summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt
diff options
context:
space:
mode:
authorYang Zhang <yang.z.zhang@intel.com>2015-08-28 09:58:54 +0800
committerYang Zhang <yang.z.zhang@intel.com>2015-09-01 12:44:00 +0800
commite44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch)
tree66b09f592c55df2878107a468a91d21506104d3f /qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt
parent9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff)
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5 Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt')
-rw-r--r--qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt104
1 files changed, 104 insertions, 0 deletions
diff --git a/qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt b/qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt
new file mode 100644
index 000000000..3c83fbc2c
--- /dev/null
+++ b/qemu/roms/u-boot/doc/uImage.FIT/verified-boot.txt
@@ -0,0 +1,104 @@
+U-Boot Verified Boot
+====================
+
+Introduction
+------------
+Verified boot here means the verification of all software loaded into a
+machine during the boot process to ensure that it is authorised and correct
+for that machine.
+
+Verified boot extends from the moment of system reset to as far as you wish
+into the boot process. An example might be loading U-Boot from read-only
+memory, then loading a signed kernel, then using the kernel's dm-verity
+driver to mount a signed root filesystem.
+
+A key point is that it is possible to field-upgrade the software on machines
+which use verified boot. Since the machine will only run software that has
+been correctly signed, it is safe to read software from an updatable medium.
+It is also possible to add a secondary signed firmware image, in read-write
+memory, so that firmware can easily be upgraded in a secure manner.
+
+
+Signing
+-------
+Verified boot uses cryptographic algorithms to 'sign' software images.
+Images are signed using a private key known only to the signer, but can
+be verified using a public key. As its name suggests the public key can be
+made available without risk to the verification process. The private and
+public keys are mathematically related. For more information on how this
+works look up "public key cryptography" and "RSA" (a particular algorithm).
+
+The signing and verification process looks something like this:
+
+
+ Signing Verification
+ ======= ============
+
+ +--------------+ *
+ | RSA key pair | * +---------------+
+ | .key .crt | * | Public key in |
+ +--------------+ +------> public key ----->| trusted place |
+ | | * +---------------+
+ | | * |
+ v | * v
+ +---------+ | * +--------------+
+ | |----------+ * | |
+ | signer | * | U-Boot |
+ | |----------+ * | signature |--> yes/no
+ +---------+ | * | verification |
+ ^ | * | |
+ | | * +--------------+
+ | | * ^
+ +----------+ | * |
+ | Software | +----> signed image -------------+
+ | image | *
+ +----------+ *
+
+
+The signature algorithm relies only on the public key to do its work. Using
+this key it checks the signature that it finds in the image. If it verifies
+then we know that the image is OK.
+
+The public key from the signer allows us to verify and therefore trust
+software from updatable memory.
+
+It is critical that the public key be secure and cannot be tampered with.
+It can be stored in read-only memory, or perhaps protected by other on-chip
+crypto provided by some modern SOCs. If the public key can ben changed, then
+the verification is worthless.
+
+
+Chaining Images
+---------------
+The above method works for a signer providing images to a run-time U-Boot.
+It is also possible to extend this scheme to a second level, like this:
+
+1. Master private key is used by the signer to sign a first-stage image.
+2. Master public key is placed in read-only memory.
+2. Secondary private key is created and used to sign second-stage images.
+3. Secondary public key is placed in first stage images
+4. We use the master public key to verify the first-stage image. We then
+use the secondary public key in the first-stage image to verify the second-
+state image.
+5. This chaining process can go on indefinitely. It is recommended to use a
+different key at each stage, so that a compromise in one place will not
+affect the whole change.
+
+
+Flattened Image Tree (FIT)
+--------------------------
+The FIT format is alreay widely used in U-Boot. It is a flattened device
+tree (FDT) in a particular format, with images contained within. FITs
+include hashes to verify images, so it is relatively straightforward to
+add signatures as well.
+
+The public key can be stored in U-Boot's CONFIG_OF_CONTROL device tree in
+a standard place. Then when a FIT it loaded it can be verified using that
+public key. Multiple keys and multiple signatures are supported.
+
+See signature.txt for more information.
+
+
+Simon Glass
+sjg@chromium.org
+1-1-13