summaryrefslogtreecommitdiffstats
path: root/qemu/fpu/softfloat.c
diff options
context:
space:
mode:
authorYang Zhang <yang.z.zhang@intel.com>2015-08-28 09:58:54 +0800
committerYang Zhang <yang.z.zhang@intel.com>2015-09-01 12:44:00 +0800
commite44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch)
tree66b09f592c55df2878107a468a91d21506104d3f /qemu/fpu/softfloat.c
parent9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff)
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5 Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/fpu/softfloat.c')
-rw-r--r--qemu/fpu/softfloat.c7722
1 files changed, 7722 insertions, 0 deletions
diff --git a/qemu/fpu/softfloat.c b/qemu/fpu/softfloat.c
new file mode 100644
index 000000000..f1170fe50
--- /dev/null
+++ b/qemu/fpu/softfloat.c
@@ -0,0 +1,7722 @@
+/*
+ * QEMU float support
+ *
+ * The code in this source file is derived from release 2a of the SoftFloat
+ * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
+ * some later contributions) are provided under that license, as detailed below.
+ * It has subsequently been modified by contributors to the QEMU Project,
+ * so some portions are provided under:
+ * the SoftFloat-2a license
+ * the BSD license
+ * GPL-v2-or-later
+ *
+ * Any future contributions to this file after December 1st 2014 will be
+ * taken to be licensed under the Softfloat-2a license unless specifically
+ * indicated otherwise.
+ */
+
+/*
+===============================================================================
+This C source file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/* BSD licensing:
+ * Copyright (c) 2006, Fabrice Bellard
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. Neither the name of the copyright holder nor the names of its contributors
+ * may be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/* Portions of this work are licensed under the terms of the GNU GPL,
+ * version 2 or later. See the COPYING file in the top-level directory.
+ */
+
+/* softfloat (and in particular the code in softfloat-specialize.h) is
+ * target-dependent and needs the TARGET_* macros.
+ */
+#include "config.h"
+
+#include "fpu/softfloat.h"
+
+/* We only need stdlib for abort() */
+#include <stdlib.h>
+
+/*----------------------------------------------------------------------------
+| Primitive arithmetic functions, including multi-word arithmetic, and
+| division and square root approximations. (Can be specialized to target if
+| desired.)
+*----------------------------------------------------------------------------*/
+#include "softfloat-macros.h"
+
+/*----------------------------------------------------------------------------
+| Functions and definitions to determine: (1) whether tininess for underflow
+| is detected before or after rounding by default, (2) what (if anything)
+| happens when exceptions are raised, (3) how signaling NaNs are distinguished
+| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
+| are propagated from function inputs to output. These details are target-
+| specific.
+*----------------------------------------------------------------------------*/
+#include "softfloat-specialize.h"
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the half-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint32_t extractFloat16Frac(float16 a)
+{
+ return float16_val(a) & 0x3ff;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the half-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline int_fast16_t extractFloat16Exp(float16 a)
+{
+ return (float16_val(a) >> 10) & 0x1f;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline flag extractFloat16Sign(float16 a)
+{
+ return float16_val(a)>>15;
+}
+
+/*----------------------------------------------------------------------------
+| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
+| and 7, and returns the properly rounded 32-bit integer corresponding to the
+| input. If `zSign' is 1, the input is negated before being converted to an
+| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
+| is simply rounded to an integer, with the inexact exception raised if the
+| input cannot be represented exactly as an integer. However, if the fixed-
+| point input is too large, the invalid exception is raised and the largest
+| positive or negative integer is returned.
+*----------------------------------------------------------------------------*/
+
+static int32 roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ int32_t z;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ roundIncrement = 0x40;
+ break;
+ case float_round_to_zero:
+ roundIncrement = 0;
+ break;
+ case float_round_up:
+ roundIncrement = zSign ? 0 : 0x7f;
+ break;
+ case float_round_down:
+ roundIncrement = zSign ? 0x7f : 0;
+ break;
+ default:
+ abort();
+ }
+ roundBits = absZ & 0x7F;
+ absZ = ( absZ + roundIncrement )>>7;
+ absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ z = absZ;
+ if ( zSign ) z = - z;
+ if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
+ float_raise(float_flag_invalid, status);
+ return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
+ }
+ if (roundBits) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
+| `absZ1', with binary point between bits 63 and 64 (between the input words),
+| and returns the properly rounded 64-bit integer corresponding to the input.
+| If `zSign' is 1, the input is negated before being converted to an integer.
+| Ordinarily, the fixed-point input is simply rounded to an integer, with
+| the inexact exception raised if the input cannot be represented exactly as
+| an integer. However, if the fixed-point input is too large, the invalid
+| exception is raised and the largest positive or negative integer is
+| returned.
+*----------------------------------------------------------------------------*/
+
+static int64 roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
+ float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment;
+ int64_t z;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t) absZ1 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && absZ1;
+ break;
+ case float_round_down:
+ increment = zSign && absZ1;
+ break;
+ default:
+ abort();
+ }
+ if ( increment ) {
+ ++absZ0;
+ if ( absZ0 == 0 ) goto overflow;
+ absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
+ }
+ z = absZ0;
+ if ( zSign ) z = - z;
+ if ( z && ( ( z < 0 ) ^ zSign ) ) {
+ overflow:
+ float_raise(float_flag_invalid, status);
+ return
+ zSign ? (int64_t) LIT64( 0x8000000000000000 )
+ : LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ if (absZ1) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
+| `absZ1', with binary point between bits 63 and 64 (between the input words),
+| and returns the properly rounded 64-bit unsigned integer corresponding to the
+| input. Ordinarily, the fixed-point input is simply rounded to an integer,
+| with the inexact exception raised if the input cannot be represented exactly
+| as an integer. However, if the fixed-point input is too large, the invalid
+| exception is raised and the largest unsigned integer is returned.
+*----------------------------------------------------------------------------*/
+
+static int64 roundAndPackUint64(flag zSign, uint64_t absZ0,
+ uint64_t absZ1, float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = (roundingMode == float_round_nearest_even);
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t)absZ1 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && absZ1;
+ break;
+ case float_round_down:
+ increment = zSign && absZ1;
+ break;
+ default:
+ abort();
+ }
+ if (increment) {
+ ++absZ0;
+ if (absZ0 == 0) {
+ float_raise(float_flag_invalid, status);
+ return LIT64(0xFFFFFFFFFFFFFFFF);
+ }
+ absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
+ }
+
+ if (zSign && absZ0) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+
+ if (absZ1) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return absZ0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint32_t extractFloat32Frac( float32 a )
+{
+
+ return float32_val(a) & 0x007FFFFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline int_fast16_t extractFloat32Exp(float32 a)
+{
+
+ return ( float32_val(a)>>23 ) & 0xFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline flag extractFloat32Sign( float32 a )
+{
+
+ return float32_val(a)>>31;
+
+}
+
+/*----------------------------------------------------------------------------
+| If `a' is denormal and we are in flush-to-zero mode then set the
+| input-denormal exception and return zero. Otherwise just return the value.
+*----------------------------------------------------------------------------*/
+float32 float32_squash_input_denormal(float32 a, float_status *status)
+{
+ if (status->flush_inputs_to_zero) {
+ if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
+ float_raise(float_flag_input_denormal, status);
+ return make_float32(float32_val(a) & 0x80000000);
+ }
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal single-precision floating-point value represented
+| by the denormalized significand `aSig'. The normalized exponent and
+| significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( aSig ) - 8;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| single-precision floating-point value, returning the result. After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result. This means that any integer portion of `zSig'
+| will be added into the exponent. Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+static inline float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
+{
+
+ return make_float32(
+ ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input. Ordinarily, the abstract
+| value is simply rounded and packed into the single-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal single-
+| precision floating-point number.
+| The input significand `zSig' has its binary point between bits 30
+| and 29, which is 7 bits to the left of the usual location. This shifted
+| significand must be normalized or smaller. If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding. In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig,
+ float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ roundIncrement = 0x40;
+ break;
+ case float_round_to_zero:
+ roundIncrement = 0;
+ break;
+ case float_round_up:
+ roundIncrement = zSign ? 0 : 0x7f;
+ break;
+ case float_round_down:
+ roundIncrement = zSign ? 0x7f : 0;
+ break;
+ default:
+ abort();
+ break;
+ }
+ roundBits = zSig & 0x7F;
+ if ( 0xFD <= (uint16_t) zExp ) {
+ if ( ( 0xFD < zExp )
+ || ( ( zExp == 0xFD )
+ && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
+ }
+ if ( zExp < 0 ) {
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloat32(zSign, 0, 0);
+ }
+ isTiny =
+ (status->float_detect_tininess
+ == float_tininess_before_rounding)
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < 0x80000000 );
+ shift32RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x7F;
+ if (isTiny && roundBits) {
+ float_raise(float_flag_underflow, status);
+ }
+ }
+ }
+ if (roundBits) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ zSig = ( zSig + roundIncrement )>>7;
+ zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input. This routine is just like
+| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
+| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+| floating-point exponent.
