt_erase_shift; + res = nand_erase_nand(mtd, &einfo, 1); + if (res < 0) + goto outerr; + + res = scan_write_bbt(mtd, to, len, buf, + td->options & NAND_BBT_NO_OOB ? NULL : + &buf[len]); + if (res < 0) + goto outerr; + + pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", + (unsigned long long)to, td->version[chip]); + + /* Mark it as used */ + td->pages[chip] = page; + } + return 0; + + outerr: + pr_warn("nand_bbt: error while writing bad block table %d\n", res); + return res; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device for + * manufacturer / software marked good / bad blocks. + */ +static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + + bd->options &= ~NAND_BBT_SCANEMPTY; + return create_bbt(mtd, this->buffers->databuf, bd, -1); +} + +/** + * check_create - [GENERIC] create and write bbt(s) if necessary + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt and creates + * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found + * for the chip/device. Update is necessary if one of the tables is missing or + * the version nr. of one table is less than the other. + */ +static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) +{ + int i, chips, writeops, create, chipsel, res, res2; + struct nand_chip *this = mtd->priv; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + struct nand_bbt_descr *rd, *rd2; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) + chips = this->numchips; + else + chips = 1; + + for (i = 0; i < chips; i++) { + writeops = 0; + create = 0; + rd = NULL; + rd2 = NULL; + res = res2 = 0; + /* Per chip or per device? */ + chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; + /* Mirrored table available? */ + if (md) { + if (td->pages[i] == -1 && md->pages[i] == -1) { + create = 1; + writeops = 0x03; + } else if (td->pages[i] == -1) { + rd = md; + writeops = 0x01; + } else if (md->pages[i] == -1) { + rd = td; + writeops = 0x02; + } else if (td->version[i] == md->version[i]) { + rd = td; + if (!(td->options & NAND_BBT_VERSION)) + rd2 = md; + } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { + rd = td; + writeops = 0x02; + } else { + rd = md; + writeops = 0x01; + } + } else { + if (td->pages[i] == -1) { + create = 1; + writeops = 0x01; + } else { + rd = td; + } + } + + if (create) { + /* Create the bad block table by scanning the device? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) + create_bbt(mtd, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; + } + + /* Read back first? */ + if (rd) { + res = read_abs_bbt(mtd, buf, rd, chipsel); + if (mtd_is_eccerr(res)) { + /* Mark table as invalid */ + rd->pages[i] = -1; + rd->version[i] = 0; + i--; + continue; + } + } + /* If they weren't versioned, read both */ + if (rd2) { + res2 = read_abs_bbt(mtd, buf, rd2, chipsel); + if (mtd_is_eccerr(res2)) { + /* Mark table as invalid */ + rd2->pages[i] = -1; + rd2->version[i] = 0; + i--; + continue; + } + } + + /* Scrub the flash table(s)? */ + if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) + writeops = 0x03; + + /* Update version numbers before writing */ + if (md) { + td->version[i] = max(td->version[i], md->version[i]); + md->version[i] = td->version[i]; + } + + /* Write the bad block table to the device? */ + if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, td, md, chipsel); + if (res < 0) + return res; + } + + /* Write the mirror bad block table to the device? */ + if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, md, td, chipsel); + if (res < 0) + return res; + } + } + return 0; +} + +/** + * mark_bbt_regions - [GENERIC] mark the bad block table regions + * @mtd: MTD device structure + * @td: bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent accidental + * erasures / writes. The regions are identified by the mark 0x02. + */ +static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd->priv; + int i, j, chips, block, nrblocks, update; + uint8_t oldval, newval; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); + } else { + chips = 1; + nrblocks = (int)(mtd->size >> this->bbt_erase_shift); + } + + for (i = 0; i < chips; i++) { + if ((td->options & NAND_BBT_ABSPAGE) || + !(td->options & NAND_BBT_WRITE)) { + if (td->pages[i] == -1) + continue; + block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); + block <<= 1; + oldval = this->bbt[(block >> 3)]; + newval = oldval | (0x2 << (block & 0x06)); + this->bbt[(block >> 3)] = newval; + if ((oldval != newval) && td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 1)); + continue; + } + update = 0; + if (td->options & NAND_BBT_LASTBLOCK) + block = ((i + 1) * nrblocks) - td->maxblocks; + else + block = i * nrblocks; + block <<= 1; + for (j = 0; j < td->maxblocks; j++) { + oldval = this->bbt[(block >> 3)]; + newval = oldval | (0x2 << (block & 0x06)); + this->bbt[(block >> 3)] = newval; + if (oldval != newval) + update = 1; + block += 2; + } + /* + * If we want reserved blocks to be recorded to flash, and some + * new ones have been marked, then we need to update the stored + * bbts. This should only happen once. + */ + if (update && td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1)); + } +} + +/** + * verify_bbt_descr - verify the bad block description + * @mtd: MTD device structure + * @bd: the table to verify + * + * This functions performs a few sanity checks on the bad block description + * table. + */ +static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + u32 pattern_len; + u32 bits; + u32 table_size; + + if (!bd) + return; + + pattern_len = bd->len; + bits = bd->options & NAND_BBT_NRBITS_MSK; + + BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && + !(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!bits); + + if (bd->options & NAND_BBT_VERSION) + pattern_len++; + + if (bd->options & NAND_BBT_NO_OOB) { + BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); + BUG_ON(bd->offs); + if (bd->options & NAND_BBT_VERSION) + BUG_ON(bd->veroffs != bd->len); + BUG_ON(bd->options & NAND_BBT_SAVECONTENT); + } + + if (bd->options & NAND_BBT_PERCHIP) + table_size = this->chipsize >> this->bbt_erase_shift; + else + table_size = mtd->size >> this->bbt_erase_shift; + table_size >>= 3; + table_size *= bits; + if (bd->options & NAND_BBT_NO_OOB) + table_size += pattern_len; + BUG_ON(table_size > (1 << this->bbt_erase_shift)); +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already available. If + * not it scans the device for manufacturer marked good / bad blocks and writes + * the bad block table(s) to the selected place. + * + * The bad block table memory is allocated here. It must be freed by calling + * the nand_free_bbt function. + */ +int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + int len, res = 0; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + len = mtd->size >> (this->bbt_erase_shift + 2); + /* + * Allocate memory (2bit per block) and clear the memory bad block + * table. + */ + this->bbt = kzalloc(len, GFP_KERNEL); + if (!this->bbt) + return -ENOMEM; + + /* + * If no primary table decriptor is given, scan the device to build a + * memory based bad block table. + */ + if (!td) { + if ((res = nand_memory_bbt(mtd, bd))) { + pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); + kfree(this->bbt); + this->bbt = NULL; + } + return res; + } + verify_bbt_descr(mtd, td); + verify_bbt_descr(mtd, md); + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = vmalloc(len); + if (!buf) { + kfree(this->bbt); + this->bbt = NULL; + return -ENOMEM; + } + + /* Is the bbt at a given page? */ + if (td->options & NAND_BBT_ABSPAGE) { + read_abs_bbts(mtd, buf, td, md); + } else { + /* Search the bad block table using a pattern in oob */ + search_read_bbts(mtd, buf, td, md); + } + + res = check_create(mtd, buf, bd); + + /* Prevent the bbt regions from erasing / writing */ + mark_bbt_region(mtd, td); + if (md) + mark_bbt_region(mtd, md); + + vfree(buf); + return res; +} + +/** + * nand_update_bbt - [NAND Interface] update bad block table(s) + * @mtd: MTD device structure + * @offs: the offset of the newly marked block + * + * The function updates the bad block table(s). + */ +int nand_update_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd->priv; + int len, res = 0; + int chip, chipsel; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + if (!this->bbt || !td) + return -EINVAL; + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = kmalloc(len, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chip = (int)(offs >> this->chip_shift); + chipsel = chip; + } else { + chip = 0; + chipsel = -1; + } + + td->version[chip]++; + if (md) + md->version[chip]++; + + /* Write the bad block table to the device? */ + if (td->options & NAND_BBT_WRITE) { + res = write_bbt(mtd, buf, td, md, chipsel); + if (res < 0) + goto out; + } + /* Write the mirror bad block table to the device? */ + if (md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, md, td, chipsel); + } + + out: + kfree(buf); + return res; +} + +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; + +static struct nand_bbt_descr agand_flashbased = { + .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, + .offs = 0x20, + .len = 6, + .pattern = scan_agand_pattern +}; + +/* Generic flash bbt descriptors */ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +static struct nand_bbt_descr bbt_main_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) +/** + * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure + * @this: NAND chip to create descriptor for + * + * This function allocates and initializes a nand_bbt_descr for BBM detection + * based on the properties of @this. The new descriptor is stored in + * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when + * passed to this function. + */ +static int nand_create_badblock_pattern(struct nand_chip *this) +{ + struct nand_bbt_descr *bd; + if (this->badblock_pattern) { + pr_warn("Bad block pattern already allocated; not replacing\n"); + return -EINVAL; + } + bd = kzalloc(sizeof(*bd), GFP_KERNEL); + if (!bd) + return -ENOMEM; + bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; + bd->offs = this->badblockpos; + bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; + bd->pattern = scan_ff_pattern; + bd->options |= NAND_BBT_DYNAMICSTRUCT; + this->badblock_pattern = bd; + return 0; +} + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device + * @mtd: MTD device structure + * + * This function selects the default bad block table support for the device and + * calls the nand_scan_bbt function. + */ +int nand_default_bbt(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + /* + * Default for AG-AND. We must use a flash based bad block table as the + * devices have factory marked _good_ blocks. Erasing those blocks + * leads to loss of the good / bad information, so we _must_ store this + * information in a good / bad table during startup. + */ + if (this->options & NAND_IS_AND) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + this->bbt_options |= NAND_BBT_USE_FLASH; + return nand_scan_bbt(mtd, &agand_flashbased); + } + + /* Is a flash based bad block table requested? */ + if (this->bbt_options & NAND_BBT_USE_FLASH) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + if (this->bbt_options & NAND_BBT_NO_OOB) { + this->bbt_td = &bbt_main_no_oob_descr; + this->bbt_md = &bbt_mirror_no_oob_descr; + } else { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + } + } else { + this->bbt_td = NULL; + this->bbt_md = NULL; + } + + if (!this->badblock_pattern) + nand_create_badblock_pattern(this); + + return nand_scan_bbt(mtd, this->badblock_pattern); +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ +int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) +{ + struct nand_chip *this = mtd->priv; + int block; + uint8_t res; + + /* Get block number * 2 */ + block = (int)(offs >> (this->bbt_erase_shift - 1)); + res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + + MTDDEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int)offs, block >> 1, res); + + switch ((int)res) { + case 0x00: + return 0; + case 0x01: + return 1; + case 0x02: + return allowbbt ? 0 : 1; + } + return 1; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_bch.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_bch.c new file mode 100644 index 000000000..35d2140da --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_bch.c @@ -0,0 +1,224 @@ +/* + * This file provides ECC correction for more than 1 bit per block of data, + * using binary BCH codes. It relies on the generic BCH library lib/bch.c. + * + * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +/*#include <asm/io.h>*/ +#include <linux/types.h> + +#include <linux/bitops.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_bch.h> +#include <linux/bch.h> +#include <malloc.h> + +/** + * struct nand_bch_control - private NAND BCH control structure + * @bch: BCH control structure + * @ecclayout: private ecc layout for this BCH configuration + * @errloc: error location array + * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid + */ +struct nand_bch_control { + struct bch_control *bch; + struct nand_ecclayout ecclayout; + unsigned int *errloc; + unsigned char *eccmask; +}; + +/** + * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block + * @mtd: MTD block structure + * @buf: input buffer with raw data + * @code: output buffer with ECC + */ +int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int i; + + memset(code, 0, chip->ecc.bytes); + encode_bch(nbc->bch, buf, chip->ecc.size, code); + + /* apply mask so that an erased page is a valid codeword */ + for (i = 0; i < chip->ecc.bytes; i++) + code[i] ^= nbc->eccmask[i]; + + return 0; +} + +/** + * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct bit errors for a data byte block + */ +int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + const struct nand_chip *chip = mtd->priv; + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int *errloc = nbc->errloc; + int i, count; + + count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, + NULL, errloc); + if (count > 0) { + for (i = 0; i < count; i++) { + if (errloc[i] < (chip->ecc.size*8)) + /* error is located in data, correct it */ + buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); + /* else error in ecc, no action needed */ + + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: corrected bitflip %u\n", + __func__, errloc[i]); + } + } else if (count < 0) { + printk(KERN_ERR "ecc unrecoverable error\n"); + count = -1; + } + return count; +} + +/** + * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction + * @mtd: MTD block structure + * @eccsize: ecc block size in bytes + * @eccbytes: ecc length in bytes + * @ecclayout: output default layout + * + * Returns: + * a pointer to a new NAND BCH control structure, or NULL upon failure + * + * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes + * are used to compute BCH parameters m (Galois field order) and t (error + * correction capability). @eccbytes should be equal to the number of bytes + * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. + * + * Example: to configure 4 bit correction per 512 bytes, you should pass + * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) + * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) + */ +struct nand_bch_control * +nand_bch_init(struct mtd_info *mtd, unsigned int eccsize, unsigned int eccbytes, + struct nand_ecclayout **ecclayout) +{ + unsigned int m, t, eccsteps, i; + struct nand_ecclayout *layout; + struct nand_bch_control *nbc = NULL; + unsigned char *erased_page; + + if (!eccsize || !eccbytes) { + printk(KERN_WARNING "ecc parameters not supplied\n"); + goto fail; + } + + m = fls(1+8*eccsize); + t = (eccbytes*8)/m; + + nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); + if (!nbc) + goto fail; + + nbc->bch = init_bch(m, t, 0); + if (!nbc->bch) + goto fail; + + /* verify that eccbytes has the expected value */ + if (nbc->bch->ecc_bytes != eccbytes) { + printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", + eccbytes, nbc->bch->ecc_bytes); + goto fail; + } + + eccsteps = mtd->writesize/eccsize; + + /* if no ecc placement scheme was provided, build one */ + if (!*ecclayout) { + + /* handle large page devices only */ + if (mtd->oobsize < 64) { + printk(KERN_WARNING "must provide an oob scheme for " + "oobsize %d\n", mtd->oobsize); + goto fail; + } + + layout = &nbc->ecclayout; + layout->eccbytes = eccsteps*eccbytes; + + /* reserve 2 bytes for bad block marker */ + if (layout->eccbytes+2 > mtd->oobsize) { + printk(KERN_WARNING "no suitable oob scheme available " + "for oobsize %d eccbytes %u\n", mtd->oobsize, + eccbytes); + goto fail; + } + /* put ecc bytes at oob tail */ + for (i = 0; i < layout->eccbytes; i++) + layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; + + *ecclayout = layout; + } + + /* sanity checks */ + if (8*(eccsize+eccbytes) >= (1 << m)) { + printk(KERN_WARNING "eccsize %u is too large\n", eccsize); + goto fail; + } + if ((*ecclayout)->eccbytes != (eccsteps*eccbytes)) { + printk(KERN_WARNING "invalid ecc layout\n"); + goto fail; + } + + nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); + nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); + if (!nbc->eccmask || !nbc->errloc) + goto fail; + /* + * compute and store the inverted ecc of an erased ecc block + */ + erased_page = kmalloc(eccsize, GFP_KERNEL); + if (!erased_page) + goto fail; + + memset(erased_page, 0xff, eccsize); + memset(nbc->eccmask, 0, eccbytes); + encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); + kfree(erased_page); + + for (i = 0; i < eccbytes; i++) + nbc->eccmask[i] ^= 0xff; + + return nbc; +fail: + nand_bch_free(nbc); + return NULL; +} + +/** + * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources + * @nbc: NAND BCH control structure + */ +void nand_bch_free(struct nand_bch_control *nbc) +{ + if (nbc) { + free_bch(nbc->bch); + kfree(nbc->errloc); + kfree(nbc->eccmask); + kfree(nbc); + } +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_ecc.