+*----------------------------------------------------------------------------*/
+
+static float32
+ normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig,
+ float_status *status)
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( zSig ) - 1;
+ return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
+ status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint64_t extractFloat64Frac( float64 a )
+{
+
+ return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline int_fast16_t extractFloat64Exp(float64 a)
+{
+
+ return ( float64_val(a)>>52 ) & 0x7FF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline flag extractFloat64Sign( float64 a )
+{
+
+ return float64_val(a)>>63;
+
+}
+
+/*----------------------------------------------------------------------------
+| If `a' is denormal and we are in flush-to-zero mode then set the
+| input-denormal exception and return zero. Otherwise just return the value.
+*----------------------------------------------------------------------------*/
+float64 float64_squash_input_denormal(float64 a, float_status *status)
+{
+ if (status->flush_inputs_to_zero) {
+ if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
+ float_raise(float_flag_input_denormal, status);
+ return make_float64(float64_val(a) & (1ULL << 63));
+ }
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal double-precision floating-point value represented
+| by the denormalized significand `aSig'. The normalized exponent and
+| significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig ) - 11;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| double-precision floating-point value, returning the result. After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result. This means that any integer portion of `zSig'
+| will be added into the exponent. Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+static inline float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
+{
+
+ return make_float64(
+ ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper double-precision floating-
+| point value corresponding to the abstract input. Ordinarily, the abstract
+| value is simply rounded and packed into the double-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal double-
+| precision floating-point number.
+| The input significand `zSig' has its binary point between bits 62
+| and 61, which is 10 bits to the left of the usual location. This shifted
+| significand must be normalized or smaller. If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding. In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig,
+ float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int_fast16_t roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ roundIncrement = 0x200;
+ break;
+ case float_round_to_zero:
+ roundIncrement = 0;
+ break;
+ case float_round_up:
+ roundIncrement = zSign ? 0 : 0x3ff;
+ break;
+ case float_round_down:
+ roundIncrement = zSign ? 0x3ff : 0;
+ break;
+ default:
+ abort();
+ }
+ roundBits = zSig & 0x3FF;
+ if ( 0x7FD <= (uint16_t) zExp ) {
+ if ( ( 0x7FD < zExp )
+ || ( ( zExp == 0x7FD )
+ && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
+ }
+ if ( zExp < 0 ) {
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloat64(zSign, 0, 0);
+ }
+ isTiny =
+ (status->float_detect_tininess
+ == float_tininess_before_rounding)
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
+ shift64RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x3FF;
+ if (isTiny && roundBits) {
+ float_raise(float_flag_underflow, status);
+ }
+ }
+ }
+ if (roundBits) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ zSig = ( zSig + roundIncrement )>>10;
+ zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat64( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper double-precision floating-
+| point value corresponding to the abstract input. This routine is just like
+| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
+| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+| floating-point exponent.
+*----------------------------------------------------------------------------*/
+
+static float64
+ normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig,
+ float_status *status)
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( zSig ) - 1;
+ return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
+ status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint64_t extractFloatx80Frac( floatx80 a )
+{
+
+ return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline int32 extractFloatx80Exp( floatx80 a )
+{
+
+ return a.high & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the extended double-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+static inline flag extractFloatx80Sign( floatx80 a )
+{
+
+ return a.high>>15;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal extended double-precision floating-point value
+| represented by the denormalized significand `aSig'. The normalized exponent
+| and significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig );
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
+| extended double-precision floating-point value, returning the result.
+*----------------------------------------------------------------------------*/
+
+static inline floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
+{
+ floatx80 z;
+
+ z.low = zSig;
+ z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input. Ordinarily, the abstract value is
+| rounded and packed into the extended double-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal extended
+| double-precision floating-point number.
+| If `roundingPrecision' is 32 or 64, the result is rounded to the same
+| number of bits as single or double precision, respectively. Otherwise, the
+| result is rounded to the full precision of the extended double-precision
+| format.
+| The input significand must be normalized or smaller. If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding. The
+| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign,
+ int32 zExp, uint64_t zSig0, uint64_t zSig1,
+ float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+ int64 roundIncrement, roundMask, roundBits;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ if ( roundingPrecision == 80 ) goto precision80;
+ if ( roundingPrecision == 64 ) {
+ roundIncrement = LIT64( 0x0000000000000400 );
+ roundMask = LIT64( 0x00000000000007FF );
+ }
+ else if ( roundingPrecision == 32 ) {
+ roundIncrement = LIT64( 0x0000008000000000 );
+ roundMask = LIT64( 0x000000FFFFFFFFFF );
+ }
+ else {
+ goto precision80;
+ }
+ zSig0 |= ( zSig1 != 0 );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ break;
+ case float_round_to_zero:
+ roundIncrement = 0;
+ break;
+ case float_round_up:
+ roundIncrement = zSign ? 0 : roundMask;
+ break;
+ case float_round_down:
+ roundIncrement = zSign ? roundMask : 0;
+ break;
+ default:
+ abort();
+ }
+ roundBits = zSig0 & roundMask;
+ if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
+ ) {
+ goto overflow;
+ }
+ if ( zExp <= 0 ) {
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloatx80(zSign, 0, 0);
+ }
+ isTiny =
+ (status->float_detect_tininess
+ == float_tininess_before_rounding)
+ || ( zExp < 0 )
+ || ( zSig0 <= zSig0 + roundIncrement );
+ shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
+ zExp = 0;
+ roundBits = zSig0 & roundMask;
+ if (isTiny && roundBits) {
+ float_raise(float_flag_underflow, status);
+ }
+ if (roundBits) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ zSig0 += roundIncrement;
+ if ( (int64_t) zSig0 < 0 ) zExp = 1;
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if (roundBits) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ zSig0 += roundIncrement;
+ if ( zSig0 < roundIncrement ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ if ( zSig0 == 0 ) zExp = 0;
+ return packFloatx80( zSign, zExp, zSig0 );
+ precision80:
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t)zSig1 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && zSig1;
+ break;
+ case float_round_down:
+ increment = zSign && zSig1;
+ break;
+ default:
+ abort();
+ }
+ if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE )
+ && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
+ && increment
+ )
+ ) {
+ roundMask = 0;
+ overflow:
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return packFloatx80( zSign, 0x7FFE, ~ roundMask );
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ (status->float_detect_tininess
+ == float_tininess_before_rounding)
+ || ( zExp < 0 )
+ || ! increment
+ || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
+ shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
+ zExp = 0;
+ if (isTiny && zSig1) {
+ float_raise(float_flag_underflow, status);
+ }
+ if (zSig1) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t)zSig1 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && zSig1;
+ break;
+ case float_round_down:
+ increment = zSign && zSig1;
+ break;
+ default:
+ abort();
+ }
+ if ( increment ) {
+ ++zSig0;
+ zSig0 &=
+ ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ if ( (int64_t) zSig0 < 0 ) zExp = 1;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if (zSig1) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( increment ) {
+ ++zSig0;
+ if ( zSig0 == 0 ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ else {
+ zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ }
+ }
+ else {
+ if ( zSig0 == 0 ) zExp = 0;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent
+| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input. This routine is just like
+| `roundAndPackFloatx80' except that the input significand does not have to be
+| normalized.
+*----------------------------------------------------------------------------*/
+
+static floatx80 normalizeRoundAndPackFloatx80(int8 roundingPrecision,
+ flag zSign, int32 zExp,
+ uint64_t zSig0, uint64_t zSig1,
+ float_status *status)
+{
+ int8 shiftCount;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 );
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ zExp -= shiftCount;
+ return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
+ zSig0, zSig1, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the least-significant 64 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint64_t extractFloat128Frac1( float128 a )
+{
+
+ return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the most-significant 48 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline uint64_t extractFloat128Frac0( float128 a )
+{
+
+ return a.high & LIT64( 0x0000FFFFFFFFFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the quadruple-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+static inline int32 extractFloat128Exp( float128 a )
+{
+
+ return ( a.high>>48 ) & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the quadruple-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+static inline flag extractFloat128Sign( float128 a )
+{
+
+ return a.high>>63;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal quadruple-precision floating-point value
+| represented by the denormalized significand formed by the concatenation of
+| `aSig0' and `aSig1'. The normalized exponent is stored at the location
+| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
+| significand are stored at the location pointed to by `zSig0Ptr', and the
+| least significant 64 bits of the normalized significand are stored at the
+| location pointed to by `zSig1Ptr'.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat128Subnormal(
+ uint64_t aSig0,
+ uint64_t aSig1,
+ int32 *zExpPtr,
+ uint64_t *zSig0Ptr,
+ uint64_t *zSig1Ptr
+ )
+{
+ int8 shiftCount;
+
+ if ( aSig0 == 0 ) {
+ shiftCount = countLeadingZeros64( aSig1 ) - 15;
+ if ( shiftCount < 0 ) {
+ *zSig0Ptr = aSig1>>( - shiftCount );
+ *zSig1Ptr = aSig1<<( shiftCount & 63 );
+ }
+ else {
+ *zSig0Ptr = aSig1<<shiftCount;
+ *zSig1Ptr = 0;
+ }
+ *zExpPtr = - shiftCount - 63;
+ }
+ else {
+ shiftCount = countLeadingZeros64( aSig0 ) - 15;
+ shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+ *zExpPtr = 1 - shiftCount;
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', the exponent `zExp', and the significand formed
+| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
+| floating-point value, returning the result. After being shifted into the
+| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
+| added together to form the most significant 32 bits of the result. This
+| means that any integer portion of `zSig0' will be added into the exponent.
+| Since a properly normalized significand will have an integer portion equal
+| to 1, the `zExp' input should be 1 less than the desired result exponent
+| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+static inline float128
+ packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
+{
+ float128 z;
+
+ z.low = zSig1;
+ z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0', `zSig1',
+| and `zSig2', and returns the proper quadruple-precision floating-point value
+| corresponding to the abstract input. Ordinarily, the abstract value is
+| simply rounded and packed into the quadruple-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal quadruple-
+| precision floating-point number.
+| The input significand must be normalized or smaller. If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding. In the
+| usual case that the input significand is normalized, `zExp' must be 1 less
+| than the ``true'' floating-point exponent. The handling of underflow and
+| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 roundAndPackFloat128(flag zSign, int32 zExp,
+ uint64_t zSig0, uint64_t zSig1,
+ uint64_t zSig2, float_status *status)
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+
+ roundingMode = status->float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t)zSig2 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && zSig2;
+ break;
+ case float_round_down:
+ increment = zSign && zSig2;
+ break;
+ default:
+ abort();
+ }
+ if ( 0x7FFD <= (uint32_t) zExp ) {
+ if ( ( 0x7FFD < zExp )
+ || ( ( zExp == 0x7FFD )
+ && eq128(
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF ),
+ zSig0,
+ zSig1
+ )
+ && increment
+ )
+ ) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return
+ packFloat128(
+ zSign,
+ 0x7FFE,
+ LIT64( 0x0000FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( zExp < 0 ) {
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloat128(zSign, 0, 0, 0);
+ }
+ isTiny =
+ (status->float_detect_tininess
+ == float_tininess_before_rounding)
+ || ( zExp < -1 )
+ || ! increment
+ || lt128(
+ zSig0,
+ zSig1,
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+ zExp = 0;
+ if (isTiny && zSig2) {
+ float_raise(float_flag_underflow, status);
+ }
+ switch (roundingMode) {
+ case float_round_nearest_even:
+ case float_round_ties_away:
+ increment = ((int64_t)zSig2 < 0);
+ break;
+ case float_round_to_zero:
+ increment = 0;
+ break;
+ case float_round_up:
+ increment = !zSign && zSig2;
+ break;
+ case float_round_down:
+ increment = zSign && zSig2;
+ break;
+ default:
+ abort();
+ }
+ }
+ }
+ if (zSig2) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( increment ) {
+ add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+ zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+ }
+ else {
+ if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+ }
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand formed by the concatenation of `zSig0' and `zSig1', and
+| returns the proper quadruple-precision floating-point value corresponding
+| to the abstract input. This routine is just like `roundAndPackFloat128'
+| except that the input significand has fewer bits and does not have to be
+| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
+| point exponent.
+*----------------------------------------------------------------------------*/
+
+static float128 normalizeRoundAndPackFloat128(flag zSign, int32 zExp,
+ uint64_t zSig0, uint64_t zSig1,
+ float_status *status)
+{
+ int8 shiftCount;
+ uint64_t zSig2;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 ) - 15;
+ if ( 0 <= shiftCount ) {
+ zSig2 = 0;
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ }
+ else {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+ }
+ zExp -= shiftCount;
+ return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the single-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 int32_to_float32(int32_t a, float_status *status)
+{
+ flag zSign;
+
+ if ( a == 0 ) return float32_zero;
+ if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the double-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 int32_to_float64(int32_t a, float_status *status)
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ uint64_t zSig;
+
+ if ( a == 0 ) return float64_zero;
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 21;
+ zSig = absA;
+ return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int32_to_floatx80(int32_t a, float_status *status)
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ uint64_t zSig;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 32;
+ zSig = absA;
+ return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a' to
+| the quadruple-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int32_to_float128(int32_t a, float_status *status)
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ uint64_t zSig0;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 17;
+ zSig0 = absA;
+ return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the single-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 int64_to_float32(int64_t a, float_status *status)
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+
+ if ( a == 0 ) return float32_zero;
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA ) - 40;
+ if ( 0 <= shiftCount ) {
+ return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
+ }
+ else {
+ shiftCount += 7;
+ if ( shiftCount < 0 ) {
+ shift64RightJamming( absA, - shiftCount, &absA );
+ }
+ else {
+ absA <<= shiftCount;
+ }
+ return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the double-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 int64_to_float64(int64_t a, float_status *status)
+{
+ flag zSign;
+
+ if ( a == 0 ) return float64_zero;
+ if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
+ return packFloat64( 1, 0x43E, 0 );
+ }
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int64_to_floatx80(int64_t a, float_status *status)
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA );
+ return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a' to
+| the quadruple-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int64_to_float128(int64_t a, float_status *status)
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+ int32 zExp;
+ uint64_t zSig0, zSig1;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA ) + 49;
+ zExp = 0x406E - shiftCount;
+ if ( 64 <= shiftCount ) {
+ zSig1 = 0;
+ zSig0 = absA;
+ shiftCount -= 64;
+ }
+ else {
+ zSig1 = absA;
+ zSig0 = 0;
+ }
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit unsigned integer `a'
+| to the single-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 uint64_to_float32(uint64_t a, float_status *status)
+{
+ int shiftcount;
+
+ if (a == 0) {
+ return float32_zero;
+ }
+
+ /* Determine (left) shift needed to put first set bit into bit posn 23
+ * (since packFloat32() expects the binary point between bits 23 and 22);
+ * this is the fast case for smallish numbers.
+ */
+ shiftcount = countLeadingZeros64(a) - 40;
+ if (shiftcount >= 0) {
+ return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
+ }
+ /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
+ * expects the binary point between bits 30 and 29, hence the + 7.
+ */
+ shiftcount += 7;
+ if (shiftcount < 0) {
+ shift64RightJamming(a, -shiftcount, &a);
+ } else {
+ a <<= shiftcount;
+ }
+
+ return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit unsigned integer `a'
+| to the double-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 uint64_to_float64(uint64_t a, float_status *status)
+{
+ int exp = 0x43C;
+ int shiftcount;
+
+ if (a == 0) {
+ return float64_zero;
+ }
+
+ shiftcount = countLeadingZeros64(a) - 1;
+ if (shiftcount < 0) {
+ shift64RightJamming(a, -shiftcount, &a);
+ } else {
+ a <<= shiftcount;
+ }
+ return roundAndPackFloat64(0, exp - shiftcount, a, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit unsigned integer `a'
+| to the quadruple-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 uint64_to_float128(uint64_t a, float_status *status)
+{
+ if (a == 0) {
+ return float128_zero;
+ }
+ return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ uint64_t aSig64;
+
+ a = float32_squash_input_denormal(a, status);
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= 0x00800000;
+ shiftCount = 0xAF - aExp;
+ aSig64 = aSig;
+ aSig64 <<= 32;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
+ return roundAndPackInt32(aSign, aSig64, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32_round_to_zero(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ int32_t z;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x9E;
+ if ( 0 <= shiftCount ) {
+ if ( float32_val(a) != 0xCF000000 ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+ }
+ return (int32_t) 0x80000000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if (aExp | aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int_fast16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x8E;
+ if ( 0 <= shiftCount ) {
+ if ( float32_val(a) != 0xC7000000 ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return 0x7FFF;
+ }
+ }
+ return (int32_t) 0xffff8000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ shiftCount -= 0x10;
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( aSign ) {
+ z = - z;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float32_to_int64(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ uint64_t aSig64, aSigExtra;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = 0xBE - aExp;
+ if ( shiftCount < 0 ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ if ( aExp ) aSig |= 0x00800000;
+ aSig64 = aSig;
+ aSig64 <<= 40;
+ shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
+ return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit unsigned integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| unsigned integer is returned. Otherwise, if the conversion overflows, the
+| largest unsigned integer is returned. If the 'a' is negative, the result
+| is rounded and zero is returned; values that do not round to zero will
+| raise the inexact exception flag.
+*----------------------------------------------------------------------------*/
+
+uint64 float32_to_uint64(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ uint64_t aSig64, aSigExtra;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac(a);
+ aExp = extractFloat32Exp(a);
+ aSign = extractFloat32Sign(a);
+ if ((aSign) && (aExp > 126)) {
+ float_raise(float_flag_invalid, status);
+ if (float32_is_any_nan(a)) {
+ return LIT64(0xFFFFFFFFFFFFFFFF);
+ } else {
+ return 0;
+ }
+ }
+ shiftCount = 0xBE - aExp;
+ if (aExp) {
+ aSig |= 0x00800000;
+ }
+ if (shiftCount < 0) {
+ float_raise(float_flag_invalid, status);
+ return LIT64(0xFFFFFFFFFFFFFFFF);
+ }
+
+ aSig64 = aSig;
+ aSig64 <<= 40;
+ shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
+ return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit unsigned integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero. If
+| `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
+| conversion overflows, the largest unsigned integer is returned. If the
+| 'a' is negative, the result is rounded and zero is returned; values that do
+| not round to zero will raise the inexact flag.