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_ecc.c new file mode 100644 index 000000000..083e0e99e --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_ecc.c @@ -0,0 +1,191 @@ +/* + * This file contains an ECC algorithm from Toshiba that detects and + * corrects 1 bit errors in a 256 byte block of data. + * + * drivers/mtd/nand/nand_ecc.c + * + * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) + * Toshiba America Electronics Components, Inc. + * + * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de> + * + * SPDX-License-Identifier: GPL-2.0+ + * + * As a special exception, if other files instantiate templates or use + * macros or inline functions from these files, or you compile these + * files and link them with other works to produce a work based on these + * files, these files do not by themselves cause the resulting work to be + * covered by the GNU General Public License. However the source code for + * these files must still be made available in accordance with section (3) + * of the GNU General Public License. + * + * This exception does not invalidate any other reasons why a work based on + * this file might be covered by the GNU General Public License. + */ + +#include <common.h> + +#include <asm/errno.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand_ecc.h> + +/* The PPC4xx NDFC uses Smart Media (SMC) bytes order */ +#ifdef CONFIG_NAND_NDFC +#define CONFIG_MTD_NAND_ECC_SMC +#endif + +/* + * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(), + * only nand_correct_data() is needed + */ + +#if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC) +/* + * Pre-calculated 256-way 1 byte column parity + */ +static const u_char nand_ecc_precalc_table[] = { + 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, + 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, + 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, + 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, + 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, + 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, + 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, + 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, + 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, + 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, + 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, + 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, + 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, + 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, + 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, + 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +}; + +/** + * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block + * @mtd: MTD block structure + * @dat: raw data + * @ecc_code: buffer for ECC + */ +int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; + int i; + + /* Initialize variables */ + reg1 = reg2 = reg3 = 0; + + /* Build up column parity */ + for(i = 0; i < 256; i++) { + /* Get CP0 - CP5 from table */ + idx = nand_ecc_precalc_table[*dat++]; + reg1 ^= (idx & 0x3f); + + /* All bit XOR = 1 ? */ + if (idx & 0x40) { + reg3 ^= (uint8_t) i; + reg2 ^= ~((uint8_t) i); + } + } + + /* Create non-inverted ECC code from line parity */ + tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ + tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ + tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ + tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ + tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ + tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ + tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ + tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ + + tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ + tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ + tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ + tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ + tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ + tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ + tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ + tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ + + /* Calculate final ECC code */ +#ifdef CONFIG_MTD_NAND_ECC_SMC + ecc_code[0] = ~tmp2; + ecc_code[1] = ~tmp1; +#else + ecc_code[0] = ~tmp1; + ecc_code[1] = ~tmp2; +#endif + ecc_code[2] = ((~reg1) << 2) | 0x03; + + return 0; +} +#endif /* CONFIG_NAND_SPL */ + +static inline int countbits(uint32_t byte) +{ + int res = 0; + + for (;byte; byte >>= 1) + res += byte & 0x01; + return res; +} + +/** + * nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @dat: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct a 1 bit error for 256 byte block + */ +int nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + uint8_t s0, s1, s2; + +#ifdef CONFIG_MTD_NAND_ECC_SMC + s0 = calc_ecc[0] ^ read_ecc[0]; + s1 = calc_ecc[1] ^ read_ecc[1]; + s2 = calc_ecc[2] ^ read_ecc[2]; +#else + s1 = calc_ecc[0] ^ read_ecc[0]; + s0 = calc_ecc[1] ^ read_ecc[1]; + s2 = calc_ecc[2] ^ read_ecc[2]; +#endif + if ((s0 | s1 | s2) == 0) + return 0; + + /* Check for a single bit error */ + if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && + ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && + ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { + + uint32_t byteoffs, bitnum; + + byteoffs = (s1 << 0) & 0x80; + byteoffs |= (s1 << 1) & 0x40; + byteoffs |= (s1 << 2) & 0x20; + byteoffs |= (s1 << 3) & 0x10; + + byteoffs |= (s0 >> 4) & 0x08; + byteoffs |= (s0 >> 3) & 0x04; + byteoffs |= (s0 >> 2) & 0x02; + byteoffs |= (s0 >> 1) & 0x01; + + bitnum = (s2 >> 5) & 0x04; + bitnum |= (s2 >> 4) & 0x02; + bitnum |= (s2 >> 3) & 0x01; + + dat[byteoffs] ^= (1 << bitnum); + + return 1; + } + + if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1) + return 1; + + return -EBADMSG; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_ids.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_ids.c new file mode 100644 index 000000000..f3f0cb676 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_ids.c @@ -0,0 +1,182 @@ +/* + * drivers/mtd/nandids.c + * + * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <common.h> +#include <linux/mtd/nand.h> +/* +* Chip ID list +* +* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, +* options +* +* Pagesize; 0, 256, 512 +* 0 get this information from the extended chip ID ++ 256 256 Byte page size +* 512 512 Byte page size +*/ +const struct nand_flash_dev nand_flash_ids[] = { + +#ifdef CONFIG_MTD_NAND_MUSEUM_IDS + {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, + {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, + {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, + {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, + {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, + {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, + {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, + + {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, + {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, + {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, + {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, +#endif + + {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, + {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, + {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, + {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, + {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, + {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, + {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, + {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, + {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, + {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, + + /* + * These are the new chips with large page size. The pagesize and the + * erasesize is determined from the extended id bytes + */ +#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS +#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) + + /* 512 Megabit */ + {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, + {"NAND 64MiB 1,8V 8-bit", 0xA0, 0, 64, 0, LP_OPTIONS}, + {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, + {"NAND 64MiB 3,3V 8-bit", 0xD0, 0, 64, 0, LP_OPTIONS}, + {"NAND 64MiB 3,3V 8-bit", 0xF0, 0, 64, 0, LP_OPTIONS}, + {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, + {"NAND 64MiB 1,8V 16-bit", 0xB0, 0, 64, 0, LP_OPTIONS16}, + {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, + {"NAND 64MiB 3,3V 16-bit", 0xC0, 0, 64, 0, LP_OPTIONS16}, + + /* 1 Gigabit */ + {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, + {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, + {"NAND 128MiB 3,3V 8-bit", 0xD1, 0, 128, 0, LP_OPTIONS}, + {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, + {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, + {"NAND 128MiB 1,8V 16-bit", 0xAD, 0, 128, 0, LP_OPTIONS16}, + + /* 2 Gigabit */ + {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, + {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, + {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, + {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, + + /* 4 Gigabit */ + {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, + {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, + {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, + {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, + + /* 8 Gigabit */ + {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, + {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, + {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, + {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, + + /* 16 Gigabit */ + {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, + {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, + {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, + {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, + + /* 32 Gigabit */ + {"NAND 4GiB 1,8V 8-bit", 0xA7, 0, 4096, 0, LP_OPTIONS}, + {"NAND 4GiB 3,3V 8-bit", 0xD7, 0, 4096, 0, LP_OPTIONS}, + {"NAND 4GiB 1,8V 16-bit", 0xB7, 0, 4096, 0, LP_OPTIONS16}, + {"NAND 4GiB 3,3V 16-bit", 0xC7, 0, 4096, 0, LP_OPTIONS16}, + + /* 64 Gigabit */ + {"NAND 8GiB 1,8V 8-bit", 0xAE, 0, 8192, 0, LP_OPTIONS}, + {"NAND 8GiB 3,3V 8-bit", 0xDE, 0, 8192, 0, LP_OPTIONS}, + {"NAND 8GiB 1,8V 16-bit", 0xBE, 0, 8192, 0, LP_OPTIONS16}, + {"NAND 8GiB 3,3V 16-bit", 0xCE, 0, 8192, 0, LP_OPTIONS16}, + + /* 128 Gigabit */ + {"NAND 16GiB 1,8V 8-bit", 0x1A, 0, 16384, 0, LP_OPTIONS}, + {"NAND 16GiB 3,3V 8-bit", 0x3A, 0, 16384, 0, LP_OPTIONS}, + {"NAND 16GiB 1,8V 16-bit", 0x2A, 0, 16384, 0, LP_OPTIONS16}, + {"NAND 16GiB 3,3V 16-bit", 0x4A, 0, 16384, 0, LP_OPTIONS16}, + + /* 256 Gigabit */ + {"NAND 32GiB 1,8V 8-bit", 0x1C, 0, 32768, 0, LP_OPTIONS}, + {"NAND 32GiB 3,3V 8-bit", 0x3C, 0, 32768, 0, LP_OPTIONS}, + {"NAND 32GiB 1,8V 16-bit", 0x2C, 0, 32768, 0, LP_OPTIONS16}, + {"NAND 32GiB 3,3V 16-bit", 0x4C, 0, 32768, 0, LP_OPTIONS16}, + + /* 512 Gigabit */ + {"NAND 64GiB 1,8V 8-bit", 0x1E, 0, 65536, 0, LP_OPTIONS}, + {"NAND 64GiB 3,3V 8-bit", 0x3E, 0, 65536, 0, LP_OPTIONS}, + {"NAND 64GiB 1,8V 16-bit", 0x2E, 0, 65536, 0, LP_OPTIONS16}, + {"NAND 64GiB 3,3V 16-bit", 0x4E, 0, 65536, 0, LP_OPTIONS16}, + + /* + * Renesas AND 1 Gigabit. Those chips do not support extended id and + * have a strange page/block layout ! The chosen minimum erasesize is + * 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page + * planes 1 block = 2 pages, but due to plane arrangement the blocks + * 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 Anyway JFFS2 would + * increase the eraseblock size so we chose a combined one which can be + * erased in one go There are more speed improvements for reads and + * writes possible, but not implemented now + */ + {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, + NAND_IS_AND | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH}, + + {NULL,} +}; + +/* +* Manufacturer ID list +*/ +const struct nand_manufacturers nand_manuf_ids[] = { + {NAND_MFR_TOSHIBA, "Toshiba"}, + {NAND_MFR_SAMSUNG, "Samsung"}, + {NAND_MFR_FUJITSU, "Fujitsu"}, + {NAND_MFR_NATIONAL, "National"}, + {NAND_MFR_RENESAS, "Renesas"}, + {NAND_MFR_STMICRO, "ST Micro"}, + {NAND_MFR_HYNIX, "Hynix"}, + {NAND_MFR_MICRON, "Micron"}, + {NAND_MFR_AMD, "AMD/Spansion"}, + {NAND_MFR_MACRONIX, "Macronix"}, + {NAND_MFR_EON, "Eon"}, + {0x0, "Unknown"} +}; diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_plat.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_plat.c new file mode 100644 index 000000000..37a0206ad --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_plat.c @@ -0,0 +1,64 @@ +/* + * Genericish driver for memory mapped NAND devices + * + * Copyright (c) 2006-2009 Analog Devices Inc. + * Licensed under the GPL-2 or later. + */ + +/* Your board must implement the following macros: + * NAND_PLAT_WRITE_CMD(chip, cmd) + * NAND_PLAT_WRITE_ADR(chip, cmd) + * NAND_PLAT_INIT() + * + * It may also implement the following: + * NAND_PLAT_DEV_READY(chip) + */ + +#include <common.h> +#include <asm/io.h> +#ifdef NAND_PLAT_GPIO_DEV_READY +# include <asm/gpio.h> +# define NAND_PLAT_DEV_READY(chip) gpio_get_value(NAND_PLAT_GPIO_DEV_READY) +#endif + +#include <nand.h> + +static void plat_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + NAND_PLAT_WRITE_CMD(this, cmd); + else + NAND_PLAT_WRITE_ADR(this, cmd); +} + +#ifdef NAND_PLAT_DEV_READY +static int plat_dev_ready(struct mtd_info *mtd) +{ + return NAND_PLAT_DEV_READY((struct nand_chip *)mtd->priv); +} +#else +# define plat_dev_ready NULL +#endif + +int board_nand_init(struct nand_chip *nand) +{ +#ifdef NAND_PLAT_GPIO_DEV_READY + gpio_request(NAND_PLAT_GPIO_DEV_READY, "nand-plat"); + gpio_direction_input(NAND_PLAT_GPIO_DEV_READY); +#endif + +#ifdef NAND_PLAT_INIT + NAND_PLAT_INIT(); +#endif + + nand->cmd_ctrl = plat_cmd_ctrl; + nand->dev_ready = plat_dev_ready; + nand->ecc.mode = NAND_ECC_SOFT; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_load.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_load.c new file mode 100644 index 000000000..5a2564464 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_load.c @@ -0,0 +1,42 @@ +/* + * Copyright (C) 2011 + * Heiko Schocher, DENX Software Engineering, hs@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> + +/* + * The main entry for NAND booting. It's necessary that SDRAM is already + * configured and available since this code loads the main U-Boot image + * from NAND into SDRAM and starts it from there. + */ +void nand_boot(void) +{ + __attribute__((noreturn)) void (*uboot)(void); + + /* + * Load U-Boot image from NAND into RAM + */ + nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS, + CONFIG_SYS_NAND_U_BOOT_SIZE, + (void *)CONFIG_SYS_NAND_U_BOOT_DST); + +#ifdef CONFIG_NAND_ENV_DST + nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, + (void *)CONFIG_NAND_ENV_DST); + +#ifdef CONFIG_ENV_OFFSET_REDUND + nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, + (void *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); +#endif +#endif + + /* + * Jump to U-Boot image + */ + uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; + (*uboot)(); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_simple.