+*----------------------------------------------------------------------------*/
+
+uint64 float32_to_uint64_round_to_zero(float32 a, float_status *status)
+{
+ signed char current_rounding_mode = status->float_rounding_mode;
+ set_float_rounding_mode(float_round_to_zero, status);
+ int64_t v = float32_to_uint64(a, status);
+ set_float_rounding_mode(current_rounding_mode, status);
+ return v;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero. If
+| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
+| conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float32_to_int64_round_to_zero(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint32_t aSig;
+ uint64_t aSig64;
+ int64 z;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0xBE;
+ if ( 0 <= shiftCount ) {
+ if ( float32_val(a) != 0xDF000000 ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ else if ( aExp <= 0x7E ) {
+ if (aExp | aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig64 = aSig | 0x00800000;
+ aSig64 <<= 40;
+ z = aSig64>>( - shiftCount );
+ if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float32_to_float64(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float32_to_floatx80(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+
+ a = float32_squash_input_denormal(a, status);
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
+ }
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ aSig |= 0x00800000;
+ return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float32_to_float128(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+
+ a = float32_squash_input_denormal(a, status);
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
+ }
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the single-precision floating-point value `a' to an integer, and
+| returns the result as a single-precision floating-point value. The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_round_to_int(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t lastBitMask, roundBitsMask;
+ uint32_t z;
+ a = float32_squash_input_denormal(a, status);
+
+ aExp = extractFloat32Exp( a );
+ if ( 0x96 <= aExp ) {
+ if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+ return propagateFloat32NaN(a, a, status);
+ }
+ return a;
+ }
+ if ( aExp <= 0x7E ) {
+ if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
+ status->float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat32Sign( a );
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+ return packFloat32( aSign, 0x7F, 0 );
+ }
+ break;
+ case float_round_ties_away:
+ if (aExp == 0x7E) {
+ return packFloat32(aSign, 0x7F, 0);
+ }
+ break;
+ case float_round_down:
+ return make_float32(aSign ? 0xBF800000 : 0);
+ case float_round_up:
+ return make_float32(aSign ? 0x80000000 : 0x3F800000);
+ }
+ return packFloat32( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x96 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = float32_val(a);
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ z += lastBitMask>>1;
+ if ((z & roundBitsMask) == 0) {
+ z &= ~lastBitMask;
+ }
+ break;
+ case float_round_ties_away:
+ z += lastBitMask >> 1;
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ if (!extractFloat32Sign(make_float32(z))) {
+ z += roundBitsMask;
+ }
+ break;
+ case float_round_down:
+ if (extractFloat32Sign(make_float32(z))) {
+ z += roundBitsMask;
+ }
+ break;
+ default:
+ abort();
+ }
+ z &= ~ roundBitsMask;
+ if (z != float32_val(a)) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return make_float32(z);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the single-precision
+| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+| before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
+ float_status *status)
+{
+ int_fast16_t aExp, bExp, zExp;
+ uint32_t aSig, bSig, zSig;
+ int_fast16_t expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 6;
+ bSig <<= 6;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x20000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x20000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0xFF ) {
+ if (aSig | bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( aExp == 0 ) {
+ if (status->flush_to_zero) {
+ if (aSig | bSig) {
+ float_raise(float_flag_output_denormal, status);
+ }
+ return packFloat32(zSign, 0, 0);
+ }
+ return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+ }
+ zSig = 0x40000000 + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= 0x20000000;
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (int32_t) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat32(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the single-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
+ float_status *status)
+{
+ int_fast16_t aExp, bExp, zExp;
+ uint32_t aSig, bSig, zSig;
+ int_fast16_t expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 7;
+ bSig <<= 7;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0xFF ) {
+ if (aSig | bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
+ bExpBigger:
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return packFloat32( zSign ^ 1, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x40000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ bSig |= 0x40000000;
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x40000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ aSig |= 0x40000000;
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the single-precision floating-point values `a'
+| and `b'. The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_add(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat32Sigs(a, b, aSign, status);
+ }
+ else {
+ return subFloat32Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the single-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sub(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat32Sigs(a, b, aSign, status);
+ }
+ else {
+ return addFloat32Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the single-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_mul(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int_fast16_t aExp, bExp, zExp;
+ uint32_t aSig, bSig;
+ uint64_t zSig64;
+ uint32_t zSig;
+
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x7F;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
+ zSig = zSig64;
+ if ( 0 <= (int32_t) ( zSig<<1 ) ) {
+ zSig <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat32(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the single-precision floating-point value `a'
+| by the corresponding value `b'. The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_div(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int_fast16_t aExp, bExp, zExp;
+ uint32_t aSig, bSig, zSig;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return packFloat32( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ float_raise(float_flag_divbyzero, status);
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x7D;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
+ if ( ( zSig & 0x3F ) == 0 ) {
+ zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
+ }
+ return roundAndPackFloat32(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the single-precision floating-point value `a'
+| with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_rem(float32 a, float32 b, float_status *status)
+{
+ flag aSign, zSign;
+ int_fast16_t aExp, bExp, expDiff;
+ uint32_t aSig, bSig;
+ uint32_t q;
+ uint64_t aSig64, bSig64, q64;
+ uint32_t alternateASig;
+ int32_t sigMean;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ if ( bExp == 0xFF ) {
+ if (bSig) {
+ return propagateFloat32NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig |= 0x00800000;
+ bSig |= 0x00800000;
+ if ( expDiff < 32 ) {
+ aSig <<= 8;
+ bSig <<= 8;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ if ( 0 < expDiff ) {
+ q = ( ( (uint64_t) aSig )<<32 ) / bSig;
+ q >>= 32 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ }
+ else {
+ if ( bSig <= aSig ) aSig -= bSig;
+ aSig64 = ( (uint64_t) aSig )<<40;
+ bSig64 = ( (uint64_t) bSig )<<40;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ aSig64 = - ( ( bSig * q64 )<<38 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ q = q64>>( 64 - expDiff );
+ bSig <<= 6;
+ aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (int32_t) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (int32_t) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the single-precision floating-point values
+| `a' and `b' then adding 'c', with no intermediate rounding step after the
+| multiplication. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic 754-2008.
+| The flags argument allows the caller to select negation of the
+| addend, the intermediate product, or the final result. (The difference
+| between this and having the caller do a separate negation is that negating
+| externally will flip the sign bit on NaNs.)
+*----------------------------------------------------------------------------*/
+
+float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
+ float_status *status)
+{
+ flag aSign, bSign, cSign, zSign;
+ int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
+ uint32_t aSig, bSig, cSig;
+ flag pInf, pZero, pSign;
+ uint64_t pSig64, cSig64, zSig64;
+ uint32_t pSig;
+ int shiftcount;
+ flag signflip, infzero;
+
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+ c = float32_squash_input_denormal(c, status);
+ aSig = extractFloat32Frac(a);
+ aExp = extractFloat32Exp(a);
+ aSign = extractFloat32Sign(a);
+ bSig = extractFloat32Frac(b);
+ bExp = extractFloat32Exp(b);
+ bSign = extractFloat32Sign(b);
+ cSig = extractFloat32Frac(c);
+ cExp = extractFloat32Exp(c);
+ cSign = extractFloat32Sign(c);
+
+ infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
+ (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
+
+ /* It is implementation-defined whether the cases of (0,inf,qnan)
+ * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
+ * they return if they do), so we have to hand this information
+ * off to the target-specific pick-a-NaN routine.
+ */
+ if (((aExp == 0xff) && aSig) ||
+ ((bExp == 0xff) && bSig) ||
+ ((cExp == 0xff) && cSig)) {
+ return propagateFloat32MulAddNaN(a, b, c, infzero, status);
+ }
+
+ if (infzero) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+
+ if (flags & float_muladd_negate_c) {
+ cSign ^= 1;
+ }
+
+ signflip = (flags & float_muladd_negate_result) ? 1 : 0;
+
+ /* Work out the sign and type of the product */
+ pSign = aSign ^ bSign;
+ if (flags & float_muladd_negate_product) {
+ pSign ^= 1;
+ }
+ pInf = (aExp == 0xff) || (bExp == 0xff);
+ pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
+
+ if (cExp == 0xff) {
+ if (pInf && (pSign ^ cSign)) {
+ /* addition of opposite-signed infinities => InvalidOperation */
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ /* Otherwise generate an infinity of the same sign */
+ return packFloat32(cSign ^ signflip, 0xff, 0);
+ }
+
+ if (pInf) {
+ return packFloat32(pSign ^ signflip, 0xff, 0);
+ }
+
+ if (pZero) {
+ if (cExp == 0) {
+ if (cSig == 0) {
+ /* Adding two exact zeroes */
+ if (pSign == cSign) {
+ zSign = pSign;
+ } else if (status->float_rounding_mode == float_round_down) {
+ zSign = 1;
+ } else {
+ zSign = 0;
+ }
+ return packFloat32(zSign ^ signflip, 0, 0);
+ }
+ /* Exact zero plus a denorm */
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloat32(cSign ^ signflip, 0, 0);
+ }
+ }
+ /* Zero plus something non-zero : just return the something */
+ if (flags & float_muladd_halve_result) {
+ if (cExp == 0) {
+ normalizeFloat32Subnormal(cSig, &cExp, &cSig);
+ }
+ /* Subtract one to halve, and one again because roundAndPackFloat32
+ * wants one less than the true exponent.