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_simple.c new file mode 100644 index 000000000..cead4b506 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_spl_simple.c @@ -0,0 +1,270 @@ +/* + * (C) Copyright 2006-2008 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/io.h> +#include <linux/mtd/nand_ecc.h> + +static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; +static nand_info_t mtd; +static struct nand_chip nand_chip; + +#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ + CONFIG_SYS_NAND_ECCSIZE) +#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) + + +#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512) +/* + * NAND command for small page NAND devices (512) + */ +static int nand_command(int block, int page, uint32_t offs, + u8 cmd) +{ + struct nand_chip *this = mtd.priv; + int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + + while (!this->dev_ready(&mtd)) + ; + + /* Begin command latch cycle */ + this->cmd_ctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + /* Set ALE and clear CLE to start address cycle */ + /* Column address */ + this->cmd_ctrl(&mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE); + this->cmd_ctrl(&mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */ + this->cmd_ctrl(&mtd, (page_addr >> 8) & 0xff, + NAND_CTRL_ALE); /* A[24:17] */ +#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE + /* One more address cycle for devices > 32MiB */ + this->cmd_ctrl(&mtd, (page_addr >> 16) & 0x0f, + NAND_CTRL_ALE); /* A[28:25] */ +#endif + /* Latch in address */ + this->cmd_ctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Wait a while for the data to be ready + */ + while (!this->dev_ready(&mtd)) + ; + + return 0; +} +#else +/* + * NAND command for large page NAND devices (2k) + */ +static int nand_command(int block, int page, uint32_t offs, + u8 cmd) +{ + struct nand_chip *this = mtd.priv; + int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + void (*hwctrl)(struct mtd_info *mtd, int cmd, + unsigned int ctrl) = this->cmd_ctrl; + + while (!this->dev_ready(&mtd)) + ; + + /* Emulate NAND_CMD_READOOB */ + if (cmd == NAND_CMD_READOOB) { + offs += CONFIG_SYS_NAND_PAGE_SIZE; + cmd = NAND_CMD_READ0; + } + + /* Shift the offset from byte addressing to word addressing. */ + if (this->options & NAND_BUSWIDTH_16) + offs >>= 1; + + /* Begin command latch cycle */ + hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + /* Set ALE and clear CLE to start address cycle */ + /* Column address */ + hwctrl(&mtd, offs & 0xff, + NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */ + hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */ + /* Row address */ + hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */ + hwctrl(&mtd, ((page_addr >> 8) & 0xff), + NAND_CTRL_ALE); /* A[27:20] */ +#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE + /* One more address cycle for devices > 128MiB */ + hwctrl(&mtd, (page_addr >> 16) & 0x0f, + NAND_CTRL_ALE); /* A[31:28] */ +#endif + /* Latch in address */ + hwctrl(&mtd, NAND_CMD_READSTART, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Wait a while for the data to be ready + */ + while (!this->dev_ready(&mtd)) + ; + + return 0; +} +#endif + +static int nand_is_bad_block(int block) +{ + struct nand_chip *this = mtd.priv; + + nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, + NAND_CMD_READOOB); + + /* + * Read one byte (or two if it's a 16 bit chip). + */ + if (this->options & NAND_BUSWIDTH_16) { + if (readw(this->IO_ADDR_R) != 0xffff) + return 1; + } else { + if (readb(this->IO_ADDR_R) != 0xff) + return 1; + } + + return 0; +} + +#if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST) +static int nand_read_page(int block, int page, uchar *dst) +{ + struct nand_chip *this = mtd.priv; + u_char ecc_calc[ECCTOTAL]; + u_char ecc_code[ECCTOTAL]; + u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; + int i; + int eccsize = CONFIG_SYS_NAND_ECCSIZE; + int eccbytes = CONFIG_SYS_NAND_ECCBYTES; + int eccsteps = ECCSTEPS; + uint8_t *p = dst; + + nand_command(block, page, 0, NAND_CMD_READOOB); + this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); + nand_command(block, page, 0, NAND_CMD_READ0); + + /* Pick the ECC bytes out of the oob data */ + for (i = 0; i < ECCTOTAL; i++) + ecc_code[i] = oob_data[nand_ecc_pos[i]]; + + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + this->ecc.hwctl(&mtd, NAND_ECC_READ); + this->read_buf(&mtd, p, eccsize); + this->ecc.calculate(&mtd, p, &ecc_calc[i]); + this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]); + } + + return 0; +} +#else +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = mtd.priv; + u_char ecc_calc[ECCTOTAL]; + u_char ecc_code[ECCTOTAL]; + u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; + int i; + int eccsize = CONFIG_SYS_NAND_ECCSIZE; + int eccbytes = CONFIG_SYS_NAND_ECCBYTES; + int eccsteps = ECCSTEPS; + uint8_t *p = dst; + + nand_command(block, page, 0, NAND_CMD_READ0); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + if (this->ecc.mode != NAND_ECC_SOFT) + this->ecc.hwctl(&mtd, NAND_ECC_READ); + this->read_buf(&mtd, p, eccsize); + this->ecc.calculate(&mtd, p, &ecc_calc[i]); + } + this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); + + /* Pick the ECC bytes out of the oob data */ + for (i = 0; i < ECCTOTAL; i++) + ecc_code[i] = oob_data[nand_ecc_pos[i]]; + + eccsteps = ECCSTEPS; + p = dst; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + /* No chance to do something with the possible error message + * from correct_data(). We just hope that all possible errors + * are corrected by this routine. + */ + this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]); + } + + return 0; +} +#endif + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + unsigned int block, lastblock; + unsigned int page; + + /* + * offs has to be aligned to a page address! + */ + block = offs / CONFIG_SYS_NAND_BLOCK_SIZE; + lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE; + page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE; + + while (block <= lastblock) { + if (!nand_is_bad_block(block)) { + /* + * Skip bad blocks + */ + while (page < CONFIG_SYS_NAND_PAGE_COUNT) { + nand_read_page(block, page, dst); + dst += CONFIG_SYS_NAND_PAGE_SIZE; + page++; + } + + page = 0; + } else { + lastblock++; + } + + block++; + } + + return 0; +} + +/* nand_init() - initialize data to make nand usable by SPL */ +void nand_init(void) +{ + /* + * Init board specific nand support + */ + mtd.priv = &nand_chip; + nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = + (void __iomem *)CONFIG_SYS_NAND_BASE; + board_nand_init(&nand_chip); + +#ifdef CONFIG_SPL_NAND_SOFTECC + if (nand_chip.ecc.mode == NAND_ECC_SOFT) { + nand_chip.ecc.calculate = nand_calculate_ecc; + nand_chip.ecc.correct = nand_correct_data; + } +#endif + + if (nand_chip.select_chip) + nand_chip.select_chip(&mtd, 0); +} + +/* Unselect after operation */ +void nand_deselect(void) +{ + if (nand_chip.select_chip) + nand_chip.select_chip(&mtd, -1); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nand_util.c b/qemu/roms/u-boot/drivers/mtd/nand/nand_util.c new file mode 100644 index 000000000..b29282603 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nand_util.c @@ -0,0 +1,861 @@ +/* + * drivers/mtd/nand/nand_util.c + * + * Copyright (C) 2006 by Weiss-Electronic GmbH. + * All rights reserved. + * + * @author: Guido Classen <clagix@gmail.com> + * @descr: NAND Flash support + * @references: borrowed heavily from Linux mtd-utils code: + * flash_eraseall.c by Arcom Control System Ltd + * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) + * and Thomas Gleixner (tglx@linutronix.de) + * + * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by + * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils + * + * Copyright 2010 Freescale Semiconductor + * + * SPDX-License-Identifier: GPL-2.0 + */ + +#include <common.h> +#include <command.h> +#include <watchdog.h> +#include <malloc.h> +#include <div64.h> + +#include <asm/errno.h> +#include <linux/mtd/mtd.h> +#include <nand.h> +#include <jffs2/jffs2.h> + +typedef struct erase_info erase_info_t; +typedef struct mtd_info mtd_info_t; + +/* support only for native endian JFFS2 */ +#define cpu_to_je16(x) (x) +#define cpu_to_je32(x) (x) + +/** + * nand_erase_opts: - erase NAND flash with support for various options + * (jffs2 formatting) + * + * @param meminfo NAND device to erase + * @param opts options, @see struct nand_erase_options + * @return 0 in case of success + * + * This code is ported from flash_eraseall.c from Linux mtd utils by + * Arcom Control System Ltd. + */ +int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts) +{ + struct jffs2_unknown_node cleanmarker; + erase_info_t erase; + unsigned long erase_length, erased_length; /* in blocks */ + int result; + int percent_complete = -1; + const char *mtd_device = meminfo->name; + struct mtd_oob_ops oob_opts; + struct nand_chip *chip = meminfo->priv; + + if ((opts->offset & (meminfo->erasesize - 1)) != 0) { + printf("Attempt to erase non block-aligned data\n"); + return -1; + } + + memset(&erase, 0, sizeof(erase)); + memset(&oob_opts, 0, sizeof(oob_opts)); + + erase.mtd = meminfo; + erase.len = meminfo->erasesize; + erase.addr = opts->offset; + erase_length = lldiv(opts->length + meminfo->erasesize - 1, + meminfo->erasesize); + + cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); + cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); + cleanmarker.totlen = cpu_to_je32(8); + + /* scrub option allows to erase badblock. To prevent internal + * check from erase() method, set block check method to dummy + * and disable bad block table while erasing. + */ + if (opts->scrub) { + erase.scrub = opts->scrub; + /* + * We don't need the bad block table anymore... + * after scrub, there are no bad blocks left! + */ + if (chip->bbt) { + kfree(chip->bbt); + } + chip->bbt = NULL; + } + + for (erased_length = 0; + erased_length < erase_length; + erase.addr += meminfo->erasesize) { + + WATCHDOG_RESET(); + + if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { + puts("Size of erase exceeds limit\n"); + return -EFBIG; + } + if (!opts->scrub) { + int ret = mtd_block_isbad(meminfo, erase.addr); + if (ret > 0) { + if (!opts->quiet) + printf("\rSkipping bad block at " + "0x%08llx " + " \n", + erase.addr); + + if (!opts->spread) + erased_length++; + + continue; + + } else if (ret < 0) { + printf("\n%s: MTD get bad block failed: %d\n", + mtd_device, + ret); + return -1; + } + } + + erased_length++; + + result = mtd_erase(meminfo, &erase); + if (result != 0) { + printf("\n%s: MTD Erase failure: %d\n", + mtd_device, result); + continue; + } + + /* format for JFFS2 ? */ + if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { + struct mtd_oob_ops ops; + ops.ooblen = 8; + ops.datbuf = NULL; + ops.oobbuf = (uint8_t *)&cleanmarker; + ops.ooboffs = 0; + ops.mode = MTD_OPS_AUTO_OOB; + + result = mtd_write_oob(meminfo, + erase.addr, + &ops); + if (result != 0) { + printf("\n%s: MTD writeoob failure: %d\n", + mtd_device, result); + continue; + } + } + + if (!opts->quiet) { + unsigned long long n = erased_length * 100ULL; + int percent; + + do_div(n, erase_length); + percent = (int)n; + + /* output progress message only at whole percent + * steps to reduce the number of messages printed + * on (slow) serial consoles + */ + if (percent != percent_complete) { + percent_complete = percent; + + printf("\rErasing at 0x%llx -- %3d%% complete.", + erase.addr, percent); + + if (opts->jffs2 && result == 0) + printf(" Cleanmarker written at 0x%llx.", + erase.addr); + } + } + } + if (!opts->quiet) + printf("\n"); + + if (opts->scrub) + chip->scan_bbt(meminfo); + + return 0; +} + +#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK + +/****************************************************************************** + * Support for locking / unlocking operations of some NAND devices + *****************************************************************************/ + +/** + * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT + * state + * + * @param mtd nand mtd instance + * @param tight bring device in lock tight mode + * + * @return 0 on success, -1 in case of error + * + * The lock / lock-tight command only applies to the whole chip. To get some + * parts of the chip lock and others unlocked use the following sequence: + * + * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) + * - Call nand_unlock() once for each consecutive area to be unlocked + * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) + * + * If the device is in lock-tight state software can't change the + * current active lock/unlock state of all pages. nand_lock() / nand_unlock() + * calls will fail. It is only posible to leave lock-tight state by + * an hardware signal (low pulse on _WP pin) or by power down. + */ +int nand_lock(struct mtd_info *mtd, int tight) +{ + int ret = 0; + int status; + struct nand_chip *chip = mtd->priv; + + /* select the NAND device */ + chip->select_chip(mtd, 0); + + /* check the Lock Tight Status */ + chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); + if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { + printf("nand_lock: Device is locked tight!\n"); + ret = -1; + goto out; + } + + chip->cmdfunc(mtd, + (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), + -1, -1); + + /* call wait ready function */ + status = chip->waitfunc(mtd, chip); + + /* see if device thinks it succeeded */ + if (status & 0x01) { + ret = -1; + } + + out: + /* de-select the NAND device */ + chip->select_chip(mtd, -1); + return ret; +} + +/** + * nand_get_lock_status: - query current lock state from one page of NAND + * flash + * + * @param mtd nand mtd instance + * @param offset page address to query (must be page-aligned!) + * + * @return -1 in case of error + * >0 lock status: + * bitfield with the following combinations: + * NAND_LOCK_STATUS_TIGHT: page in tight state + * NAND_LOCK_STATUS_UNLOCK: page unlocked + * + */ +int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) +{ + int ret = 0; + int chipnr; + int page; + struct nand_chip *chip = mtd->priv; + + /* select the NAND device */ + chipnr = (int)(offset >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + + if ((offset & (mtd->writesize - 1)) != 0) { + printf("nand_get_lock_status: " + "Start address must be beginning of " + "nand page!\n"); + ret = -1; + goto out; + } + + /* check the Lock Status */ + page = (int)(offset >> chip->page_shift); + chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); + + ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT + | NAND_LOCK_STATUS_UNLOCK); + + out: + /* de-select the NAND device */ + chip->select_chip(mtd, -1); + return ret; +} + +/** + * nand_unlock: - Unlock area of NAND pages + * only one consecutive area can be unlocked at one time! + * + * @param mtd nand mtd instance + * @param start start byte address + * @param length number of bytes to unlock (must be a multiple of + * page size nand->writesize) + * @param allexcept if set, unlock everything not selected + * + * @return 0 on success, -1 in case of error + */ +int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, + int allexcept) +{ + int ret = 0; + int chipnr; + int status; + int page; + struct nand_chip *chip = mtd->priv; + + debug("nand_unlock%s: start: %08llx, length: %zd!\n", + allexcept ? " (allexcept)" : "", start, length); + + /* select the NAND device */ + chipnr = (int)(start >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* check the WP bit */ + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { + printf("nand_unlock: Device is write protected!\n"); + ret = -1; + goto out; + } + + /* check the Lock Tight Status */ + page = (int)(start >> chip->page_shift); + chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); + if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { + printf("nand_unlock: Device is locked tight!\n"); + ret = -1; + goto out; + } + + if ((start & (mtd->erasesize - 1)) != 0) { + printf("nand_unlock: Start address must be beginning of " + "nand block!\n"); + ret = -1; + goto out; + } + + if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { + printf("nand_unlock: Length must be a multiple of nand block " + "size %08x!\n", mtd->erasesize); + ret = -1; + goto out; + } + + /* + * Set length so that the last address is set to the + * starting address of the last block + */ + length -= mtd->erasesize; + + /* submit address of first page to unlock */ + chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); + + /* submit ADDRESS of LAST page to unlock */ + page += (int)(length >> chip->page_shift); + + /* + * Page addresses for unlocking are supposed to be block-aligned. + * At least some NAND chips use the low bit to indicate that the + * page range should be inverted. + */ + if (allexcept) + page |= 1; + + chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); + + /* call wait ready function */ + status = chip->waitfunc(mtd, chip); + /* see if device thinks it succeeded */ + if (status & 0x01) { + /* there was an error */ + ret = -1; + goto out; + } + + out: + /* de-select the NAND device */ + chip->select_chip(mtd, -1); + return ret; +} +#endif + +/** + * check_skip_len + * + * Check if there are any bad blocks, and whether length including bad + * blocks fits into device + * + * @param nand NAND device + * @param offset offset in flash + * @param length image length + * @param used length of flash needed for the requested length + * @return 0 if the image fits and there are no bad blocks + * 1 if the image fits, but there are bad blocks + * -1 if the image does not fit + */ +static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length, + size_t *used) +{ + size_t len_excl_bad = 0; + int ret = 0; + + while (len_excl_bad < length) { + size_t block_len, block_off; + loff_t block_start; + + if (offset >= nand->size) + return -1; + + block_start = offset & ~(loff_t)(nand->erasesize - 1); + block_off = offset & (nand->erasesize - 1); + block_len = nand->erasesize - block_off; + + if (!nand_block_isbad(nand, block_start)) + len_excl_bad += block_len; + else + ret = 1; + + offset += block_len; + *used += block_len; + } + + /* If the length is not a multiple of block_len, adjust. */ + if (len_excl_bad > length) + *used -= (len_excl_bad - length); + + return ret; +} + +#ifdef CONFIG_CMD_NAND_TRIMFFS +static size_t drop_ffs(const nand_info_t *nand, const u_char *buf, + const size_t *len) +{ + size_t l = *len; + ssize_t i; + + for (i = l - 1; i >= 0; i--) + if (buf[i] != 0xFF) + break; + + /* The resulting length must be aligned to the minimum flash I/O size */ + l = i + 1; + l = (l + nand->writesize - 1) / nand->writesize; + l *= nand->writesize; + + /* + * since the input length may be unaligned, prevent access past the end + * of the buffer + */ + return min(l, *len); +} +#endif + +/** + * nand_write_skip_bad: + * + * Write image to NAND flash. + * Blocks that are marked bad are skipped and the is written to the next + * block instead as long as the image is short enough to fit even after + * skipping the bad blocks. Due to bad blocks we may not be able to + * perform the requested write. In the case where the write would + * extend beyond the end of the NAND device, both length and actual (if + * not NULL) are set to 0. In the case where the write would extend + * beyond the limit we are passed, length is set to 0 and actual is set + * to the required length. + * + * @param nand NAND device + * @param offset offset in flash + * @param length buffer length + * @param actual set to size required to write length worth of + * buffer or 0 on error, if not NULL + * @param lim maximum size that actual may be in order to not + * exceed the buffer + * @param buffer buffer to read from + * @param flags flags modifying the behaviour of the write to NAND + * @return 0 in case of success + */ +int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, + size_t *actual, loff_t lim, u_char *buffer, int flags) +{ + int rval = 0, blocksize; + size_t left_to_write = *length; + size_t used_for_write = 0; + u_char *p_buffer = buffer; + int need_skip; + + if (actual) + *actual = 0; + +#ifdef CONFIG_CMD_NAND_YAFFS + if (flags & WITH_YAFFS_OOB) { + if (flags & ~WITH_YAFFS_OOB) + return -EINVAL; + + int pages; + pages = nand->erasesize / nand->writesize; + blocksize = (pages * nand->oobsize) + nand->erasesize; + if (*length % (nand->writesize + nand->oobsize)) { + printf("Attempt to write incomplete page" + " in yaffs mode\n"); + return -EINVAL; + } + } else +#endif + { + blocksize = nand->erasesize; + } + + /* + * nand_write() handles unaligned, partial page writes. + * + * We allow length to be unaligned, for convenience in + * using the $filesize variable. + * + * However, starting at an unaligned offset makes the + * semantics of bad block skipping ambiguous (really, + * you should only start a block skipping access at a + * partition boundary). So don't try to handle that. + */ + if ((offset & (nand->writesize - 1)) != 0) { + printf("Attempt to write non page-aligned data\n"); + *length = 0; + return -EINVAL; + } + + need_skip = check_skip_len(nand, offset, *length, &used_for_write); + + if (actual) + *actual = used_for_write; + + if (need_skip < 0) { + printf("Attempt to write outside the flash area\n"); + *length = 0; + return -EINVAL; + } + + if (used_for_write > lim) { + puts("Size of write exceeds partition or device limit\n"); + *length = 0; + return -EFBIG; + } + + if (!need_skip && !(flags & WITH_DROP_FFS)) { + rval = nand_write(nand, offset, length, buffer); + if (rval == 0) + return 0; + + *length = 0; + printf("NAND write to offset %llx failed %d\n", + offset, rval); + return rval; + } + + while (left_to_write > 0) { + size_t block_offset = offset & (nand->erasesize - 1); + size_t write_size, truncated_write_size; + + WATCHDOG_RESET(); + + if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { + printf("Skip bad block 0x%08llx\n", + offset & ~(nand->erasesize - 1)); + offset += nand->erasesize - block_offset; + continue; + } + + if (left_to_write < (blocksize - block_offset)) + write_size = left_to_write; + else + write_size = blocksize - block_offset; + +#ifdef CONFIG_CMD_NAND_YAFFS + if (flags & WITH_YAFFS_OOB) { + int page, pages; + size_t pagesize = nand->writesize; + size_t pagesize_oob = pagesize + nand->oobsize; + struct mtd_oob_ops ops; + + ops.len = pagesize; + ops.ooblen = nand->oobsize; + ops.mode = MTD_OPS_AUTO_OOB; + ops.ooboffs = 0; + + pages = write_size / pagesize_oob; + for (page = 0; page < pages; page++) { + WATCHDOG_RESET(); + + ops.datbuf = p_buffer; + ops.oobbuf = ops.datbuf + pagesize; + + rval = mtd_write_oob(nand, offset, &ops); + if (rval != 0) + break; + + offset += pagesize; + p_buffer += pagesize_oob; + } + } + else +#endif + { + truncated_write_size = write_size; +#ifdef CONFIG_CMD_NAND_TRIMFFS + if (flags & WITH_DROP_FFS) + truncated_write_size = drop_ffs(nand, p_buffer, + &write_size); +#endif + + rval = nand_write(nand, offset, &truncated_write_size, + p_buffer); + offset += write_size; + p_buffer += write_size; + } + + if (rval != 0) { + printf("NAND write to offset %llx failed %d\n", + offset, rval); + *length -= left_to_write; + return rval; + } + + left_to_write -= write_size; + } + + return 0; +} + +/** + * nand_read_skip_bad: + * + * Read image from NAND flash. + * Blocks that are marked bad are skipped and the next block is read + * instead as long as the image is short enough to fit even after + * skipping the bad blocks. Due to bad blocks we may not be able to + * perform the requested read. In the case where the read would extend + * beyond the end of the NAND device, both length and actual (if not + * NULL) are set to 0. In the case where the read would extend beyond + * the limit we are passed, length is set to 0 and actual is set to the + * required length. + * + * @param nand NAND device + * @param offset offset in flash + * @param length buffer length, on return holds number of read bytes + * @param actual set to size required to read length worth of buffer or 0 + * on error, if not NULL + * @param lim maximum size that actual may be in order to not exceed the + * buffer + * @param buffer buffer to write to + * @return 0 in case of success + */ +int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, + size_t *actual, loff_t lim, u_char *buffer) +{ + int rval; + size_t left_to_read = *length; + size_t used_for_read = 0; + u_char *p_buffer = buffer; + int need_skip; + + if ((offset & (nand->writesize - 1)) != 0) { + printf("Attempt to read non page-aligned data\n"); + *length = 0; + if (actual) + *actual = 0; + return -EINVAL; + } + + need_skip = check_skip_len(nand, offset, *length, &used_for_read); + + if (actual) + *actual = used_for_read; + + if (need_skip < 0) { + printf("Attempt to read outside the flash area\n"); + *length = 0; + return -EINVAL; + } + + if (used_for_read > lim) { + puts("Size of read exceeds partition or device limit\n"); + *length = 0; + return -EFBIG; + } + + if (!need_skip) { + rval = nand_read(nand, offset, length, buffer); + if (!rval || rval == -EUCLEAN) + return 0; + + *length = 0; + printf("NAND read from offset %llx failed %d\n", + offset, rval); + return rval; + } + + while (left_to_read > 0) { + size_t block_offset = offset & (nand->erasesize - 1); + size_t read_length; + + WATCHDOG_RESET(); + + if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { + printf("Skipping bad block 0x%08llx\n", + offset & ~(nand->erasesize - 1)); + offset += nand->erasesize - block_offset; + continue; + } + + if (left_to_read < (nand->erasesize - block_offset)) + read_length = left_to_read; + else + read_length = nand->erasesize - block_offset; + + rval = nand_read(nand, offset, &read_length, p_buffer); + if (rval && rval != -EUCLEAN) { + printf("NAND read from offset %llx failed %d\n", + offset, rval); + *length -= left_to_read; + return rval; + } + + left_to_read -= read_length; + offset += read_length; + p_buffer += read_length; + } + + return 0; +} + +#ifdef CONFIG_CMD_NAND_TORTURE + +/** + * check_pattern: + * + * Check if buffer contains only a certain byte pattern. + * + * @param buf buffer to check + * @param patt the pattern to check + * @param size buffer size in bytes + * @return 1 if there are only patt bytes in buf + * 0 if something else was found + */ +static int check_pattern(const u_char *buf, u_char patt, int size) +{ + int i; + + for (i = 0; i < size; i++) + if (buf[i] != patt) + return 0; + return 1; +} + +/** + * nand_torture: + * + * Torture a block of NAND flash. + * This is useful to determine if a block that caused a write error is still + * good or should be marked as bad. + * + * @param nand NAND device + * @param offset offset in flash + * @return 0 if the block is still good + */ +int nand_torture(nand_info_t *nand, loff_t offset) +{ + u_char patterns[] = {0xa5, 0x5a, 0x00}; + struct erase_info instr = { + .mtd = nand, + .addr = offset, + .len = nand->erasesize, + }; + size_t retlen; + int err, ret = -1, i, patt_count; + u_char *buf; + + if ((offset & (nand->erasesize - 1)) != 0) { + puts("Attempt to torture a block at a non block-aligned offset\n"); + return -EINVAL; + } + + if (offset + nand->erasesize > nand->size) { + puts("Attempt to torture a block outside the flash area\n"); + return -EINVAL; + } + + patt_count = ARRAY_SIZE(patterns); + + buf = malloc(nand->erasesize); + if (buf == NULL) { + puts("Out of memory for erase block buffer\n"); + return -ENOMEM; + } + + for (i = 0; i < patt_count; i++) { + err = nand->erase(nand, &instr); + if (err) { + printf("%s: erase() failed for block at 0x%llx: %d\n", + nand->name, instr.addr, err); + goto out; + } + + /* Make sure the block contains only 0xff bytes */ + err = nand->read(nand, offset, nand->erasesize, &retlen, buf); + if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { + printf("%s: read() failed for block at 0x%llx: %d\n", + nand->name, instr.addr, err); + goto out; + } + + err = check_pattern(buf, 0xff, nand->erasesize); + if (!err) { + printf("Erased block at 0x%llx, but a non-0xff byte was found\n", + offset); + ret = -EIO; + goto out; + } + + /* Write a pattern and check it */ + memset(buf, patterns[i], nand->erasesize); + err = nand->write(nand, offset, nand->erasesize, &retlen, buf); + if (err || retlen != nand->erasesize) { + printf("%s: write() failed for block at 0x%llx: %d\n", + nand->name, instr.addr, err); + goto out; + } + + err = nand->read(nand, offset, nand->erasesize, &retlen, buf); + if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { + printf("%s: read() failed for block at 0x%llx: %d\n", + nand->name, instr.addr, err); + goto out; + } + + err = check_pattern(buf, patterns[i], nand->erasesize); + if (!err) { + printf("Pattern 0x%.2x checking failed for block at " + "0x%llx\n", patterns[i], offset); + ret = -EIO; + goto out; + } + } + + ret = 0; + +out: + free(buf); + return ret; +} + +#endif diff --git a/qemu/roms/u-boot/drivers/mtd/nand/ndfc.c b/qemu/roms/u-boot/drivers/mtd/nand/ndfc.c new file mode 100644 index 000000000..5510b13c0 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/ndfc.c @@ -0,0 +1,214 @@ +/* + * Overview: + * Platform independend driver for NDFC (NanD Flash Controller) + * integrated into IBM/AMCC PPC4xx cores + * + * (C) Copyright 2006-2009 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * Based on original work by + * Thomas Gleixner + * Copyright 2006 IBM + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <linux/mtd/ndfc.h> +#include <linux/mtd/nand_ecc.h> +#include <asm/processor.h> +#include <asm/io.h> +#include <asm/ppc4xx.h> + +#ifndef CONFIG_SYS_NAND_BCR +#define CONFIG_SYS_NAND_BCR 0x80002222 +#endif +#ifndef CONFIG_SYS_NDFC_EBC0_CFG +#define CONFIG_SYS_NDFC_EBC0_CFG 0xb8400000 +#endif + +/* + * We need to store the info, which chip-select (CS) is used for the + * chip number. For example on Sequoia NAND chip #0 uses + * CS #3. + */ +static int ndfc_cs[NDFC_MAX_BANKS]; + +static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + out_8((u8 *)(base + NDFC_CMD), cmd & 0xFF); + else + out_8((u8 *)(base + NDFC_ALE), cmd & 0xFF); +} + +static int ndfc_dev_ready(struct mtd_info *mtdinfo) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + + return (in_be32((u32 *)(base + NDFC_STAT)) & NDFC_STAT_IS_READY); +} + +static void ndfc_enable_hwecc(struct mtd_info *mtdinfo, int mode) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + u32 ccr; + + ccr = in_be32((u32 *)(base + NDFC_CCR)); + ccr |= NDFC_CCR_RESET_ECC; + out_be32((u32 *)(base + NDFC_CCR), ccr); +} + +static int ndfc_calculate_ecc(struct mtd_info *mtdinfo, + const u_char *dat, u_char *ecc_code) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + u32 ecc; + u8 *p = (u8 *)&ecc; + + ecc = in_be32((u32 *)(base + NDFC_ECC)); + + /* The NDFC uses Smart Media (SMC) bytes order + */ + ecc_code[0] = p[1]; + ecc_code[1] = p[2]; + ecc_code[2] = p[3]; + + return 0; +} + +/* + * Speedups for buffer read/write/verify + * + * NDFC allows 32bit read/write of data. So we can speed up the buffer + * functions. No further checking, as nand_base will always read/write + * page aligned. + */ +static void ndfc_read_buf(struct mtd_info *mtdinfo, uint8_t *buf, int len) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + uint32_t *p = (uint32_t *) buf; + + for (;len > 0; len -= 4) + *p++ = in_be32((u32 *)(base + NDFC_DATA)); +} + +/* + * Don't use these speedup functions in NAND boot image, since the image + * has to fit into 4kByte. + */ +static void ndfc_write_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + uint32_t *p = (uint32_t *) buf; + + for (; len > 0; len -= 4) + out_be32((u32 *)(base + NDFC_DATA), *p++); +} + +static int ndfc_verify_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len) +{ + struct nand_chip *this = mtdinfo->priv; + ulong base = (ulong) this->IO_ADDR_W & 0xffffff00; + uint32_t *p = (uint32_t *) buf; + + for (; len > 0; len -= 4) + if (*p++ != in_be32((u32 *)(base + NDFC_DATA))) + return -1; + + return 0; +} + +/* + * Read a byte from the NDFC. + */ +static uint8_t ndfc_read_byte(struct mtd_info *mtd) +{ + + struct nand_chip *chip = mtd->priv; + +#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT + return (uint8_t) readw(chip->IO_ADDR_R); +#else + return readb(chip->IO_ADDR_R); +#endif + +} + +void board_nand_select_device(struct nand_chip *nand, int chip) +{ + /* + * Don't use "chip" to address the NAND device, + * generate the cs from the address where it is encoded. + */ + ulong base = (ulong)nand->IO_ADDR_W & 0xffffff00; + int cs = ndfc_cs[chip]; + + /* Set NandFlash Core Configuration Register */ + /* 1 col x 2 rows */ + out_be32((u32 *)(base + NDFC_CCR), 0x00000000 | (cs << 24)); + out_be32((u32 *)(base + NDFC_BCFG0 + (cs << 2)), CONFIG_SYS_NAND_BCR); +} + +static void ndfc_select_chip(struct mtd_info *mtd, int chip) +{ + /* + * Nothing to do here! + */ +} + +int board_nand_init(struct nand_chip *nand) +{ + int cs = (ulong)nand->IO_ADDR_W & 0x00000003; + ulong base = (ulong)nand->IO_ADDR_W & 0xffffff00; + static int chip = 0; + + /* + * Save chip-select for this chip # + */ + ndfc_cs[chip] = cs; + + /* + * Select required NAND chip in NDFC + */ + board_nand_select_device(nand, chip); + + nand->IO_ADDR_R = (void __iomem *)(base + NDFC_DATA); + nand->IO_ADDR_W = (void __iomem *)(base + NDFC_DATA); + nand->cmd_ctrl = ndfc_hwcontrol; + nand->chip_delay = 50; + nand->read_buf = ndfc_read_buf; + nand->dev_ready = ndfc_dev_ready; + nand->ecc.correct = nand_correct_data; + nand->ecc.hwctl = ndfc_enable_hwecc; + nand->ecc.calculate = ndfc_calculate_ecc; + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = 256; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->select_chip = ndfc_select_chip; + +#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT + nand->options |= NAND_BUSWIDTH_16; +#endif + + nand->write_buf = ndfc_write_buf; + nand->verify_buf = ndfc_verify_buf; + nand->read_byte = ndfc_read_byte; + + chip++; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/nomadik.c b/qemu/roms/u-boot/drivers/mtd/nand/nomadik.c new file mode 100644 index 000000000..a7cee5138 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/nomadik.c @@ -0,0 +1,206 @@ +/* + * (C) Copyright 2007 STMicroelectronics, <www.st.com> + * (C) Copyright 2009 Alessandro Rubini <rubini@unipv.it> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <nand.h> +#include <asm/io.h> + +static inline int parity(int b) /* b is really a byte; returns 0 or ~0 */ +{ + __asm__ __volatile__( + "eor %0, %0, %0, lsr #4\n\t" + "eor %0, %0, %0, lsr #2\n\t" + "eor %0, %0, %0, lsr #1\n\t" + "ands %0, %0, #1\n\t" + "subne %0, %0, #2\t" + : "=r" (b) : "0" (b)); + return b; +} + +/* + * This is the ECC routine used in hardware, according to the manual. + * HW claims to make the calculation but not the correction; so we must + * recalculate the bytes for a comparison. + */ +static int ecc512(const unsigned char *data, unsigned char *ecc) +{ + int gpar = 0; + int i, val, par; + int pbits = 0; /* P8, P16, ... P2048 */ + int pprime = 0; /* P8', P16', ... P2048' */ + int lowbits; /* P1, P2, P4 and primes */ + + for (i = 0; i < 512; i++) { + par = parity((val = data[i])); + gpar ^= val; + pbits ^= (i & par); + } + /* + * Ok, now gpar is global parity (xor of all bytes) + * pbits are all the parity bits (non-prime ones) + */ + par = parity(gpar); + pprime = pbits ^ par; + /* Put low bits in the right position for ecc[2] (bits 7..2) */ + lowbits = 0 + | (parity(gpar & 0xf0) & 0x80) /* P4 */ + | (parity(gpar & 0x0f) & 0x40) /* P4' */ + | (parity(gpar & 0xcc) & 0x20) /* P2 */ + | (parity(gpar & 0x33) & 0x10) /* P2' */ + | (parity(gpar & 0xaa) & 0x08) /* P1 */ + | (parity(gpar & 0x55) & 0x04); /* P1' */ + + ecc[2] = ~(lowbits | ((pbits & 0x100) >> 7) | ((pprime & 0x100) >> 8)); + /* now intermix bits for ecc[1] (P1024..P128') and ecc[0] (P64..P8') */ + ecc[1] = ~( (pbits & 0x80) >> 0 | ((pprime & 0x80) >> 1) + | ((pbits & 0x40) >> 1) | ((pprime & 0x40) >> 2) + | ((pbits & 0x20) >> 2) | ((pprime & 0x20) >> 3) + | ((pbits & 0x10) >> 3) | ((pprime & 0x10) >> 4)); + + ecc[0] = ~( (pbits & 0x8) << 4 | ((pprime & 0x8) << 3) + | ((pbits & 0x4) << 3) | ((pprime & 0x4) << 2) + | ((pbits & 0x2) << 2) | ((pprime & 0x2) << 1) + | ((pbits & 0x1) << 1) | ((pprime & 0x1) << 0)); + return 0; +} + +/* This is the method in the chip->ecc field */ +static int nomadik_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + return ecc512(dat, ecc_code); +} + +static int nomadik_ecc_correct(struct mtd_info *mtd, uint8_t *dat, + uint8_t *r_ecc, uint8_t *c_ecc) +{ + struct nand_chip *chip = mtd->priv; + uint32_t r, c, d, diff; /*read, calculated, xor of them */ + + if (!memcmp(r_ecc, c_ecc, chip->ecc.bytes)) + return 0; + + /* Reorder the bytes into ascending-order 24 bits -- see manual */ + r = r_ecc[2] << 22 | r_ecc[1] << 14 | r_ecc[0] << 6 | r_ecc[2] >> 2; + c = c_ecc[2] << 22 | c_ecc[1] << 14 | c_ecc[0] << 6 | c_ecc[2] >> 2; + diff = (r ^ c) & ((1<<24)-1); /* use 24 bits only */ + + /* If 12 bits are different, one per pair, it's correctable */ + if (((diff | (diff>>1)) & 0x555555) == 0x555555) { + int bit = ((diff & 2) >> 1) + | ((diff & 0x8) >> 2) | ((diff & 0x20) >> 3); + int byte; + + d = diff >> 6; /* remove bit-order info */ + byte = ((d & 2) >> 1) + | ((d & 0x8) >> 2) | ((d & 0x20) >> 3) + | ((d & 0x80) >> 4) | ((d & 0x200) >> 5) + | ((d & 0x800) >> 6) | ((d & 0x2000) >> 7) + | ((d & 0x8000) >> 8) | ((d & 0x20000) >> 9); + /* correct the single bit */ + dat[byte] ^= 1<<bit; + return 0; + } + /* If 1 bit only differs, it's one bit error in ECC, ignore */ + if ((diff ^ (1 << (ffs(diff) - 1))) == 0) + return 0; + /* Otherwise, uncorrectable */ + return -1; +} + +static void nomadik_ecc_hwctl(struct mtd_info *mtd, int mode) +{ /* mandatory in the structure but not used here */ } + + +/* This is the layout used by older installations, we keep compatible */ +struct nand_ecclayout nomadik_ecc_layout = { + .eccbytes = 3 * 4, + .