+ */
+ cExp -= 2;
+ cSig = (cSig | 0x00800000) << 7;
+ return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
+ }
+ return packFloat32(cSign ^ signflip, cExp, cSig);
+ }
+
+ if (aExp == 0) {
+ normalizeFloat32Subnormal(aSig, &aExp, &aSig);
+ }
+ if (bExp == 0) {
+ normalizeFloat32Subnormal(bSig, &bExp, &bSig);
+ }
+
+ /* Calculate the actual result a * b + c */
+
+ /* Multiply first; this is easy. */
+ /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
+ * because we want the true exponent, not the "one-less-than"
+ * flavour that roundAndPackFloat32() takes.
+ */
+ pExp = aExp + bExp - 0x7e;
+ aSig = (aSig | 0x00800000) << 7;
+ bSig = (bSig | 0x00800000) << 8;
+ pSig64 = (uint64_t)aSig * bSig;
+ if ((int64_t)(pSig64 << 1) >= 0) {
+ pSig64 <<= 1;
+ pExp--;
+ }
+
+ zSign = pSign ^ signflip;
+
+ /* Now pSig64 is the significand of the multiply, with the explicit bit in
+ * position 62.
+ */
+ if (cExp == 0) {
+ if (!cSig) {
+ /* Throw out the special case of c being an exact zero now */
+ shift64RightJamming(pSig64, 32, &pSig64);
+ pSig = pSig64;
+ if (flags & float_muladd_halve_result) {
+ pExp--;
+ }
+ return roundAndPackFloat32(zSign, pExp - 1,
+ pSig, status);
+ }
+ normalizeFloat32Subnormal(cSig, &cExp, &cSig);
+ }
+
+ cSig64 = (uint64_t)cSig << (62 - 23);
+ cSig64 |= LIT64(0x4000000000000000);
+ expDiff = pExp - cExp;
+
+ if (pSign == cSign) {
+ /* Addition */
+ if (expDiff > 0) {
+ /* scale c to match p */
+ shift64RightJamming(cSig64, expDiff, &cSig64);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ /* scale p to match c */
+ shift64RightJamming(pSig64, -expDiff, &pSig64);
+ zExp = cExp;
+ } else {
+ /* no scaling needed */
+ zExp = cExp;
+ }
+ /* Add significands and make sure explicit bit ends up in posn 62 */
+ zSig64 = pSig64 + cSig64;
+ if ((int64_t)zSig64 < 0) {
+ shift64RightJamming(zSig64, 1, &zSig64);
+ } else {
+ zExp--;
+ }
+ } else {
+ /* Subtraction */
+ if (expDiff > 0) {
+ shift64RightJamming(cSig64, expDiff, &cSig64);
+ zSig64 = pSig64 - cSig64;
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ shift64RightJamming(pSig64, -expDiff, &pSig64);
+ zSig64 = cSig64 - pSig64;
+ zExp = cExp;
+ zSign ^= 1;
+ } else {
+ zExp = pExp;
+ if (cSig64 < pSig64) {
+ zSig64 = pSig64 - cSig64;
+ } else if (pSig64 < cSig64) {
+ zSig64 = cSig64 - pSig64;
+ zSign ^= 1;
+ } else {
+ /* Exact zero */
+ zSign = signflip;
+ if (status->float_rounding_mode == float_round_down) {
+ zSign ^= 1;
+ }
+ return packFloat32(zSign, 0, 0);
+ }
+ }
+ --zExp;
+ /* Normalize to put the explicit bit back into bit 62. */
+ shiftcount = countLeadingZeros64(zSig64) - 1;
+ zSig64 <<= shiftcount;
+ zExp -= shiftcount;
+ }
+ if (flags & float_muladd_halve_result) {
+ zExp--;
+ }
+
+ shift64RightJamming(zSig64, 32, &zSig64);
+ return roundAndPackFloat32(zSign, zExp, zSig64, status);
+}
+
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the single-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sqrt(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, zExp;
+ uint32_t aSig, zSig;
+ uint64_t rem, term;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return propagateFloat32NaN(a, float32_zero, status);
+ }
+ if ( ! aSign ) return a;
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return float32_zero;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+ aSig = ( aSig | 0x00800000 )<<8;
+ zSig = estimateSqrt32( aExp, aSig ) + 2;
+ if ( ( zSig & 0x7F ) <= 5 ) {
+ if ( zSig < 2 ) {
+ zSig = 0x7FFFFFFF;
+ goto roundAndPack;
+ }
+ aSig >>= aExp & 1;
+ term = ( (uint64_t) zSig ) * zSig;
+ rem = ( ( (uint64_t) aSig )<<32 ) - term;
+ while ( (int64_t) rem < 0 ) {
+ --zSig;
+ rem += ( ( (uint64_t) zSig )<<1 ) | 1;
+ }
+ zSig |= ( rem != 0 );
+ }
+ shift32RightJamming( zSig, 1, &zSig );
+ roundAndPack:
+ return roundAndPackFloat32(0, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the binary exponential of the single-precision floating-point value
+| `a'. The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+|
+| Uses the following identities:
+|
+| 1. -------------------------------------------------------------------------
+| x x*ln(2)
+| 2 = e
+|
+| 2. -------------------------------------------------------------------------
+| 2 3 4 5 n
+| x x x x x x x
+| e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
+| 1! 2! 3! 4! 5! n!
+*----------------------------------------------------------------------------*/
+
+static const float64 float32_exp2_coefficients[15] =
+{
+ const_float64( 0x3ff0000000000000ll ), /* 1 */
+ const_float64( 0x3fe0000000000000ll ), /* 2 */
+ const_float64( 0x3fc5555555555555ll ), /* 3 */
+ const_float64( 0x3fa5555555555555ll ), /* 4 */
+ const_float64( 0x3f81111111111111ll ), /* 5 */
+ const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
+ const_float64( 0x3f2a01a01a01a01all ), /* 7 */
+ const_float64( 0x3efa01a01a01a01all ), /* 8 */
+ const_float64( 0x3ec71de3a556c734ll ), /* 9 */
+ const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
+ const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
+ const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
+ const_float64( 0x3de6124613a86d09ll ), /* 13 */
+ const_float64( 0x3da93974a8c07c9dll ), /* 14 */
+ const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
+};
+
+float32 float32_exp2(float32 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+ float64 r, x, xn;
+ int i;
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+
+ if ( aExp == 0xFF) {
+ if (aSig) {
+ return propagateFloat32NaN(a, float32_zero, status);
+ }
+ return (aSign) ? float32_zero : a;
+ }
+ if (aExp == 0) {
+ if (aSig == 0) return float32_one;
+ }
+
+ float_raise(float_flag_inexact, status);
+
+ /* ******************************* */
+ /* using float64 for approximation */
+ /* ******************************* */
+ x = float32_to_float64(a, status);
+ x = float64_mul(x, float64_ln2, status);
+
+ xn = x;
+ r = float64_one;
+ for (i = 0 ; i < 15 ; i++) {
+ float64 f;
+
+ f = float64_mul(xn, float32_exp2_coefficients[i], status);
+ r = float64_add(r, f, status);
+
+ xn = float64_mul(xn, x, status);
+ }
+
+ return float64_to_float32(r, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the binary log of the single-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+float32 float32_log2(float32 a, float_status *status)
+{
+ flag aSign, zSign;
+ int_fast16_t aExp;
+ uint32_t aSig, zSig, i;
+
+ a = float32_squash_input_denormal(a, status);
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( aSign ) {
+ float_raise(float_flag_invalid, status);
+ return float32_default_nan;
+ }
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ return propagateFloat32NaN(a, float32_zero, status);
+ }
+ return a;
+ }
+
+ aExp -= 0x7F;
+ aSig |= 0x00800000;
+ zSign = aExp < 0;
+ zSig = aExp << 23;
+
+ for (i = 1 << 22; i > 0; i >>= 1) {
+ aSig = ( (uint64_t)aSig * aSig ) >> 23;
+ if ( aSig & 0x01000000 ) {
+ aSig >>= 1;
+ zSig |= i;
+ }
+ }
+
+ if ( zSign )
+ zSig = -zSig;
+
+ return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_eq(float32 a, float32 b, float_status *status)
+{
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ av = float32_val(a);
+ bv = float32_val(b);
+ return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_le(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ av = float32_val(a);
+ bv = float32_val(b);
+ if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_lt(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ av = float32_val(a);
+ bv = float32_val(b);
+ if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
+ return ( av != bv ) && ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_unordered(float32 a, float32 b, float_status *status)
+{
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_eq_quiet(float32 a, float32 b, float_status *status)
+{
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ return ( float32_val(a) == float32_val(b) ) ||
+ ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_le_quiet(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ av = float32_val(a);
+ bv = float32_val(b);
+ if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_lt_quiet(float32 a, float32 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ av = float32_val(a);
+ bv = float32_val(b);
+ if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
+ return ( av != bv ) && ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_unordered_quiet(float32 a, float32 b, float_status *status)
+{
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x42C - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32(aSign, aSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32_round_to_zero(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig, savedASig;
+ int32_t z;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( 0x41E < aExp ) {
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FF ) {
+ if (aExp || aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int_fast16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( 0x40E < aExp ) {
+ if ( ( aExp == 0x7FF ) && aSig ) {
+ aSign = 0;
+ }
+ goto invalid;
+ }
+ else if ( aExp < 0x3FF ) {
+ if ( aExp || aSig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) {
+ z = - z;
+ }
+ if ( ( (int16_t)z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 64-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float64_to_int64(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig, aSigExtra;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( 0x43E < aExp ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign
+ || ( ( aExp == 0x7FF )
+ && ( aSig != LIT64( 0x0010000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ aSigExtra = 0;
+ aSig <<= - shiftCount;
+ }
+ else {
+ shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ }
+ return roundAndPackInt64(aSign, aSig, aSigExtra, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 64-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float64_to_int64_round_to_zero(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig;
+ int64 z;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = aExp - 0x433;
+ if ( 0 <= shiftCount ) {
+ if ( 0x43E <= aExp ) {
+ if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign
+ || ( ( aExp == 0x7FF )
+ && ( aSig != LIT64( 0x0010000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ z = aSig<<shiftCount;
+ }
+ else {
+ if ( aExp < 0x3FE ) {
+ if (aExp | aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ z = aSig>>( - shiftCount );
+ if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the single-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float64_to_float32(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t aSig;
+ uint32_t zSig;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 22, &aSig );
+ zSig = aSig;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x381;
+ }
+ return roundAndPackFloat32(aSign, aExp, zSig, status);
+
+}
+
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| half-precision floating-point value, returning the result. After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result. This means that any integer portion of `zSig'
+| will be added into the exponent. Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
+{
+ return make_float16(
+ (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper half-precision floating-
+| point value corresponding to the abstract input. Ordinarily, the abstract
+| value is simply rounded and packed into the half-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal half-
+| precision floating-point number.