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */ + 0x02, 0x03, 0x04, + 0x12, 0x13, 0x14, + 0x22, 0x23, 0x24, + 0x32, 0x33, 0x34}, + .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} }, +}; + +#define MASK_ALE (1 << 24) /* our ALE is AD21 */ +#define MASK_CLE (1 << 23) /* our CLE is AD22 */ + +/* This is copied from the AT91SAM9 devices (Stelian Pop, Lead Tech Design) */ +static void nomadik_nand_hwcontrol(struct mtd_info *mtd, + int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + u32 pcr0 = readl(REG_FSMC_PCR0); + + if (ctrl & NAND_CTRL_CHANGE) { + ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; + IO_ADDR_W &= ~(MASK_ALE | MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= MASK_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= MASK_ALE; + + if (ctrl & NAND_NCE) + writel(pcr0 | 0x4, REG_FSMC_PCR0); + else + writel(pcr0 & ~0x4, REG_FSMC_PCR0); + + this->IO_ADDR_W = (void *) IO_ADDR_W; + this->IO_ADDR_R = (void *) IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +/* Returns 1 when ready; upper layers timeout at 20ms with timer routines */ +static int nomadik_nand_ready(struct mtd_info *mtd) +{ + return 1; /* The ready bit is handled in hardware */ +} + +/* Copy a buffer 32bits at a time: faster than defualt method which is 8bit */ +static void nomadik_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd->priv; + u32 *p = (u32 *) buf; + + len >>= 2; + writel(0, REG_FSMC_ECCR0); + for (i = 0; i < len; i++) + p[i] = readl(chip->IO_ADDR_R); +} + +int board_nand_init(struct nand_chip *chip) +{ + /* Set up the FSMC_PCR0 for nand access*/ + writel(0x0000004a, REG_FSMC_PCR0); + /* Set up FSMC_PMEM0, FSMC_PATT0 with timing data for access */ + writel(0x00020401, REG_FSMC_PMEM0); + writel(0x00020404, REG_FSMC_PATT0); + + chip->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING; + chip->cmd_ctrl = nomadik_nand_hwcontrol; + chip->dev_ready = nomadik_nand_ready; + /* The chip allows 32bit reads, so avoid the default 8bit copy */ + chip->read_buf = nomadik_nand_read_buf; + + /* ECC: follow the hardware-defined rulse, but do it in sw */ + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.bytes = 3; + chip->ecc.size = 512; + chip->ecc.strength = 1; + chip->ecc.layout = &nomadik_ecc_layout; + chip->ecc.calculate = nomadik_ecc_calculate; + chip->ecc.hwctl = nomadik_ecc_hwctl; + chip->ecc.correct = nomadik_ecc_correct; + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/omap_elm.c b/qemu/roms/u-boot/drivers/mtd/nand/omap_elm.c new file mode 100644 index 000000000..47b1f1bfe --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/omap_elm.c @@ -0,0 +1,196 @@ +/* + * (C) Copyright 2010-2011 Texas Instruments, <www.ti.com> + * Mansoor Ahamed <mansoor.ahamed@ti.com> + * + * BCH Error Location Module (ELM) support. + * + * NOTE: + * 1. Supports only continuous mode. Dont see need for page mode in uboot + * 2. Supports only syndrome polynomial 0. i.e. poly local variable is + * always set to ELM_DEFAULT_POLY. Dont see need for other polynomial + * sets in uboot + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/errno.h> +#include <linux/mtd/omap_gpmc.h> +#include <linux/mtd/omap_elm.h> +#include <asm/arch/hardware.h> + +#define ELM_DEFAULT_POLY (0) + +struct elm *elm_cfg; + +/** + * elm_load_syndromes - Load BCH syndromes based on nibble selection + * @syndrome: BCH syndrome + * @nibbles: + * @poly: Syndrome Polynomial set to use + * + * Load BCH syndromes based on nibble selection + */ +static void elm_load_syndromes(u8 *syndrome, u32 nibbles, u8 poly) +{ + u32 *ptr; + u32 val; + + /* reg 0 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[0]; + val = syndrome[0] | (syndrome[1] << 8) | (syndrome[2] << 16) | + (syndrome[3] << 24); + writel(val, ptr); + /* reg 1 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[1]; + val = syndrome[4] | (syndrome[5] << 8) | (syndrome[6] << 16) | + (syndrome[7] << 24); + writel(val, ptr); + + /* BCH 8-bit with 26 nibbles (4*8=32) */ + if (nibbles > 13) { + /* reg 2 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[2]; + val = syndrome[8] | (syndrome[9] << 8) | (syndrome[10] << 16) | + (syndrome[11] << 24); + writel(val, ptr); + /* reg 3 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[3]; + val = syndrome[12] | (syndrome[13] << 8) | + (syndrome[14] << 16) | (syndrome[15] << 24); + writel(val, ptr); + } + + /* BCH 16-bit with 52 nibbles (7*8=56) */ + if (nibbles > 26) { + /* reg 4 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[4]; + val = syndrome[16] | (syndrome[17] << 8) | + (syndrome[18] << 16) | (syndrome[19] << 24); + writel(val, ptr); + + /* reg 5 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[5]; + val = syndrome[20] | (syndrome[21] << 8) | + (syndrome[22] << 16) | (syndrome[23] << 24); + writel(val, ptr); + + /* reg 6 */ + ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6]; + val = syndrome[24] | (syndrome[25] << 8) | + (syndrome[26] << 16) | (syndrome[27] << 24); + writel(val, ptr); + } +} + +/** + * elm_check_errors - Check for BCH errors and return error locations + * @syndrome: BCH syndrome + * @nibbles: + * @error_count: Returns number of errrors in the syndrome + * @error_locations: Returns error locations (in decimal) in this array + * + * Check the provided syndrome for BCH errors and return error count + * and locations in the array passed. Returns -1 if error is not correctable, + * else returns 0 + */ +int elm_check_error(u8 *syndrome, u32 nibbles, u32 *error_count, + u32 *error_locations) +{ + u8 poly = ELM_DEFAULT_POLY; + s8 i; + u32 location_status; + + elm_load_syndromes(syndrome, nibbles, poly); + + /* start processing */ + writel((readl(&elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6]) + | ELM_SYNDROME_FRAGMENT_6_SYNDROME_VALID), + &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6]); + + /* wait for processing to complete */ + while ((readl(&elm_cfg->irqstatus) & (0x1 << poly)) != 0x1) + ; + /* clear status */ + writel((readl(&elm_cfg->irqstatus) | (0x1 << poly)), + &elm_cfg->irqstatus); + + /* check if correctable */ + location_status = readl(&elm_cfg->error_location[poly].location_status); + if (!(location_status & ELM_LOCATION_STATUS_ECC_CORRECTABLE_MASK)) + return -1; + + /* get error count */ + *error_count = readl(&elm_cfg->error_location[poly].location_status) & + ELM_LOCATION_STATUS_ECC_NB_ERRORS_MASK; + + for (i = 0; i < *error_count; i++) { + error_locations[i] = + readl(&elm_cfg->error_location[poly].error_location_x[i]); + } + + return 0; +} + + +/** + * elm_config - Configure ELM module + * @level: 4 / 8 / 16 bit BCH + * + * Configure ELM module based on BCH level. + * Set mode as continuous mode. + * Currently we are using only syndrome 0 and syndromes 1 to 6 are not used. + * Also, the mode is set only for syndrome 0 + */ +int elm_config(enum bch_level level) +{ + u32 val; + u8 poly = ELM_DEFAULT_POLY; + u32 buffer_size = 0x7FF; + + /* config size and level */ + val = (u32)(level) & ELM_LOCATION_CONFIG_ECC_BCH_LEVEL_MASK; + val |= ((buffer_size << ELM_LOCATION_CONFIG_ECC_SIZE_POS) & + ELM_LOCATION_CONFIG_ECC_SIZE_MASK); + writel(val, &elm_cfg->location_config); + + /* config continous mode */ + /* enable interrupt generation for syndrome polynomial set */ + writel((readl(&elm_cfg->irqenable) | (0x1 << poly)), + &elm_cfg->irqenable); + /* set continuous mode for the syndrome polynomial set */ + writel((readl(&elm_cfg->page_ctrl) & ~(0x1 << poly)), + &elm_cfg->page_ctrl); + + return 0; +} + +/** + * elm_reset - Do a soft reset of ELM + * + * Perform a soft reset of ELM and return after reset is done. + */ +void elm_reset(void) +{ + /* initiate reset */ + writel((readl(&elm_cfg->sysconfig) | ELM_SYSCONFIG_SOFTRESET), + &elm_cfg->sysconfig); + + /* wait for reset complete and normal operation */ + while ((readl(&elm_cfg->sysstatus) & ELM_SYSSTATUS_RESETDONE) != + ELM_SYSSTATUS_RESETDONE) + ; +} + +/** + * elm_init - Initialize ELM module + * + * Initialize ELM support. Currently it does only base address init + * and ELM reset. + */ +void elm_init(void) +{ + elm_cfg = (struct elm *)ELM_BASE; + elm_reset(); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/omap_gpmc.c b/qemu/roms/u-boot/drivers/mtd/nand/omap_gpmc.c new file mode 100644 index 000000000..881a63618 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/omap_gpmc.c @@ -0,0 +1,836 @@ +/* + * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> + * Rohit Choraria <rohitkc@ti.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/errno.h> +#include <asm/arch/mem.h> +#include <linux/mtd/omap_gpmc.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/bch.h> +#include <linux/compiler.h> +#include <nand.h> +#include <linux/mtd/omap_elm.h> + +#define BADBLOCK_MARKER_LENGTH 2 +#define SECTOR_BYTES 512 +#define ECCCLEAR (0x1 << 8) +#define ECCRESULTREG1 (0x1 << 0) +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +#ifdef CONFIG_BCH +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; +#endif +static uint8_t cs; +static __maybe_unused struct nand_ecclayout omap_ecclayout; + +/* + * omap_nand_hwcontrol - Set the address pointers corretly for the + * following address/data/command operation + */ +static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, + uint32_t ctrl) +{ + register struct nand_chip *this = mtd->priv; + + /* + * Point the IO_ADDR to DATA and ADDRESS registers instead + * of chip address + */ + switch (ctrl) { + case NAND_CTRL_CHANGE | NAND_CTRL_CLE: + this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; + break; + case NAND_CTRL_CHANGE | NAND_CTRL_ALE: + this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; + break; + case NAND_CTRL_CHANGE | NAND_NCE: + this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; + break; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +#ifdef CONFIG_SPL_BUILD +/* Check wait pin as dev ready indicator */ +int omap_spl_dev_ready(struct mtd_info *mtd) +{ + return gpmc_cfg->status & (1 << 8); +} +#endif + + +/* + * gen_true_ecc - This function will generate true ECC value, which + * can be used when correcting data read from NAND flash memory core + * + * @ecc_buf: buffer to store ecc code + * + * @return: re-formatted ECC value + */ +static uint32_t gen_true_ecc(uint8_t *ecc_buf) +{ + return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | + ((ecc_buf[2] & 0x0F) << 8); +} + +/* + * omap_correct_data - Compares the ecc read from nand spare area with ECC + * registers values and corrects one bit error if it has occured + * Further details can be had from OMAP TRM and the following selected links: + * http://en.wikipedia.org/wiki/Hamming_code + * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf + * + * @mtd: MTD device structure + * @dat: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from ECC registers + * + * @return 0 if data is OK or corrected, else returns -1 + */ +static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + uint32_t orig_ecc, new_ecc, res, hm; + uint16_t parity_bits, byte; + uint8_t bit; + + /* Regenerate the orginal ECC */ + orig_ecc = gen_true_ecc(read_ecc); + new_ecc = gen_true_ecc(calc_ecc); + /* Get the XOR of real ecc */ + res = orig_ecc ^ new_ecc; + if (res) { + /* Get the hamming width */ + hm = hweight32(res); + /* Single bit errors can be corrected! */ + if (hm == 12) { + /* Correctable data! */ + parity_bits = res >> 16; + bit = (parity_bits & 0x7); + byte = (parity_bits >> 3) & 0x1FF; + /* Flip the bit to correct */ + dat[byte] ^= (0x1 << bit); + } else if (hm == 1) { + printf("Error: Ecc is wrong\n"); + /* ECC itself is corrupted */ + return 2; + } else { + /* + * hm distance != parity pairs OR one, could mean 2 bit + * error OR potentially be on a blank page.. + * orig_ecc: contains spare area data from nand flash. + * new_ecc: generated ecc while reading data area. + * Note: if the ecc = 0, all data bits from which it was + * generated are 0xFF. + * The 3 byte(24 bits) ecc is generated per 512byte + * chunk of a page. If orig_ecc(from spare area) + * is 0xFF && new_ecc(computed now from data area)=0x0, + * this means that data area is 0xFF and spare area is + * 0xFF. A sure sign of a erased page! + */ + if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) + return 0; + printf("Error: Bad compare! failed\n"); + /* detected 2 bit error */ + return -1; + } + } + return 0; +} + +/* + * Generic BCH interface + */ +struct nand_bch_priv { + uint8_t mode; + uint8_t type; + uint8_t nibbles; + struct bch_control *control; + enum omap_ecc ecc_scheme; +}; + +/* bch types */ +#define ECC_BCH4 0 +#define ECC_BCH8 1 +#define ECC_BCH16 2 + +/* BCH nibbles for diff bch levels */ +#define ECC_BCH4_NIBBLES 13 +#define ECC_BCH8_NIBBLES 26 +#define ECC_BCH16_NIBBLES 52 + +/* + * This can be a single instance cause all current users have only one NAND + * with nearly the same setup (BCH8, some with ELM and others with sw BCH + * library). + * When some users with other BCH strength will exists this have to change! + */ +static __maybe_unused struct nand_bch_priv bch_priv = { + .type = ECC_BCH8, + .nibbles = ECC_BCH8_NIBBLES, + .control = NULL +}; + +/* + * omap_reverse_list - re-orders list elements in reverse order [internal] + * @list: pointer to start of list + * @length: length of list +*/ +void omap_reverse_list(u8 *list, unsigned int length) +{ + unsigned int i, j; + unsigned int half_length = length / 2; + u8 tmp; + for (i = 0, j = length - 1; i < half_length; i++, j--) { + tmp = list[i]; + list[i] = list[j]; + list[j] = tmp; + } +} + +/* + * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write + * @mtd: MTD device structure + * @mode: Read/Write mode + */ +__maybe_unused +static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) +{ + struct nand_chip *nand = mtd->priv; + struct nand_bch_priv *bch = nand->priv; + unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0; + unsigned int ecc_algo = 0; + unsigned int bch_type = 0; + unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00; + u32 ecc_size_config_val = 0; + u32 ecc_config_val = 0; + + /* configure GPMC for specific ecc-scheme */ + switch (bch->ecc_scheme) { + case OMAP_ECC_HAM1_CODE_SW: + return; + case OMAP_ECC_HAM1_CODE_HW: + ecc_algo = 0x0; + bch_type = 0x0; + bch_wrapmode = 0x00; + eccsize0 = 0xFF; + eccsize1 = 0xFF; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + ecc_algo = 0x1; + bch_type = 0x1; + if (mode == NAND_ECC_WRITE) { + bch_wrapmode = 0x01; + eccsize0 = 0; /* extra bits in nibbles per sector */ + eccsize1 = 28; /* OOB bits in nibbles per sector */ + } else { + bch_wrapmode = 0x01; + eccsize0 = 26; /* ECC bits in nibbles per sector */ + eccsize1 = 2; /* non-ECC bits in nibbles per sector */ + } + break; + default: + return; + } + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); + /* Configure ecc size for BCH */ + ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12); + writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config); + + /* Configure device details for BCH engine */ + ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (bch_wrapmode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (0x0 << 4) | /* number of sectors */ + (cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ + writel(ecc_config_val, &gpmc_cfg->ecc_config); +} + +/* + * omap_calculate_ecc - Read ECC result + * @mtd: MTD structure + * @dat: unused + * @ecc_code: ecc_code buffer + * Using noninverted ECC can be considered ugly since writing a blank + * page ie. padding will clear the ECC bytes. This is no problem as + * long nobody is trying to write data on the seemingly unused page. + * Reading an erased page will produce an ECC mismatch between + * generated and read ECC bytes that has to be dealt with separately. + * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC + * is used, the result of read will be 0x0 while the ECC offsets of the + * spare area will be 0xFF which will result in an ECC mismatch. + */ +static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct nand_chip *chip = mtd->priv; + struct nand_bch_priv *bch = chip->priv; + uint32_t *ptr, val = 0; + int8_t i = 0, j; + + switch (bch->ecc_scheme) { + case OMAP_ECC_HAM1_CODE_HW: + val = readl(&gpmc_cfg->ecc1_result); + ecc_code[0] = val & 0xFF; + ecc_code[1] = (val >> 16) & 0xFF; + ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); + break; +#ifdef CONFIG_BCH + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: +#endif + case OMAP_ECC_BCH8_CODE_HW: + ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3]; + val = readl(ptr); + ecc_code[i++] = (val >> 0) & 0xFF; + ptr--; + for (j = 0; j < 3; j++) { + val = readl(ptr); + ecc_code[i++] = (val >> 24) & 0xFF; + ecc_code[i++] = (val >> 16) & 0xFF; + ecc_code[i++] = (val >> 8) & 0xFF; + ecc_code[i++] = (val >> 0) & 0xFF; + ptr--; + } + break; + default: + return -EINVAL; + } + /* ECC scheme specific syndrome customizations */ + switch (bch->ecc_scheme) { + case OMAP_ECC_HAM1_CODE_HW: + break; +#ifdef CONFIG_BCH + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + + for (i = 0; i < chip->ecc.bytes; i++) + *(ecc_code + i) = *(ecc_code + i) ^ + bch8_polynomial[i]; + break; +#endif + case OMAP_ECC_BCH8_CODE_HW: + ecc_code[chip->ecc.bytes - 1] = 0x00; + break; + default: + return -EINVAL; + } + return 0; +} + +#ifdef CONFIG_NAND_OMAP_ELM +/* + * omap_correct_data_bch - Compares the ecc read from nand spare area + * with ECC registers values and corrects one bit error if it has occured + * + * @mtd: MTD device structure + * @dat: page data + * @read_ecc: ecc read from nand flash (ignored) + * @calc_ecc: ecc read from ECC registers + * + * @return 0 if data is OK or corrected, else returns -1 + */ +static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct nand_chip *chip = mtd->priv; + struct nand_bch_priv *bch = chip->priv; + uint32_t eccbytes = chip->ecc.bytes; + uint32_t error_count = 0, error_max; + uint32_t error_loc[8]; + uint32_t i, ecc_flag = 0; + uint8_t count, err = 0; + uint32_t byte_pos, bit_pos; + + /* check calculated ecc */ + for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) { + if (calc_ecc[i] != 0x00) + ecc_flag = 1; + } + if (!ecc_flag) + return 0; + + /* check for whether its a erased-page */ + ecc_flag = 0; + for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) { + if (read_ecc[i] != 0xff) + ecc_flag = 1; + } + if (!ecc_flag) + return 0; + + /* + * while reading ECC result we read it in big endian. + * Hence while loading to ELM we have rotate to get the right endian. + */ + switch (bch->ecc_scheme) { + case OMAP_ECC_BCH8_CODE_HW: + omap_reverse_list(calc_ecc, eccbytes - 1); + break; + default: + return -EINVAL; + } + /* use elm module to check for errors */ + elm_config((enum bch_level)(bch->type)); + if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) { + printf("nand: error: uncorrectable ECC errors\n"); + return -EINVAL; + } + /* correct bch error */ + for (count = 0; count < error_count; count++) { + switch (bch->type) { + case ECC_BCH8: + /* 14th byte in ECC is reserved to match ROM layout */ + error_max = SECTOR_BYTES + (eccbytes - 1); + break; + default: + return -EINVAL; + } + byte_pos = error_max - (error_loc[count] / 8) - 1; + bit_pos = error_loc[count] % 8; + if (byte_pos < SECTOR_BYTES) { + dat[byte_pos] ^= 1 << bit_pos; + printf("nand: bit-flip corrected @data=%d\n", byte_pos); + } else if (byte_pos < error_max) { + read_ecc[byte_pos - SECTOR_BYTES] = 1 << bit_pos; + printf("nand: bit-flip corrected @oob=%d\n", byte_pos - + SECTOR_BYTES); + } else { + err = -EBADMSG; + printf("nand: error: invalid bit-flip location\n"); + } + } + return (err) ? err : error_count; +} + +/** + * omap_read_page_bch - hardware ecc based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + */ +static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *oob = chip->oob_poi; + uint32_t data_pos; + uint32_t oob_pos; + + data_pos = 0; + /* oob area start */ + oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; + oob += chip->ecc.layout->eccpos[0]; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize, + oob += eccbytes) { + chip->ecc.hwctl(mtd, NAND_ECC_READ); + /* read data */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page); + chip->read_buf(mtd, p, eccsize); + + /* read respective ecc from oob area */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page); + chip->read_buf(mtd, oob, eccbytes); + /* read syndrome */ + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + data_pos += eccsize; + oob_pos += eccbytes; + } + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} +#endif /* CONFIG_NAND_OMAP_ELM */ + +/* + * OMAP3 BCH8 support (with BCH library) + */ +#ifdef CONFIG_BCH +/** + * omap_correct_data_bch_sw - Decode received data and correct errors + * @mtd: MTD device structure + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + */ +static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data, + u_char *read_ecc, u_char *calc_ecc) +{ + int i, count; + /* cannot correct more than 8 errors */ + unsigned int errloc[8]; + struct nand_chip *chip = mtd->priv; + struct nand_bch_priv *chip_priv = chip->priv; + struct bch_control *bch = chip_priv->control; + + count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc); + if (count > 0) { + /* correct errors */ + for (i = 0; i < count; i++) { + /* correct data only, not ecc bytes */ + if (errloc[i] < 8*512) + data[errloc[i]/8] ^= 1 << (errloc[i] & 7); + printf("corrected bitflip %u\n", errloc[i]); +#ifdef DEBUG + puts("read_ecc: "); + /* + * BCH8 have 13 bytes of ECC; BCH4 needs adoption + * here! + */ + for (i = 0; i < 13; i++) + printf("%02x ", read_ecc[i]); + puts("\n"); + puts("calc_ecc: "); + for (i = 0; i < 13; i++) + printf("%02x ", calc_ecc[i]); + puts("\n"); +#endif + } + } else if (count < 0) { + puts("ecc unrecoverable error\n"); + } + return count; +} + +/** + * omap_free_bch - Release BCH ecc resources + * @mtd: MTD device structure + */ +static void __maybe_unused omap_free_bch(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct nand_bch_priv *chip_priv = chip->priv; + struct bch_control *bch = NULL; + + if (chip_priv) + bch = chip_priv->control; + + if (bch) { + free_bch(bch); + chip_priv->control = NULL; + } +} +#endif /* CONFIG_BCH */ + +/** + * omap_select_ecc_scheme - configures driver for particular ecc-scheme + * @nand: NAND chip device structure + * @ecc_scheme: ecc scheme to configure + * @pagesize: number of main-area bytes per page of NAND device + * @oobsize: number of OOB/spare bytes per page of NAND device + */ +static int omap_select_ecc_scheme(struct nand_chip *nand, + enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) { + struct nand_bch_priv *bch = nand->priv; + struct nand_ecclayout *ecclayout = &omap_ecclayout; + int eccsteps = pagesize / SECTOR_BYTES; + int i; + + switch (ecc_scheme) { + case OMAP_ECC_HAM1_CODE_SW: + debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n"); + /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are + * initialized in nand_scan_tail(), so just set ecc.mode */ + bch_priv.control = NULL; + bch_priv.type = 0; + nand->ecc.mode = NAND_ECC_SOFT; + nand->ecc.layout = NULL; + nand->ecc.size = 0; + bch->ecc_scheme = OMAP_ECC_HAM1_CODE_SW; + break; + + case OMAP_ECC_HAM1_CODE_HW: + debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n"); + /* check ecc-scheme requirements before updating ecc info */ + if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { + printf("nand: error: insufficient OOB: require=%d\n", ( + (3 * eccsteps) + BADBLOCK_MARKER_LENGTH)); + return -EINVAL; + } + bch_priv.control = NULL; + bch_priv.type = 0; + /* populate ecc specific fields */ + memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.strength = 1; + nand->ecc.size = SECTOR_BYTES; + nand->ecc.bytes = 3; + nand->ecc.hwctl = omap_enable_hwecc; + nand->ecc.correct = omap_correct_data; + nand->ecc.calculate = omap_calculate_ecc; + /* define ecc-layout */ + ecclayout->eccbytes = nand->ecc.bytes * eccsteps; + for (i = 0; i < ecclayout->eccbytes; i++) { + if (nand->options & NAND_BUSWIDTH_16) + ecclayout->eccpos[i] = i + 2; + else + ecclayout->eccpos[i] = i + 1; + } + ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; + ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - + BADBLOCK_MARKER_LENGTH; + bch->ecc_scheme = OMAP_ECC_HAM1_CODE_HW; + break; + + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: +#ifdef CONFIG_BCH + debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + /* check ecc-scheme requirements before updating ecc info */ + if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { + printf("nand: error: insufficient OOB: require=%d\n", ( + (13 * eccsteps) + BADBLOCK_MARKER_LENGTH)); + return -EINVAL; + } + /* check if BCH S/W library can be used for error detection */ + bch_priv.control = init_bch(13, 8, 0x201b); + if (!bch_priv.control) { + printf("nand: error: could not init_bch()\n"); + return -ENODEV; + } + bch_priv.type = ECC_BCH8; + /* populate ecc specific fields */ + memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.strength = 8; + nand->ecc.size = SECTOR_BYTES; + nand->ecc.bytes = 13; + nand->ecc.hwctl = omap_enable_hwecc; + nand->ecc.correct = omap_correct_data_bch_sw; + nand->ecc.calculate = omap_calculate_ecc; + /* define ecc-layout */ + ecclayout->eccbytes = nand->ecc.bytes * eccsteps; + ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH; + for (i = 1; i < ecclayout->eccbytes; i++) { + if (i % nand->ecc.bytes) + ecclayout->eccpos[i] = + ecclayout->eccpos[i - 1] + 1; + else + ecclayout->eccpos[i] = + ecclayout->eccpos[i - 1] + 2; + } + ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; + ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - + BADBLOCK_MARKER_LENGTH; + bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; + break; +#else + printf("nand: error: CONFIG_BCH required for ECC\n"); + return -EINVAL; +#endif + + case OMAP_ECC_BCH8_CODE_HW: +#ifdef CONFIG_NAND_OMAP_ELM + debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n"); + /* check ecc-scheme requirements before updating ecc info */ + if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { + printf("nand: error: insufficient OOB: require=%d\n", ( + (14 * eccsteps) + BADBLOCK_MARKER_LENGTH)); + return -EINVAL; + } + /* intialize ELM for ECC error detection */ + elm_init(); + bch_priv.type = ECC_BCH8; + /* populate ecc specific fields */ + memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.strength = 8; + nand->ecc.size = SECTOR_BYTES; + nand->ecc.bytes = 14; + nand->ecc.hwctl = omap_enable_hwecc; + nand->ecc.correct = omap_correct_data_bch; + nand->ecc.calculate = omap_calculate_ecc; + nand->ecc.read_page = omap_read_page_bch; + /* define ecc-layout */ + ecclayout->eccbytes = nand->ecc.bytes * eccsteps; + for (i = 0; i < ecclayout->eccbytes; i++) + ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; + ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; + ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - + BADBLOCK_MARKER_LENGTH; + bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW; + break; +#else + printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); + return -EINVAL; +#endif + + default: + debug("nand: error: ecc scheme not enabled or supported\n"); + return -EINVAL; + } + + /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */ + if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW) + nand->ecc.layout = ecclayout; + + return 0; +} + +#ifndef CONFIG_SPL_BUILD +/* + * omap_nand_switch_ecc - switch the ECC operation between different engines + * (h/w and s/w) and different algorithms (hamming and BCHx) + * + * @hardware - true if one of the HW engines should be used + * @eccstrength - the number of bits that could be corrected + * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16) + */ +int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength) +{ + struct nand_chip *nand; + struct mtd_info *mtd; + int err = 0; + + if (nand_curr_device < 0 || + nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE || + !nand_info[nand_curr_device].name) { + printf("nand: error: no NAND devices found\n"); + return -ENODEV; + } + + mtd = &nand_info[nand_curr_device]; + nand = mtd->priv; + nand->options |= NAND_OWN_BUFFERS; + nand->options &= ~NAND_SUBPAGE_READ; + /* Setup the ecc configurations again */ + if (hardware) { + if (eccstrength == 1) { + err = omap_select_ecc_scheme(nand, + OMAP_ECC_HAM1_CODE_HW, + mtd->writesize, mtd->oobsize); + } else if (eccstrength == 8) { + err = omap_select_ecc_scheme(nand, + OMAP_ECC_BCH8_CODE_HW, + mtd->writesize, mtd->oobsize); + } else { + printf("nand: error: unsupported ECC scheme\n"); + return -EINVAL; + } + } else { + err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, + mtd->writesize, mtd->oobsize); + } + + /* Update NAND handling after ECC mode switch */ + if (!err) + err = nand_scan_tail(mtd); + return err; +} +#endif /* CONFIG_SPL_BUILD */ + +/* + * Board-specific NAND initialization. The following members of the + * argument are board-specific: + * - IO_ADDR_R: address to read the 8 I/O lines of the flash device + * - IO_ADDR_W: address to write the 8 I/O lines of the flash device + * - cmd_ctrl: hardwarespecific function for accesing control-lines + * - waitfunc: hardwarespecific function for accesing device ready/busy line + * - ecc.hwctl: function to enable (reset) hardware ecc generator + * - ecc.mode: mode of ecc, see defines + * - chip_delay: chip dependent delay for transfering data from array to + * read regs (tR) + * - options: various chip options. They can partly be set to inform + * nand_scan about special functionality. See the defines for further + * explanation + */ +int board_nand_init(struct nand_chip *nand) +{ + int32_t gpmc_config = 0; + cs = 0; + int err = 0; + /* + * xloader/Uboot's gpmc configuration would have configured GPMC for + * nand type of memory. The following logic scans and latches on to the + * first CS with NAND type memory. + * TBD: need to make this logic generic to handle multiple CS NAND + * devices. + */ + while (cs < GPMC_MAX_CS) { + /* Check if NAND type is set */ + if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { + /* Found it!! */ + break; + } + cs++; + } + if (cs >= GPMC_MAX_CS) { + printf("nand: error: Unable to find NAND settings in " + "GPMC Configuration - quitting\n"); + return -ENODEV; + } + + gpmc_config = readl(&gpmc_cfg->config); + /* Disable Write protect */ + gpmc_config |= 0x10; + writel(gpmc_config, &gpmc_cfg->config); + + nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; + nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; + nand->priv = &bch_priv; + nand->cmd_ctrl = omap_nand_hwcontrol; + nand->options |= NAND_NO_PADDING | NAND_CACHEPRG; + /* If we are 16 bit dev, our gpmc config tells us that */ + if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000) + nand->options |= NAND_BUSWIDTH_16; + + nand->chip_delay = 100; + nand->ecc.layout = &omap_ecclayout; + + /* select ECC scheme */ +#if defined(CONFIG_NAND_OMAP_ECCSCHEME) + err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME, + CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE); +#else + /* pagesize and oobsize are not required to configure sw ecc-scheme */ + err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, + 0, 0); +#endif + if (err) + return err; + +#ifdef CONFIG_SPL_BUILD + if (nand->options & NAND_BUSWIDTH_16) + nand->read_buf = nand_read_buf16; + else + nand->read_buf = nand_read_buf; + nand->dev_ready = omap_spl_dev_ready; +#endif + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/s3c2410_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/s3c2410_nand.c new file mode 100644 index 000000000..db87d0726 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/s3c2410_nand.c @@ -0,0 +1,175 @@ +/* + * (C) Copyright 2006 OpenMoko, Inc. + * Author: Harald Welte <laforge@openmoko.org> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> + +#include <nand.h> +#include <asm/arch/s3c24x0_cpu.h> +#include <asm/io.h> + +#define S3C2410_NFCONF_EN (1<<15) +#define S3C2410_NFCONF_512BYTE (1<<14) +#define S3C2410_NFCONF_4STEP (1<<13) +#define S3C2410_NFCONF_INITECC (1<<12) +#define S3C2410_NFCONF_nFCE (1<<11) +#define S3C2410_NFCONF_TACLS(x) ((x)<<8) +#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) +#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) + +#define S3C2410_ADDR_NALE 4 +#define S3C2410_ADDR_NCLE 8 + +#ifdef CONFIG_NAND_SPL + +/* in the early stage of NAND flash booting, printf() is not available */ +#define printf(fmt, args...) + +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i = 0; i < len; i++) + buf[i] = readb(this->IO_ADDR_R); +} +#endif + +static void s3c2410_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *chip = mtd->priv; + struct s3c2410_nand *nand = s3c2410_get_base_nand(); + + debug("hwcontrol(): 0x%02x 0x%02x\n", cmd, ctrl); + + if (ctrl & NAND_CTRL_CHANGE) { + ulong IO_ADDR_W = (ulong)nand; + + if (!(ctrl & NAND_CLE)) + IO_ADDR_W |= S3C2410_ADDR_NCLE; + if (!