+| The `ieee' flag indicates whether to use IEEE standard half precision, or
+| ARM-style "alternative representation", which omits the NaN and Inf
+| encodings in order to raise the maximum representable exponent by one.
+| The input significand `zSig' has its binary point between bits 22
+| and 23, which is 13 bits to the left of the usual location. This shifted
+| significand must be normalized or smaller. If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding. In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| Note the slightly odd position of the binary point in zSig compared with the
+| other roundAndPackFloat functions. This should probably be fixed if we
+| need to implement more float16 routines than just conversion.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp,
+ uint32_t zSig, flag ieee,
+ float_status *status)
+{
+ int maxexp = ieee ? 29 : 30;
+ uint32_t mask;
+ uint32_t increment;
+ bool rounding_bumps_exp;
+ bool is_tiny = false;
+
+ /* Calculate the mask of bits of the mantissa which are not
+ * representable in half-precision and will be lost.
+ */
+ if (zExp < 1) {
+ /* Will be denormal in halfprec */
+ mask = 0x00ffffff;
+ if (zExp >= -11) {
+ mask >>= 11 + zExp;
+ }
+ } else {
+ /* Normal number in halfprec */
+ mask = 0x00001fff;
+ }
+
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ increment = (mask + 1) >> 1;
+ if ((zSig & mask) == increment) {
+ increment = zSig & (increment << 1);
+ }
+ break;
+ case float_round_ties_away:
+ increment = (mask + 1) >> 1;
+ break;
+ case float_round_up:
+ increment = zSign ? 0 : mask;
+ break;
+ case float_round_down:
+ increment = zSign ? mask : 0;
+ break;
+ default: /* round_to_zero */
+ increment = 0;
+ break;
+ }
+
+ rounding_bumps_exp = (zSig + increment >= 0x01000000);
+
+ if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
+ if (ieee) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return packFloat16(zSign, 0x1f, 0);
+ } else {
+ float_raise(float_flag_invalid, status);
+ return packFloat16(zSign, 0x1f, 0x3ff);
+ }
+ }
+
+ if (zExp < 0) {
+ /* Note that flush-to-zero does not affect half-precision results */
+ is_tiny =
+ (status->float_detect_tininess == float_tininess_before_rounding)
+ || (zExp < -1)
+ || (!rounding_bumps_exp);
+ }
+ if (zSig & mask) {
+ float_raise(float_flag_inexact, status);
+ if (is_tiny) {
+ float_raise(float_flag_underflow, status);
+ }
+ }
+
+ zSig += increment;
+ if (rounding_bumps_exp) {
+ zSig >>= 1;
+ zExp++;
+ }
+
+ if (zExp < -10) {
+ return packFloat16(zSign, 0, 0);
+ }
+ if (zExp < 0) {
+ zSig >>= -zExp;
+ zExp = 0;
+ }
+ return packFloat16(zSign, zExp, zSig >> 13);
+}
+
+static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr,
+ uint32_t *zSigPtr)
+{
+ int8_t shiftCount = countLeadingZeros32(aSig) - 21;
+ *zSigPtr = aSig << shiftCount;
+ *zExpPtr = 1 - shiftCount;
+}
+
+/* Half precision floats come in two formats: standard IEEE and "ARM" format.
+ The latter gains extra exponent range by omitting the NaN/Inf encodings. */
+
+float32 float16_to_float32(float16 a, flag ieee, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+
+ aSign = extractFloat16Sign(a);
+ aExp = extractFloat16Exp(a);
+ aSig = extractFloat16Frac(a);
+
+ if (aExp == 0x1f && ieee) {
+ if (aSig) {
+ return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
+ }
+ return packFloat32(aSign, 0xff, 0);
+ }
+ if (aExp == 0) {
+ if (aSig == 0) {
+ return packFloat32(aSign, 0, 0);
+ }
+
+ normalizeFloat16Subnormal(aSig, &aExp, &aSig);
+ aExp--;
+ }
+ return packFloat32( aSign, aExp + 0x70, aSig << 13);
+}
+
+float16 float32_to_float16(float32 a, flag ieee, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+
+ a = float32_squash_input_denormal(a, status);
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if (aSig) {
+ /* Input is a NaN */
+ if (!ieee) {
+ float_raise(float_flag_invalid, status);
+ return packFloat16(aSign, 0, 0);
+ }
+ return commonNaNToFloat16(
+ float32ToCommonNaN(a, status), status);
+ }
+ /* Infinity */
+ if (!ieee) {
+ float_raise(float_flag_invalid, status);
+ return packFloat16(aSign, 0x1f, 0x3ff);
+ }
+ return packFloat16(aSign, 0x1f, 0);
+ }
+ if (aExp == 0 && aSig == 0) {
+ return packFloat16(aSign, 0, 0);
+ }
+ /* Decimal point between bits 22 and 23. Note that we add the 1 bit
+ * even if the input is denormal; however this is harmless because
+ * the largest possible single-precision denormal is still smaller
+ * than the smallest representable half-precision denormal, and so we
+ * will end up ignoring aSig and returning via the "always return zero"
+ * codepath.
+ */
+ aSig |= 0x00800000;
+ aExp -= 0x71;
+
+ return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
+}
+
+float64 float16_to_float64(float16 a, flag ieee, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint32_t aSig;
+
+ aSign = extractFloat16Sign(a);
+ aExp = extractFloat16Exp(a);
+ aSig = extractFloat16Frac(a);
+
+ if (aExp == 0x1f && ieee) {
+ if (aSig) {
+ return commonNaNToFloat64(
+ float16ToCommonNaN(a, status), status);
+ }
+ return packFloat64(aSign, 0x7ff, 0);
+ }
+ if (aExp == 0) {
+ if (aSig == 0) {
+ return packFloat64(aSign, 0, 0);
+ }
+
+ normalizeFloat16Subnormal(aSig, &aExp, &aSig);
+ aExp--;
+ }
+ return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
+}
+
+float16 float64_to_float16(float64 a, flag ieee, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t aSig;
+ uint32_t zSig;
+
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac(a);
+ aExp = extractFloat64Exp(a);
+ aSign = extractFloat64Sign(a);
+ if (aExp == 0x7FF) {
+ if (aSig) {
+ /* Input is a NaN */
+ if (!ieee) {
+ float_raise(float_flag_invalid, status);
+ return packFloat16(aSign, 0, 0);
+ }
+ return commonNaNToFloat16(
+ float64ToCommonNaN(a, status), status);
+ }
+ /* Infinity */
+ if (!ieee) {
+ float_raise(float_flag_invalid, status);
+ return packFloat16(aSign, 0x1f, 0x3ff);
+ }
+ return packFloat16(aSign, 0x1f, 0);
+ }
+ shift64RightJamming(aSig, 29, &aSig);
+ zSig = aSig;
+ if (aExp == 0 && zSig == 0) {
+ return packFloat16(aSign, 0, 0);
+ }
+ /* Decimal point between bits 22 and 23. Note that we add the 1 bit
+ * even if the input is denormal; however this is harmless because
+ * the largest possible single-precision denormal is still smaller
+ * than the smallest representable half-precision denormal, and so we
+ * will end up ignoring aSig and returning via the "always return zero"
+ * codepath.
+ */
+ zSig |= 0x00800000;
+ aExp -= 0x3F1;
+
+ return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float64_to_floatx80(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t aSig;
+
+ a = float64_squash_input_denormal(a, status);
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
+ }
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ return
+ packFloatx80(
+ aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the quadruple-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float64_to_float128(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t aSig, zSig0, zSig1;
+
+ a = float64_squash_input_denormal(a, status);
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
+ }
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the double-precision floating-point value `a' to an integer, and
+| returns the result as a double-precision floating-point value. The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_round_to_int(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t lastBitMask, roundBitsMask;
+ uint64_t z;
+ a = float64_squash_input_denormal(a, status);
+
+ aExp = extractFloat64Exp( a );
+ if ( 0x433 <= aExp ) {
+ if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
+ return propagateFloat64NaN(a, a, status);
+ }
+ return a;
+ }
+ if ( aExp < 0x3FF ) {
+ if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
+ status->float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat64Sign( a );
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
+ return packFloat64( aSign, 0x3FF, 0 );
+ }
+ break;
+ case float_round_ties_away:
+ if (aExp == 0x3FE) {
+ return packFloat64(aSign, 0x3ff, 0);
+ }
+ break;
+ case float_round_down:
+ return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
+ case float_round_up:
+ return make_float64(
+ aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
+ }
+ return packFloat64( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x433 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = float64_val(a);
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ z += lastBitMask >> 1;
+ if ((z & roundBitsMask) == 0) {
+ z &= ~lastBitMask;
+ }
+ break;
+ case float_round_ties_away:
+ z += lastBitMask >> 1;
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ if (!extractFloat64Sign(make_float64(z))) {
+ z += roundBitsMask;
+ }
+ break;
+ case float_round_down:
+ if (extractFloat64Sign(make_float64(z))) {
+ z += roundBitsMask;
+ }
+ break;
+ default:
+ abort();
+ }
+ z &= ~ roundBitsMask;
+ if (z != float64_val(a)) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return make_float64(z);
+
+}
+
+float64 float64_trunc_to_int(float64 a, float_status *status)
+{
+ int oldmode;
+ float64 res;
+ oldmode = status->float_rounding_mode;
+ status->float_rounding_mode = float_round_to_zero;
+ res = float64_round_to_int(a, status);
+ status->float_rounding_mode = oldmode;
+ return res;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the double-precision
+| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+| before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
+ float_status *status)
+{
+ int_fast16_t aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig;
+ int_fast16_t expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 9;
+ bSig <<= 9;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FF ) {
+ if (aSig | bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( aExp == 0 ) {
+ if (status->flush_to_zero) {
+ if (aSig | bSig) {
+ float_raise(float_flag_output_denormal, status);
+ }
+ return packFloat64(zSign, 0, 0);
+ }
+ return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
+ }
+ zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= LIT64( 0x2000000000000000 );
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (int64_t) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat64(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the double-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
+ float_status *status)
+{
+ int_fast16_t aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig;
+ int_fast16_t expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 10;
+ bSig <<= 10;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FF ) {
+ if (aSig | bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
+ bExpBigger:
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return packFloat64( zSign ^ 1, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ bSig |= LIT64( 0x4000000000000000 );
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ aSig |= LIT64( 0x4000000000000000 );
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the double-precision floating-point values `a'
+| and `b'. The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_add(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat64Sigs(a, b, aSign, status);
+ }
+ else {
+ return subFloat64Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the double-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sub(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat64Sigs(a, b, aSign, status);
+ }
+ else {
+ return addFloat64Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the double-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_mul(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int_fast16_t aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig0, zSig1;
+
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FF;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ zSig0 |= ( zSig1 != 0 );
+ if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
+ zSig0 <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat64(zSign, zExp, zSig0, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the double-precision floating-point value `a'
+| by the corresponding value `b'. The operation is performed according to
+| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_div(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int_fast16_t aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig;
+ uint64_t rem0, rem1;
+ uint64_t term0, term1;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return packFloat64( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ float_raise(float_flag_divbyzero, status);
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FD;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = estimateDiv128To64( aSig, 0, bSig );
+ if ( ( zSig & 0x1FF ) <= 2 ) {
+ mul64To128( bSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig |= ( rem1 != 0 );
+ }
+ return roundAndPackFloat64(zSign, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the double-precision floating-point value `a'
+| with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_rem(float64 a, float64 b, float_status *status)
+{
+ flag aSign, zSign;
+ int_fast16_t aExp, bExp, expDiff;
+ uint64_t aSig, bSig;
+ uint64_t q, alternateASig;
+ int64_t sigMean;
+
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ if ( bExp == 0x7FF ) {
+ if (bSig) {
+ return propagateFloat64NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ aSig = - ( ( bSig>>2 ) * q );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (int64_t) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (int64_t) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the double-precision floating-point values
+| `a' and `b' then adding 'c', with no intermediate rounding step after the
+| multiplication. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic 754-2008.
+| The flags argument allows the caller to select negation of the
+| addend, the intermediate product, or the final result. (The difference
+| between this and having the caller do a separate negation is that negating
+| externally will flip the sign bit on NaNs.)
+*----------------------------------------------------------------------------*/
+
+float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
+ float_status *status)
+{
+ flag aSign, bSign, cSign, zSign;
+ int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
+ uint64_t aSig, bSig, cSig;
+ flag pInf, pZero, pSign;
+ uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
+ int shiftcount;
+ flag signflip, infzero;
+
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+ c = float64_squash_input_denormal(c, status);
+ aSig = extractFloat64Frac(a);
+ aExp = extractFloat64Exp(a);
+ aSign = extractFloat64Sign(a);
+ bSig = extractFloat64Frac(b);
+ bExp = extractFloat64Exp(b);
+ bSign = extractFloat64Sign(b);
+ cSig = extractFloat64Frac(c);
+ cExp = extractFloat64Exp(c);
+ cSign = extractFloat64Sign(c);
+
+ infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
+ (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
+
+ /* It is implementation-defined whether the cases of (0,inf,qnan)
+ * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
+ * they return if they do), so we have to hand this information
+ * off to the target-specific pick-a-NaN routine.
+ */
+ if (((aExp == 0x7ff) && aSig) ||
+ ((bExp == 0x7ff) && bSig) ||
+ ((cExp == 0x7ff) && cSig)) {
+ return propagateFloat64MulAddNaN(a, b, c, infzero, status);
+ }
+
+ if (infzero) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+
+ if (flags & float_muladd_negate_c) {
+ cSign ^= 1;
+ }
+
+ signflip = (flags & float_muladd_negate_result) ? 1 : 0;
+
+ /* Work out the sign and type of the product */
+ pSign = aSign ^ bSign;
+ if (flags & float_muladd_negate_product) {
+ pSign ^= 1;
+ }
+ pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
+ pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
+
+ if (cExp == 0x7ff) {
+ if (pInf && (pSign ^ cSign)) {
+ /* addition of opposite-signed infinities => InvalidOperation */
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ /* Otherwise generate an infinity of the same sign */
+ return packFloat64(cSign ^ signflip, 0x7ff, 0);
+ }
+
+ if (pInf) {
+ return packFloat64(pSign ^ signflip, 0x7ff, 0);
+ }
+
+ if (pZero) {
+ if (cExp == 0) {
+ if (cSig == 0) {
+ /* Adding two exact zeroes */
+ if (pSign == cSign) {
+ zSign = pSign;
+ } else if (status->float_rounding_mode == float_round_down) {
+ zSign = 1;
+ } else {
+ zSign = 0;
+ }
+ return packFloat64(zSign ^ signflip, 0, 0);
+ }
+ /* Exact zero plus a denorm */
+ if (status->flush_to_zero) {
+ float_raise(float_flag_output_denormal, status);
+ return packFloat64(cSign ^ signflip, 0, 0);
+ }
+ }
+ /* Zero plus something non-zero : just return the something */
+ if (flags & float_muladd_halve_result) {
+ if (cExp == 0) {
+ normalizeFloat64Subnormal(cSig, &cExp, &cSig);
+ }
+ /* Subtract one to halve, and one again because roundAndPackFloat64
+ * wants one less than the true exponent.
+ */
+ cExp -= 2;
+ cSig = (cSig | 0x0010000000000000ULL) << 10;
+ return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
+ }
+ return packFloat64(cSign ^ signflip, cExp, cSig);
+ }
+
+ if (aExp == 0) {
+ normalizeFloat64Subnormal(aSig, &aExp, &aSig);
+ }
+ if (bExp == 0) {
+ normalizeFloat64Subnormal(bSig, &bExp, &bSig);
+ }
+
+ /* Calculate the actual result a * b + c */
+
+ /* Multiply first; this is easy. */
+ /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
+ * because we want the true exponent, not the "one-less-than"
+ * flavour that roundAndPackFloat64() takes.
+ */
+ pExp = aExp + bExp - 0x3fe;
+ aSig = (aSig | LIT64(0x0010000000000000))<<10;
+ bSig = (bSig | LIT64(0x0010000000000000))<<11;
+ mul64To128(aSig, bSig, &pSig0, &pSig1);
+ if ((int64_t)(pSig0 << 1) >= 0) {
+ shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
+ pExp--;
+ }
+
+ zSign = pSign ^ signflip;
+
+ /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
+ * bit in position 126.
+ */
+ if (cExp == 0) {
+ if (!cSig) {
+ /* Throw out the special case of c being an exact zero now */
+ shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
+ if (flags & float_muladd_halve_result) {
+ pExp--;
+ }
+ return roundAndPackFloat64(zSign, pExp - 1,
+ pSig1, status);
+ }
+ normalizeFloat64Subnormal(cSig, &cExp, &cSig);
+ }
+
+ /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
+ * significand of the addend, with the explicit bit in position 126.