(ctrl & NAND_ALE)) + IO_ADDR_W |= S3C2410_ADDR_NALE; + + chip->IO_ADDR_W = (void *)IO_ADDR_W; + + if (ctrl & NAND_NCE) + writel(readl(&nand->nfconf) & ~S3C2410_NFCONF_nFCE, + &nand->nfconf); + else + writel(readl(&nand->nfconf) | S3C2410_NFCONF_nFCE, + &nand->nfconf); + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, chip->IO_ADDR_W); +} + +static int s3c2410_dev_ready(struct mtd_info *mtd) +{ + struct s3c2410_nand *nand = s3c2410_get_base_nand(); + debug("dev_ready\n"); + return readl(&nand->nfstat) & 0x01; +} + +#ifdef CONFIG_S3C2410_NAND_HWECC +void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct s3c2410_nand *nand = s3c2410_get_base_nand(); + debug("s3c2410_nand_enable_hwecc(%p, %d)\n", mtd, mode); + writel(readl(&nand->nfconf) | S3C2410_NFCONF_INITECC, &nand->nfconf); +} + +static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct s3c2410_nand *nand = s3c2410_get_base_nand(); + ecc_code[0] = readb(&nand->nfecc); + ecc_code[1] = readb(&nand->nfecc + 1); + ecc_code[2] = readb(&nand->nfecc + 2); + debug("s3c2410_nand_calculate_hwecc(%p,): 0x%02x 0x%02x 0x%02x\n", + mtd , ecc_code[0], ecc_code[1], ecc_code[2]); + + return 0; +} + +static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + if (read_ecc[0] == calc_ecc[0] && + read_ecc[1] == calc_ecc[1] && + read_ecc[2] == calc_ecc[2]) + return 0; + + printf("s3c2410_nand_correct_data: not implemented\n"); + return -1; +} +#endif + +int board_nand_init(struct nand_chip *nand) +{ + u_int32_t cfg; + u_int8_t tacls, twrph0, twrph1; + struct s3c24x0_clock_power *clk_power = s3c24x0_get_base_clock_power(); + struct s3c2410_nand *nand_reg = s3c2410_get_base_nand(); + + debug("board_nand_init()\n"); + + writel(readl(&clk_power->clkcon) | (1 << 4), &clk_power->clkcon); + + /* initialize hardware */ +#if defined(CONFIG_S3C24XX_CUSTOM_NAND_TIMING) + tacls = CONFIG_S3C24XX_TACLS; + twrph0 = CONFIG_S3C24XX_TWRPH0; + twrph1 = CONFIG_S3C24XX_TWRPH1; +#else + tacls = 4; + twrph0 = 8; + twrph1 = 8; +#endif + + cfg = S3C2410_NFCONF_EN; + cfg |= S3C2410_NFCONF_TACLS(tacls - 1); + cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); + cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); + writel(cfg, &nand_reg->nfconf); + + /* initialize nand_chip data structure */ + nand->IO_ADDR_R = (void *)&nand_reg->nfdata; + nand->IO_ADDR_W = (void *)&nand_reg->nfdata; + + nand->select_chip = NULL; + + /* read_buf and write_buf are default */ + /* read_byte and write_byte are default */ +#ifdef CONFIG_NAND_SPL + nand->read_buf = nand_read_buf; +#endif + + /* hwcontrol always must be implemented */ + nand->cmd_ctrl = s3c2410_hwcontrol; + + nand->dev_ready = s3c2410_dev_ready; + +#ifdef CONFIG_S3C2410_NAND_HWECC + nand->ecc.hwctl = s3c2410_nand_enable_hwecc; + nand->ecc.calculate = s3c2410_nand_calculate_ecc; + nand->ecc.correct = s3c2410_nand_correct_data; + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; + nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; + nand->ecc.strength = 1; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif + +#ifdef CONFIG_S3C2410_NAND_BBT + nand->bbt_options |= NAND_BBT_USE_FLASH; +#endif + + debug("end of nand_init\n"); + + return 0; +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.c b/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.c new file mode 100644 index 000000000..163cf29a3 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.c @@ -0,0 +1,1041 @@ +/* + * Copyright (c) 2011 The Chromium OS Authors. + * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com> + * (C) Copyright 2006 Detlev Zundel, dzu@denx.de + * (C) Copyright 2006 DENX Software Engineering + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include <common.h> +#include <asm/io.h> +#include <nand.h> +#include <asm/arch/clock.h> +#include <asm/arch/funcmux.h> +#include <asm/arch-tegra/clk_rst.h> +#include <asm/errno.h> +#include <asm/gpio.h> +#include <fdtdec.h> +#include "tegra_nand.h" + +DECLARE_GLOBAL_DATA_PTR; + +#define NAND_CMD_TIMEOUT_MS 10 + +#define SKIPPED_SPARE_BYTES 4 + +/* ECC bytes to be generated for tag data */ +#define TAG_ECC_BYTES 4 + +/* 64 byte oob block info for large page (== 2KB) device + * + * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC: + * Skipped bytes(4) + * Main area Ecc(36) + * Tag data(20) + * Tag data Ecc(4) + * + * Yaffs2 will use 16 tag bytes. + */ +static struct nand_ecclayout eccoob = { + .eccbytes = 36, + .eccpos = { + 4, 5, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 16, 17, 18, 19, 20, 21, + 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, + }, + .oobavail = 20, + .oobfree = { + { + .offset = 40, + .length = 20, + }, + } +}; + +enum { + ECC_OK, + ECC_TAG_ERROR = 1 << 0, + ECC_DATA_ERROR = 1 << 1 +}; + +/* Timing parameters */ +enum { + FDT_NAND_MAX_TRP_TREA, + FDT_NAND_TWB, + FDT_NAND_MAX_TCR_TAR_TRR, + FDT_NAND_TWHR, + FDT_NAND_MAX_TCS_TCH_TALS_TALH, + FDT_NAND_TWH, + FDT_NAND_TWP, + FDT_NAND_TRH, + FDT_NAND_TADL, + + FDT_NAND_TIMING_COUNT +}; + +/* Information about an attached NAND chip */ +struct fdt_nand { + struct nand_ctlr *reg; + int enabled; /* 1 to enable, 0 to disable */ + struct fdt_gpio_state wp_gpio; /* write-protect GPIO */ + s32 width; /* bit width, normally 8 */ + u32 timing[FDT_NAND_TIMING_COUNT]; +}; + +struct nand_drv { + struct nand_ctlr *reg; + + /* + * When running in PIO mode to get READ ID bytes from register + * RESP_0, we need this variable as an index to know which byte in + * register RESP_0 should be read. + * Because common code in nand_base.c invokes read_byte function two + * times for NAND_CMD_READID. + * And our controller returns 4 bytes at once in register RESP_0. + */ + int pio_byte_index; + struct fdt_nand config; +}; + +static struct nand_drv nand_ctrl; +static struct mtd_info *our_mtd; +static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; + +#ifdef CONFIG_SYS_DCACHE_OFF +static inline void dma_prepare(void *start, unsigned long length, + int is_writing) +{ +} +#else +/** + * Prepare for a DMA transaction + * + * For a write we flush out our data. For a read we invalidate, since we + * need to do this before we read from the buffer after the DMA has + * completed, so may as well do it now. + * + * @param start Start address for DMA buffer (should be cache-aligned) + * @param length Length of DMA buffer in bytes + * @param is_writing 0 if reading, non-zero if writing + */ +static void dma_prepare(void *start, unsigned long length, int is_writing) +{ + unsigned long addr = (unsigned long)start; + + length = ALIGN(length, ARCH_DMA_MINALIGN); + if (is_writing) + flush_dcache_range(addr, addr + length); + else + invalidate_dcache_range(addr, addr + length); +} +#endif + +/** + * Wait for command completion + * + * @param reg nand_ctlr structure + * @return + * 1 - Command completed + * 0 - Timeout + */ +static int nand_waitfor_cmd_completion(struct nand_ctlr *reg) +{ + u32 reg_val; + int running; + int i; + + for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) { + if ((readl(®->command) & CMD_GO) || + !(readl(®->status) & STATUS_RBSY0) || + !(readl(®->isr) & ISR_IS_CMD_DONE)) { + udelay(1); + continue; + } + reg_val = readl(®->dma_mst_ctrl); + /* + * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE + * is set, that means DMA engine is running. + * + * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE + * is cleared, indicating DMA transfer completion. + */ + running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE | + DMA_MST_CTRL_EN_B_ENABLE); + if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE)) + return 1; + udelay(1); + } + return 0; +} + +/** + * Read one byte from the chip + * + * @param mtd MTD device structure + * @return data byte + * + * Read function for 8bit bus-width + */ +static uint8_t read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + u32 dword_read; + struct nand_drv *info; + + info = (struct nand_drv *)chip->priv; + + /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */ + if (info->pio_byte_index > 3) { + info->pio_byte_index = 0; + writel(CMD_GO | CMD_PIO + | CMD_RX | CMD_CE0, + &info->reg->command); + if (!nand_waitfor_cmd_completion(info->reg)) + printf("Command timeout\n"); + } + + dword_read = readl(&info->reg->resp); + dword_read = dword_read >> (8 * info->pio_byte_index); + info->pio_byte_index++; + return (uint8_t)dword_read; +} + +/** + * Read len bytes from the chip into a buffer + * + * @param mtd MTD device structure + * @param buf buffer to store data to + * @param len number of bytes to read + * + * Read function for 8bit bus-width + */ +static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i, s; + unsigned int reg; + struct nand_chip *chip = mtd->priv; + struct nand_drv *info = (struct nand_drv *)chip->priv; + + for (i = 0; i < len; i += 4) { + s = (len - i) > 4 ? 4 : len - i; + writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 | + ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO, + &info->reg->command); + if (!nand_waitfor_cmd_completion(info->reg)) + puts("Command timeout during read_buf\n"); + reg = readl(&info->reg->resp); + memcpy(buf + i, ®, s); + } +} + +/** + * Check NAND status to see if it is ready or not + * + * @param mtd MTD device structure + * @return + * 1 - ready + * 0 - not ready + */ +static int nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + int reg_val; + struct nand_drv *info; + + info = (struct nand_drv *)chip->priv; + + reg_val = readl(&info->reg->status); + if (reg_val & STATUS_RBSY0) + return 1; + else + return 0; +} + +/* Dummy implementation: we don't support multiple chips */ +static void nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + switch (chipnr) { + case -1: + case 0: + break; + + default: + BUG(); + } +} + +/** + * Clear all interrupt status bits + * + * @param reg nand_ctlr structure + */ +static void nand_clear_interrupt_status(struct nand_ctlr *reg) +{ + u32 reg_val; + + /* Clear interrupt status */ + reg_val = readl(®->isr); + writel(reg_val, ®->isr); +} + +/** + * Send command to NAND device + * + * @param mtd MTD device structure + * @param command the command to be sent + * @param column the column address for this command, -1 if none + * @param page_addr the page address for this command, -1 if none + */ +static void nand_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct nand_drv *info; + + info = (struct nand_drv *)chip->priv; + + /* + * Write out the command to the device. + * + * Only command NAND_CMD_RESET or NAND_CMD_READID will come + * here before mtd->writesize is initialized. + */ + + /* Emulate NAND_CMD_READOOB */ + if (command == NAND_CMD_READOOB) { + assert(mtd->writesize != 0); + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Adjust columns for 16 bit bus-width */ + if (column != -1 && (chip->options & NAND_BUSWIDTH_16)) + column >>= 1; + + nand_clear_interrupt_status(info->reg); + + /* Stop DMA engine, clear DMA completion status */ + writel(DMA_MST_CTRL_EN_A_DISABLE + | DMA_MST_CTRL_EN_B_DISABLE + | DMA_MST_CTRL_IS_DMA_DONE, + &info->reg->dma_mst_ctrl); + + /* + * Program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + case NAND_CMD_READID: + writel(NAND_CMD_READID, &info->reg->cmd_reg1); + writel(column & 0xFF, &info->reg->addr_reg1); + writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO + | CMD_RX | + ((4 - 1) << CMD_TRANS_SIZE_SHIFT) + | CMD_CE0, + &info->reg->command); + info->pio_byte_index = 0; + break; + case NAND_CMD_PARAM: + writel(NAND_CMD_PARAM, &info->reg->cmd_reg1); + writel(column & 0xFF, &info->reg->addr_reg1); + writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0, + &info->reg->command); + break; + case NAND_CMD_READ0: + writel(NAND_CMD_READ0, &info->reg->cmd_reg1); + writel(NAND_CMD_READSTART, &info->reg->cmd_reg2); + writel((page_addr << 16) | (column & 0xFFFF), + &info->reg->addr_reg1); + writel(page_addr >> 16, &info->reg->addr_reg2); + return; + case NAND_CMD_SEQIN: + writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1); + writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2); + writel((page_addr << 16) | (column & 0xFFFF), + &info->reg->addr_reg1); + writel(page_addr >> 16, + &info->reg->addr_reg2); + return; + case NAND_CMD_PAGEPROG: + return; + case NAND_CMD_ERASE1: + writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1); + writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2); + writel(page_addr, &info->reg->addr_reg1); + writel(CMD_GO | CMD_CLE | CMD_ALE | + CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3, + &info->reg->command); + break; + case NAND_CMD_ERASE2: + return; + case NAND_CMD_STATUS: + writel(NAND_CMD_STATUS, &info->reg->cmd_reg1); + writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX + | ((1 - 0) << CMD_TRANS_SIZE_SHIFT) + | CMD_CE0, + &info->reg->command); + info->pio_byte_index = 0; + break; + case NAND_CMD_RESET: + writel(NAND_CMD_RESET, &info->reg->cmd_reg1); + writel(CMD_GO | CMD_CLE | CMD_CE0, + &info->reg->command); + break; + case NAND_CMD_RNDOUT: + default: + printf("%s: Unsupported command %d\n", __func__, command); + return; + } + if (!nand_waitfor_cmd_completion(info->reg)) + printf("Command 0x%02X timeout\n", command); +} + +/** + * Check whether the pointed buffer are all 0xff (blank). + * + * @param buf data buffer for blank check + * @param len length of the buffer in byte + * @return + * 1 - blank + * 0 - non-blank + */ +static int blank_check(u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + if (buf[i] != 0xFF) + return 0; + return 1; +} + +/** + * After a DMA transfer for read, we call this function to see whether there + * is any uncorrectable error on the pointed data buffer or oob buffer. + * + * @param reg nand_ctlr structure + * @param databuf data buffer + * @param a_len data buffer length + * @param oobbuf oob buffer + * @param b_len oob buffer length + * @return + * ECC_OK - no ECC error or correctable ECC error + * ECC_TAG_ERROR - uncorrectable tag ECC error + * ECC_DATA_ERROR - uncorrectable data ECC error + * ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error + */ +static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf, + int a_len, u8 *oobbuf, int b_len) +{ + int return_val = ECC_OK; + u32 reg_val; + + if (!(readl(®->isr) & ISR_IS_ECC_ERR)) + return ECC_OK; + + /* + * Area A is used for the data block (databuf). Area B is used for + * the spare block (oobbuf) + */ + reg_val = readl(®->dec_status); + if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) { + reg_val = readl(®->bch_dec_status_buf); + /* + * If uncorrectable error occurs on data area, then see whether + * they are all FF. If all are FF, it's a blank page. + * Not error. + */ + if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) && + !blank_check(databuf, a_len)) + return_val |= ECC_DATA_ERROR; + } + + if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) { + reg_val = readl(®->bch_dec_status_buf); + /* + * If uncorrectable error occurs on tag area, then see whether + * they are all FF. If all are FF, it's a blank page. + * Not error. + */ + if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) && + !blank_check(oobbuf, b_len)) + return_val |= ECC_TAG_ERROR; + } + + return return_val; +} + +/** + * Set GO bit to send command to device + * + * @param reg nand_ctlr structure + */ +static void start_command(struct nand_ctlr *reg) +{ + u32 reg_val; + + reg_val = readl(®->command); + reg_val |= CMD_GO; + writel(reg_val, ®->command); +} + +/** + * Clear command GO bit, DMA GO bit, and DMA completion status + * + * @param reg nand_ctlr structure + */ +static void stop_command(struct nand_ctlr *reg) +{ + /* Stop command */ + writel(0, ®->command); + + /* Stop DMA engine and clear DMA completion status */ + writel(DMA_MST_CTRL_GO_DISABLE + | DMA_MST_CTRL_IS_DMA_DONE, + ®->dma_mst_ctrl); +} + +/** + * Set up NAND bus width and page size + * + * @param info nand_info structure + * @param *reg_val address of reg_val + * @return 0 if ok, -1 on error + */ +static int set_bus_width_page_size(struct fdt_nand *config, + u32 *reg_val) +{ + if (config->width == 8) + *reg_val = CFG_BUS_WIDTH_8BIT; + else if (config->width == 16) + *reg_val = CFG_BUS_WIDTH_16BIT; + else { + debug("%s: Unsupported bus width %d\n", __func__, + config->width); + return -1; + } + + if (our_mtd->writesize == 512) + *reg_val |= CFG_PAGE_SIZE_512; + else if (our_mtd->writesize == 2048) + *reg_val |= CFG_PAGE_SIZE_2048; + else if (our_mtd->writesize == 4096) + *reg_val |= CFG_PAGE_SIZE_4096; + else { + debug("%s: Unsupported page size %d\n", __func__, + our_mtd->writesize); + return -1; + } + + return 0; +} + +/** + * Page read/write function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param buf data buffer + * @param page page number + * @param with_ecc 1 to enable ECC, 0 to disable ECC + * @param is_writing 0 for read, 1 for write + * @return 0 when successfully completed + * -EIO when command timeout + */ +static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page, int with_ecc, int is_writing) +{ + u32 reg_val; + int tag_size; + struct nand_oobfree *free = chip->ecc.layout->oobfree; + /* 4*128=512 (byte) is the value that our HW can support. */ + ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128); + char *tag_ptr; + struct nand_drv *info; + struct fdt_nand *config; + + if ((uintptr_t)buf & 0x03) { + printf("buf %p has to be 4-byte aligned\n", buf); + return -EINVAL; + } + + info = (struct nand_drv *)chip->priv; + config = &info->config; + if (set_bus_width_page_size(config, ®_val)) + return -EINVAL; + + /* Need to be 4-byte aligned */ + tag_ptr = (char *)tag_buf; + + stop_command(info->reg); + + writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a); + writel(virt_to_phys(buf), &info->reg->data_block_ptr); + + if (with_ecc) { + writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr); + if (is_writing) + memcpy(tag_ptr, chip->oob_poi + free->offset, + chip->ecc.layout->oobavail + + TAG_ECC_BYTES); + } else { + writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); + } + + /* Set ECC selection, configure ECC settings */ + if (with_ecc) { + tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES; + reg_val |= (CFG_SKIP_SPARE_SEL_4 + | CFG_SKIP_SPARE_ENABLE + | CFG_HW_ECC_CORRECTION_ENABLE + | CFG_ECC_EN_TAG_DISABLE + | CFG_HW_ECC_SEL_RS + | CFG_HW_ECC_ENABLE + | CFG_TVAL4 + | (tag_size - 1)); + + if (!is_writing) + tag_size += SKIPPED_SPARE_BYTES; + dma_prepare(tag_ptr, tag_size, is_writing); + } else { + tag_size = mtd->oobsize; + reg_val |= (CFG_SKIP_SPARE_DISABLE + | CFG_HW_ECC_CORRECTION_DISABLE + | CFG_ECC_EN_TAG_DISABLE + | CFG_HW_ECC_DISABLE + | (tag_size - 1)); + dma_prepare(chip->oob_poi, tag_size, is_writing); + } + writel(reg_val, &info->reg->config); + + dma_prepare(buf, 1 << chip->page_shift, is_writing); + + writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); + + writel(tag_size - 1, &info->reg->dma_cfg_b); + + nand_clear_interrupt_status(info->reg); + + reg_val = CMD_CLE | CMD_ALE + | CMD_SEC_CMD + | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) + | CMD_A_VALID + | CMD_B_VALID + | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT) + | CMD_CE0; + if (!is_writing) + reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); + else + reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); + writel(reg_val, &info->reg->command); + + /* Setup DMA engine */ + reg_val = DMA_MST_CTRL_GO_ENABLE + | DMA_MST_CTRL_BURST_8WORDS + | DMA_MST_CTRL_EN_A_ENABLE + | DMA_MST_CTRL_EN_B_ENABLE; + + if (!is_writing) + reg_val |= DMA_MST_CTRL_DIR_READ; + else + reg_val |= DMA_MST_CTRL_DIR_WRITE; + + writel(reg_val, &info->reg->dma_mst_ctrl); + + start_command(info->reg); + + if (!nand_waitfor_cmd_completion(info->reg)) { + if (!is_writing) + printf("Read Page 0x%X timeout ", page); + else + printf("Write Page 0x%X timeout ", page); + if (with_ecc) + printf("with ECC"); + else + printf("without ECC"); + printf("\n"); + return -EIO; + } + + if (with_ecc && !is_writing) { + memcpy(chip->oob_poi, tag_ptr, + SKIPPED_SPARE_BYTES); + memcpy(chip->oob_poi + free->offset, + tag_ptr + SKIPPED_SPARE_BYTES, + chip->ecc.layout->oobavail); + reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf, + 1 << chip->page_shift, + (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES), + chip->ecc.layout->oobavail); + if (reg_val & ECC_TAG_ERROR) + printf("Read Page 0x%X tag ECC error\n", page); + if (reg_val & ECC_DATA_ERROR) + printf("Read Page 0x%X data ECC error\n", + page); + if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR)) + return -EIO; + } + return 0; +} + +/** + * Hardware ecc based page read function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param buf buffer to store read data + * @param page page number to read + * @return 0 when successfully completed + * -EIO when command timeout + */ +static int nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + return nand_rw_page(mtd, chip, buf, page, 1, 0); +} + +/** + * Hardware ecc based page write function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param buf data buffer + */ +static int nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + int page; + struct nand_drv *info; + + info = (struct nand_drv *)chip->priv; + + page = (readl(&info->reg->addr_reg1) >> 16) | + (readl(&info->reg->addr_reg2) << 16); + + nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1); + return 0; +} + + +/** + * Read raw page data without ecc + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param buf buffer to store read data + * @param page page number to read + * @return 0 when successfully completed + * -EINVAL when chip->oob_poi is not double-word aligned + * -EIO when command timeout + */ +static int nand_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + return nand_rw_page(mtd, chip, buf, page, 0, 0); +} + +/** + * Raw page write function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param buf data buffer + */ +static int nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + int page; + struct nand_drv *info; + + info = (struct nand_drv *)chip->priv; + page = (readl(&info->reg->addr_reg1) >> 16) | + (readl(&info->reg->addr_reg2) << 16); + + nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1); + return 0; +} + +/** + * OOB data read/write function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param page page number to read + * @param with_ecc 1 to enable ECC, 0 to disable ECC + * @param is_writing 0 for read, 1 for write + * @return 0 when successfully completed + * -EINVAL when chip->oob_poi is not double-word aligned + * -EIO when command timeout + */ +static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page, int with_ecc, int is_writing) +{ + u32 reg_val; + int tag_size; + struct nand_oobfree *free = chip->ecc.layout->oobfree; + struct nand_drv *info; + + if (((int)chip->oob_poi) & 0x03) + return -EINVAL; + info = (struct nand_drv *)chip->priv; + if (set_bus_width_page_size(&info->config, ®_val)) + return -EINVAL; + + stop_command(info->reg); + + writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); + + /* Set ECC selection */ + tag_size = mtd->oobsize; + if (with_ecc) + reg_val |= CFG_ECC_EN_TAG_ENABLE; + else + reg_val |= (CFG_ECC_EN_TAG_DISABLE); + + reg_val |= ((tag_size - 1) | + CFG_SKIP_SPARE_DISABLE | + CFG_HW_ECC_CORRECTION_DISABLE | + CFG_HW_ECC_DISABLE); + writel(reg_val, &info->reg->config); + + dma_prepare(chip->oob_poi, tag_size, is_writing); + + writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); + + if (is_writing && with_ecc) + tag_size -= TAG_ECC_BYTES; + + writel(tag_size - 1, &info->reg->dma_cfg_b); + + nand_clear_interrupt_status(info->reg); + + reg_val = CMD_CLE | CMD_ALE + | CMD_SEC_CMD + | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) + | CMD_B_VALID + | CMD_CE0; + if (!is_writing) + reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); + else + reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); + writel(reg_val, &info->reg->command); + + /* Setup DMA engine */ + reg_val = DMA_MST_CTRL_GO_ENABLE + | DMA_MST_CTRL_BURST_8WORDS + | DMA_MST_CTRL_EN_B_ENABLE; + if (!is_writing) + reg_val |= DMA_MST_CTRL_DIR_READ; + else + reg_val |= DMA_MST_CTRL_DIR_WRITE; + + writel(reg_val, &info->reg->dma_mst_ctrl); + + start_command(info->reg); + + if (!nand_waitfor_cmd_completion(info->reg)) { + if (!is_writing) + printf("Read OOB of Page 0x%X timeout\n", page); + else + printf("Write OOB of Page 0x%X timeout\n", page); + return -EIO; + } + + if (with_ecc && !is_writing) { + reg_val = (u32)check_ecc_error(info->reg, 0, 0, + (u8 *)(chip->oob_poi + free->offset), + chip->ecc.layout->oobavail); + if (reg_val & ECC_TAG_ERROR) + printf("Read OOB of Page 0x%X tag ECC error\n", page); + } + return 0; +} + +/** + * OOB data read function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param page page number to read + */ +static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + nand_rw_oob(mtd, chip, page, 0, 0); + return 0; +} + +/** + * OOB data write function + * + * @param mtd mtd info structure + * @param chip nand chip info structure + * @param page page number to write + * @return 0 when successfully completed + * -EINVAL when chip->oob_poi is not double-word aligned + * -EIO when command timeout + */ +static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + + return nand_rw_oob(mtd, chip, page, 0, 1); +} + +/** + * Set up NAND memory timings according to the provided parameters + * + * @param timing Timing parameters + * @param reg NAND controller register address + */ +static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT], + struct nand_ctlr *reg) +{ + u32 reg_val, clk_rate, clk_period, time_val; + + clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH, + CLOCK_ID_PERIPH) / 1000000; + clk_period = 1000 / clk_rate; + reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << + TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK; + reg_val |= ((timing[FDT_NAND_TWB] / clk_period) << + TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK; + time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period; + if (time_val > 2) + reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) & + TIMING_TCR_TAR_TRR_CNT_MASK; + reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) << + TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK; + time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period; + if (time_val > 1) + reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) & + TIMING_TCS_CNT_MASK; + reg_val |= ((timing[FDT_NAND_TWH] / clk_period) << + TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK; + reg_val |= ((timing[FDT_NAND_TWP] / clk_period) << + TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK; + reg_val |= ((timing[FDT_NAND_TRH] / clk_period) << + TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK; + reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << + TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK; + writel(reg_val, ®->timing); + + reg_val = 0; + time_val = timing[FDT_NAND_TADL] / clk_period; + if (time_val > 2) + reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK; + writel(reg_val, ®->timing2); +} + +/** + * Decode NAND parameters from the device tree + * + * @param blob Device tree blob + * @param node Node containing "nand-flash" compatble node + * @return 0 if ok, -ve on error (FDT_ERR_...) + */ +static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config) +{ + int err; + + config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg"); + config->enabled = fdtdec_get_is_enabled(blob, node); + config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8); + err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios", + &config->wp_gpio); + if (err) + return err; + err = fdtdec_get_int_array(blob, node, "nvidia,timing", + config->timing, FDT_NAND_TIMING_COUNT); + if (err < 0) + return err; + + /* Now look up the controller and decode that */ + node = fdt_next_node(blob, node, NULL); + if (node < 0) + return node; + + return 0; +} + +/** + * Board-specific NAND initialization + * + * @param nand nand chip info structure + * @return 0, after initialized, -1 on error + */ +int tegra_nand_init(struct nand_chip *nand, int devnum) +{ + struct nand_drv *info = &nand_ctrl; + struct fdt_nand *config = &info->config; + int node, ret; + + node = fdtdec_next_compatible(gd->fdt_blob, 0, + COMPAT_NVIDIA_TEGRA20_NAND); + if (node < 0) + return -1; + if (fdt_decode_nand(gd->fdt_blob, node, config)) { + printf("Could not decode nand-flash in device tree\n"); + return -1; + } + if (!config->enabled) + return -1; + info->reg = config->reg; + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.layout = &eccoob; + + nand->options = LP_OPTIONS; + nand->cmdfunc = nand_command; + nand->read_byte = read_byte; + nand->read_buf = read_buf; + nand->ecc.read_page = nand_read_page_hwecc; + nand->ecc.write_page = nand_write_page_hwecc; + nand->ecc.read_page_raw = nand_read_page_raw; + nand->ecc.write_page_raw = nand_write_page_raw; + nand->ecc.read_oob = nand_read_oob; + nand->ecc.write_oob = nand_write_oob; + nand->ecc.strength = 1; + nand->select_chip = nand_select_chip; + nand->dev_ready = nand_dev_ready; + nand->priv = &nand_ctrl; + + /* Adjust controller clock rate */ + clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000); + + /* Adjust timing for NAND device */ + setup_timing(config->timing, info->reg); + + fdtdec_setup_gpio(&config->wp_gpio); + gpio_direction_output(config->wp_gpio.gpio, 1); + + our_mtd = &nand_info[devnum]; + our_mtd->priv = nand; + ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); + if (ret) + return ret; + + nand->ecc.size = our_mtd->writesize; + nand->ecc.bytes = our_mtd->oobsize; + + ret = nand_scan_tail(our_mtd); + if (ret) + return ret; + + ret = nand_register(devnum); + if (ret) + return ret; + + return 0; +} + +void board_nand_init(void) +{ + struct nand_chip *nand = &nand_chip[0]; + + if (tegra_nand_init(nand, 0)) + puts("Tegra NAND init failed\n"); +} diff --git a/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.h b/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.h new file mode 100644 index 000000000..ded9d7104 --- /dev/null +++ b/qemu/roms/u-boot/drivers/mtd/nand/tegra_nand.h @@ -0,0 +1,241 @@ +/* + * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com> + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +/* register offset */ +#define COMMAND_0 0x00 +#define CMD_GO (1 << 31) +#define CMD_CLE (1 << 30) +#define CMD_ALE (1 << 29) +#define CMD_PIO (1 << 28) +#define CMD_TX (1 << 27) +#define CMD_RX (1 << 26) +#define CMD_SEC_CMD (1 << 25) +#define CMD_AFT_DAT_MASK (1 << 24) +#define CMD_AFT_DAT_DISABLE 0 +#define CMD_AFT_DAT_ENABLE (1 << 24) +#define CMD_TRANS_SIZE_SHIFT 20 +#define CMD_TRANS_SIZE_PAGE 8 +#define CMD_A_VALID (1 << 19) +#define CMD_B_VALID (1 << 18) +#define CMD_RD_STATUS_CHK (1 << 17) +#define CMD_R_BSY_CHK (1 << 16) +#define CMD_CE7 (1 << 15) +#define CMD_CE6 (1 << 14) +#define CMD_CE5 (1 << 13) +#define CMD_CE4 (1 << 12) +#define CMD_CE3 (1 << 11) +#define CMD_CE2 (1 << 10) +#define CMD_CE1 (1 << 9) +#define CMD_CE0 (1 << 8) +#define CMD_CLE_BYTE_SIZE_SHIFT 4 +enum { + CMD_CLE_BYTES1 = 0, + CMD_CLE_BYTES2, + CMD_CLE_BYTES3, + CMD_CLE_BYTES4, +}; +#define CMD_ALE_BYTE_SIZE_SHIFT 0 +enum { + CMD_ALE_BYTES1 = 0, + CMD_ALE_BYTES2, + CMD_ALE_BYTES3, + CMD_ALE_BYTES4, + CMD_ALE_BYTES5, + CMD_ALE_BYTES6, + CMD_ALE_BYTES7, + CMD_ALE_BYTES8 +}; + +#define STATUS_0 0x04 +#define STATUS_RBSY0 (1 << 8) + +#define ISR_0 0x08 +#define ISR_IS_CMD_DONE (1 << 5) +#define ISR_IS_ECC_ERR (1 << 4) + +#define IER_0 0x0C + +#define CFG_0 0x10 +#define CFG_HW_ECC_MASK (1 << 31) +#define CFG_HW_ECC_DISABLE 0 +#define CFG_HW_ECC_ENABLE (1 << 31) +#define CFG_HW_ECC_SEL_MASK (1 << 30) +#define CFG_HW_ECC_SEL_HAMMING 0 +#define CFG_HW_ECC_SEL_RS (1 << 30) +#define CFG_HW_ECC_CORRECTION_MASK (1 << 29) +#define CFG_HW_ECC_CORRECTION_DISABLE 0 +#define CFG_HW_ECC_CORRECTION_ENABLE (1 << 29) +#define CFG_PIPELINE_EN_MASK (1 << 28) +#define CFG_PIPELINE_EN_DISABLE 0 +#define CFG_PIPELINE_EN_ENABLE (1 << 28) +#define CFG_ECC_EN_TAG_MASK (1 << 27) +#define CFG_ECC_EN_TAG_DISABLE 0 +#define CFG_ECC_EN_TAG_ENABLE (1 << 27) +#define CFG_TVALUE_MASK (3 << 24) +enum { + CFG_TVAL4 = 0 << 24, + CFG_TVAL6 = 1 << 24, + CFG_TVAL8 = 2 << 24 +}; +#define CFG_SKIP_SPARE_MASK (1 << 23) +#define CFG_SKIP_SPARE_DISABLE 0 +#define CFG_SKIP_SPARE_ENABLE (1 << 23) +#define CFG_COM_BSY_MASK (1 << 22) +#define CFG_COM_BSY_DISABLE 0 +#define CFG_COM_BSY_ENABLE (1 << 22) +#define CFG_BUS_WIDTH_MASK (1 << 21) +#define CFG_BUS_WIDTH_8BIT 0 +#define CFG_BUS_WIDTH_16BIT (1 << 21) +#define CFG_LPDDR1_MODE_MASK (1 << 20) +#define CFG_LPDDR1_MODE_DISABLE 0 +#define CFG_LPDDR1_MODE_ENABLE (1 << 20) +#define CFG_EDO_MODE_MASK (1 << 19) +#define CFG_EDO_MODE_DISABLE 0 +#define CFG_EDO_MODE_ENABLE (1 << 19) +#define CFG_PAGE_SIZE_SEL_MASK (7 << 16) +enum { + CFG_PAGE_SIZE_256 = 0 << 16, + CFG_PAGE_SIZE_512 = 1 << 16, + CFG_PAGE_SIZE_1024 = 2 << 16, + CFG_PAGE_SIZE_2048 = 3 << 16, + CFG_PAGE_SIZE_4096 = 4 << 16 +}; +#define CFG_SKIP_SPARE_SEL_MASK (3 << 14) +enum { + CFG_SKIP_SPARE_SEL_4 = 0 << 14, + CFG_SKIP_SPARE_SEL_8 = 1 << 14, + CFG_SKIP_SPARE_SEL_12 = 2 << 14, + CFG_SKIP_SPARE_SEL_16 = 3 << 14 +}; +#define CFG_TAG_BYTE_SIZE_MASK 0x1FF + +#define TIMING_0 0x14 +#define TIMING_TRP_RESP_CNT_SHIFT 28 +#define TIMING_TRP_RESP_CNT_MASK (0xf << TIMING_TRP_RESP_CNT_SHIFT) +#define TIMING_TWB_CNT_SHIFT 24 +#define TIMING_TWB_CNT_MASK (0xf << TIMING_TWB_CNT_SHIFT) +#define TIMING_TCR_TAR_TRR_CNT_SHIFT 20 +#define TIMING_TCR_TAR_TRR_CNT_MASK (0xf << TIMING_TCR_TAR_TRR_CNT_SHIFT) +#define TIMING_TWHR_CNT_SHIFT 16 +#define TIMING_TWHR_CNT_MASK (0xf << TIMING_TWHR_CNT_SHIFT) +#define TIMING_TCS_CNT_SHIFT 14 +#define TIMING_TCS_CNT_MASK (3 << TIMING_TCS_CNT_SHIFT) +#define TIMING_TWH_CNT_SHIFT 12 +#define TIMING_TWH_CNT_MASK (3 << TIMING_TWH_CNT_SHIFT) +#define TIMING_TWP_CNT_SHIFT 8 +#define TIMING_TWP_CNT_MASK (0xf << TIMING_TWP_CNT_SHIFT) +#define TIMING_TRH_CNT_SHIFT 4 +#define TIMING_TRH_CNT_MASK (3 << TIMING_TRH_CNT_SHIFT) +#define TIMING_TRP_CNT_SHIFT 0 +#define TIMING_TRP_CNT_MASK (0xf << TIMING_TRP_CNT_SHIFT) + +#define RESP_0 0x18 + +#define TIMING2_0 0x1C +#define TIMING2_TADL_CNT_SHIFT 0 +#define TIMING2_TADL_CNT_MASK (0xf << TIMING2_TADL_CNT_SHIFT) + +#define CMD_REG1_0 0x20 +#define CMD_REG2_0 0x24 +#define ADDR_REG1_0 0x28 +#define ADDR_REG2_0 0x2C + +#define DMA_MST_CTRL_0 0x30 +#define DMA_MST_CTRL_GO_MASK (1 << 31) +#define DMA_MST_CTRL_GO_DISABLE 0 +#define DMA_MST_CTRL_GO_ENABLE (1 << 31) +#define DMA_MST_CTRL_DIR_MASK (1 << 30) +#define DMA_MST_CTRL_DIR_READ 0 +#define DMA_MST_CTRL_DIR_WRITE (1 << 30) +#define DMA_MST_CTRL_PERF_EN_MASK (1 << 29) +#define DMA_MST_CTRL_PERF_EN_DISABLE 0 +#define DMA_MST_CTRL_PERF_EN_ENABLE (1 << 29) +#define DMA_MST_CTRL_REUSE_BUFFER_MASK (1 << 27) +#define DMA_MST_CTRL_REUSE_BUFFER_DISABLE 0 +#define DMA_MST_CTRL_REUSE_BUFFER_ENABLE (1 << 27) +#define DMA_MST_CTRL_BURST_SIZE_SHIFT 24 +#define DMA_MST_CTRL_BURST_SIZE_MASK (7 << DMA_MST_CTRL_BURST_SIZE_SHIFT) +enum { + DMA_MST_CTRL_BURST_1WORDS = 2 << DMA_MST_CTRL_BURST_SIZE_SHIFT, + DMA_MST_CTRL_BURST_4WORDS = 3 << DMA_MST_CTRL_BURST_SIZE_SHIFT, + DMA_MST_CTRL_BURST_8WORDS = 4 << DMA_MST_CTRL_BURST_SIZE_SHIFT, + DMA_MST_CTRL_BURST_16WORDS = 5 << DMA_MST_CTRL_BURST_SIZE_SHIFT +}; +#define DMA_MST_CTRL_IS_DMA_DONE (1 << 20) +#define DMA_MST_CTRL_EN_A_MASK (1 << 2) +#define DMA_MST_CTRL_EN_A_DISABLE 0 +#define DMA_MST_CTRL_EN_A_ENABLE (1 << 2) +#define DMA_MST_CTRL_EN_B_MASK (1 << 1) +#define DMA_MST_CTRL_EN_B_DISABLE 0 +#define DMA_MST_CTRL_EN_B_ENABLE (1 << 1) + +#define DMA_CFG_A_0 0x34 +#define DMA_CFG_B_0 0x38 +#define FIFO_CTRL_0 0x3C +#define DATA_BLOCK_PTR_0 0x40 +#define TAG_PTR_0 0x44 +#define ECC_PTR_0 0x48 + +#define DEC_STATUS_0 0x4C +#define DEC_STATUS_A_ECC_FAIL (1 << 1) +#define DEC_STATUS_B_ECC_FAIL (1 << 0) + +#define BCH_CONFIG_0 0xCC +#define BCH_CONFIG_BCH_TVALUE_SHIFT 4 +#define BCH_CONFIG_BCH_TVALUE_MASK (3 << BCH_CONFIG_BCH_TVALUE_SHIFT) +enum { + BCH_CONFIG_BCH_TVAL4 = 0 << BCH_CONFIG_BCH_TVALUE_SHIFT, + BCH_CONFIG_BCH_TVAL8 = 1 << BCH_CONFIG_BCH_TVALUE_SHIFT, + BCH_CONFIG_BCH_TVAL14 = 2 << BCH_CONFIG_BCH_TVALUE_SHIFT, + BCH_CONFIG_BCH_TVAL16 = 3 << BCH_CONFIG_BCH_TVALUE_SHIFT +}; +#define BCH_CONFIG_BCH_ECC_MASK (1 << 0) +#define BCH_CONFIG_BCH_ECC_DISABLE 0 +#define BCH_CONFIG_BCH_ECC_ENABLE (1 << 0) + +#define BCH_DEC_RESULT_0 0xD0 +#define BCH_DEC_RESULT_CORRFAIL_ERR_MASK (1 << 8) +#define BCH_DEC_RESULT_PAGE_COUNT_MASK 0xFF + +#define BCH_DEC_STATUS_BUF_0 0xD4 +#define BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK 0xFF000000 +#define BCH_DEC_STATUS_CORR_SEC_FLAG_MASK 0x00FF0000 +#define BCH_DEC_STATUS_FAIL_TAG_MASK (1 << 14) +#define BCH_DEC_STATUS_CORR_TAG_MASK (1 << 13) +#define BCH_DEC_STATUS_MAX_CORR_CNT_MASK (0x1f << 8) +#define BCH_DEC_STATUS_PAGE_NUMBER_MASK 0xFF + +#define LP_OPTIONS 0 + +struct nand_ctlr { + u32 command; /* offset 00h */ + u32 status; /* offset 04h */ + u32 isr; /* offset 08h */ + u32 ier; /* offset 0Ch */ + u32 config; /* offset 10h */ + u32 timing; /* offset 14h */ + u32 resp; /* offset 18h */ + u32 timing2; /* offset 1Ch */ + u32 cmd_reg1; /* offset 20h */ + u32 cmd_reg2; /* offset 24h */ + u32 addr_reg1; /* offset 28h */ + u32 addr_reg2; /* offset 2Ch */ + u32 dma_mst_ctrl; /* offset 30h */ + u32 dma_cfg_a; /* offset 34h */ + u32 dma_cfg_b; /* offset 38h */ + u32 fifo_ctrl; /* offset 3Ch */ + u32 data_block_ptr; /* offset 40h */ + u32 tag_ptr; /* offset 44h */ + u32 resv1; /* offset 48h */ + u32 dec_status; /* offset 4Ch */ + u32 hwstatus_cmd; /* offset 50h */ + u32 hwstatus_mask; /* offset 54h */ + u32 resv2[29]; + u32 bch_config; /* offset CCh */ + u32 bch_dec_result; /* offset D0h */ + u32 bch_dec_status_buf; + /* offset D4h */ +}; |