+ */
+ cSig0 = cSig << (126 - 64 - 52);
+ cSig1 = 0;
+ cSig0 |= LIT64(0x4000000000000000);
+ expDiff = pExp - cExp;
+
+ if (pSign == cSign) {
+ /* Addition */
+ if (expDiff > 0) {
+ /* scale c to match p */
+ shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ /* scale p to match c */
+ shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
+ zExp = cExp;
+ } else {
+ /* no scaling needed */
+ zExp = cExp;
+ }
+ /* Add significands and make sure explicit bit ends up in posn 126 */
+ add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ if ((int64_t)zSig0 < 0) {
+ shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
+ } else {
+ zExp--;
+ }
+ shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
+ if (flags & float_muladd_halve_result) {
+ zExp--;
+ }
+ return roundAndPackFloat64(zSign, zExp, zSig1, status);
+ } else {
+ /* Subtraction */
+ if (expDiff > 0) {
+ shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
+ sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
+ sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
+ zExp = cExp;
+ zSign ^= 1;
+ } else {
+ zExp = pExp;
+ if (lt128(cSig0, cSig1, pSig0, pSig1)) {
+ sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
+ sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
+ zSign ^= 1;
+ } else {
+ /* Exact zero */
+ zSign = signflip;
+ if (status->float_rounding_mode == float_round_down) {
+ zSign ^= 1;
+ }
+ return packFloat64(zSign, 0, 0);
+ }
+ }
+ --zExp;
+ /* Do the equivalent of normalizeRoundAndPackFloat64() but
+ * starting with the significand in a pair of uint64_t.
+ */
+ if (zSig0) {
+ shiftcount = countLeadingZeros64(zSig0) - 1;
+ shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
+ if (zSig1) {
+ zSig0 |= 1;
+ }
+ zExp -= shiftcount;
+ } else {
+ shiftcount = countLeadingZeros64(zSig1);
+ if (shiftcount == 0) {
+ zSig0 = (zSig1 >> 1) | (zSig1 & 1);
+ zExp -= 63;
+ } else {
+ shiftcount--;
+ zSig0 = zSig1 << shiftcount;
+ zExp -= (shiftcount + 64);
+ }
+ }
+ if (flags & float_muladd_halve_result) {
+ zExp--;
+ }
+ return roundAndPackFloat64(zSign, zExp, zSig0, status);
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the double-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sqrt(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, zExp;
+ uint64_t aSig, zSig, doubleZSig;
+ uint64_t rem0, rem1, term0, term1;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return propagateFloat64NaN(a, a, status);
+ }
+ if ( ! aSign ) return a;
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return float64_zero;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+ aSig |= LIT64( 0x0010000000000000 );
+ zSig = estimateSqrt32( aExp, aSig>>21 );
+ aSig <<= 9 - ( aExp & 1 );
+ zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
+ if ( ( zSig & 0x1FF ) <= 5 ) {
+ doubleZSig = zSig<<1;
+ mul64To128( zSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig;
+ doubleZSig -= 2;
+ add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
+ }
+ zSig |= ( ( rem0 | rem1 ) != 0 );
+ }
+ return roundAndPackFloat64(0, zExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the binary log of the double-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+float64 float64_log2(float64 a, float_status *status)
+{
+ flag aSign, zSign;
+ int_fast16_t aExp;
+ uint64_t aSig, aSig0, aSig1, zSig, i;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( aSign ) {
+ float_raise(float_flag_invalid, status);
+ return float64_default_nan;
+ }
+ if ( aExp == 0x7FF ) {
+ if (aSig) {
+ return propagateFloat64NaN(a, float64_zero, status);
+ }
+ return a;
+ }
+
+ aExp -= 0x3FF;
+ aSig |= LIT64( 0x0010000000000000 );
+ zSign = aExp < 0;
+ zSig = (uint64_t)aExp << 52;
+ for (i = 1LL << 51; i > 0; i >>= 1) {
+ mul64To128( aSig, aSig, &aSig0, &aSig1 );
+ aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
+ if ( aSig & LIT64( 0x0020000000000000 ) ) {
+ aSig >>= 1;
+ zSig |= i;
+ }
+ }
+
+ if ( zSign )
+ zSig = -zSig;
+ return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to the
+| corresponding value `b', and 0 otherwise. The invalid exception is raised
+| if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_eq(float64 a, float64 b, float_status *status)
+{
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ av = float64_val(a);
+ bv = float64_val(b);
+ return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_le(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ av = float64_val(a);
+ bv = float64_val(b);
+ if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_lt(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint64_t av, bv;
+
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ av = float64_val(a);
+ bv = float64_val(b);
+ if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
+ return ( av != bv ) && ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_unordered(float64 a, float64 b, float_status *status)
+{
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to the
+| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception.The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_eq_quiet(float64 a, float64 b, float_status *status)
+{
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ av = float64_val(a);
+ bv = float64_val(b);
+ return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_le_quiet(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ av = float64_val(a);
+ bv = float64_val(b);
+ if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_lt_quiet(float64 a, float64 b, float_status *status)
+{
+ flag aSign, bSign;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ av = float64_val(a);
+ bv = float64_val(b);
+ if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
+ return ( av != bv ) && ( aSign ^ ( av < bv ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_unordered_quiet(float64 a, float64 b, float_status *status)
+{
+ a = float64_squash_input_denormal(a, status);
+ b = float64_squash_input_denormal(b, status);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode. If `a' is a NaN, the
+| largest positive integer is returned. Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
+ shiftCount = 0x4037 - aExp;
+ if ( shiftCount <= 0 ) shiftCount = 1;
+ shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32(aSign, aSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero. If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig, savedASig;
+ int32_t z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if (aExp || aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ shiftCount = 0x403E - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode. If `a' is a NaN,
+| the largest positive integer is returned. Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig, aSigExtra;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = 0x403E - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( shiftCount ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig != LIT64( 0x8000000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ aSigExtra = 0;
+ }
+ else {
+ shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ }
+ return roundAndPackInt64(aSign, aSig, aSigExtra, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero. If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig;
+ int64 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = aExp - 0x403E;
+ if ( 0 <= shiftCount ) {
+ aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
+ if ( ( a.high != 0xC03E ) || aSig ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ else if ( aExp < 0x3FFF ) {
+ if (aExp | aSig) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ z = aSig>>( - shiftCount );
+ if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the single-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 floatx80_to_float32(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 33, &aSig );
+ if ( aExp || aSig ) aExp -= 0x3F81;
+ return roundAndPackFloat32(aSign, aExp, aSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the double-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 floatx80_to_float64(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t aSig, zSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shift64RightJamming( aSig, 1, &zSig );
+ if ( aExp || aSig ) aExp -= 0x3C01;
+ return roundAndPackFloat64(aSign, aExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the quadruple-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 floatx80_to_float128(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp;
+ uint64_t aSig, zSig0, zSig1;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
+ }
+ shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the extended double-precision floating-point value `a' to an integer,
+| and returns the result as an extended quadruple-precision floating-point
+| value. The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t lastBitMask, roundBitsMask;
+ floatx80 z;
+
+ aExp = extractFloatx80Exp( a );
+ if ( 0x403E <= aExp ) {
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
+ return propagateFloatx80NaN(a, a, status);
+ }
+ return a;
+ }
+ if ( aExp < 0x3FFF ) {
+ if ( ( aExp == 0 )
+ && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+ return a;
+ }
+ status->float_exception_flags |= float_flag_inexact;
+ aSign = extractFloatx80Sign( a );
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
+ ) {
+ return
+ packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ break;
+ case float_round_ties_away:
+ if (aExp == 0x3FFE) {
+ return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ?
+ packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
+ : packFloatx80( 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloatx80( 1, 0, 0 )
+ : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ return packFloatx80( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x403E - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ z.low += lastBitMask>>1;
+ if ((z.low & roundBitsMask) == 0) {
+ z.low &= ~lastBitMask;
+ }
+ break;
+ case float_round_ties_away:
+ z.low += lastBitMask >> 1;
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ if (!extractFloatx80Sign(z)) {
+ z.low += roundBitsMask;
+ }
+ break;
+ case float_round_down:
+ if (extractFloatx80Sign(z)) {
+ z.low += roundBitsMask;
+ }
+ break;
+ default:
+ abort();
+ }
+ z.low &= ~ roundBitsMask;
+ if ( z.low == 0 ) {
+ ++z.high;
+ z.low = LIT64( 0x8000000000000000 );
+ }
+ if (z.low != a.low) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the extended double-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
+| negated before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
+ float_status *status)
+{
+ int32 aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ((uint64_t)(aSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return a;
+ }
+ zSig1 = 0;
+ zSig0 = aSig + bSig;
+ if ( aExp == 0 ) {
+ normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
+ goto roundAndPack;
+ }
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ zSig0 = aSig + bSig;
+ if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
+ shiftRight1:
+ shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= LIT64( 0x8000000000000000 );
+ ++zExp;
+ roundAndPack:
+ return roundAndPackFloatx80(status->floatx80_rounding_precision,
+ zSign, zExp, zSig0, zSig1, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the extended
+| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
+ float_status *status)
+{
+ int32 aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ zSig1 = 0;
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ bBigger:
+ sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ((uint64_t)(aSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ aBigger:
+ sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
+ zSign, zExp, zSig0, zSig1, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the extended double-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return addFloatx80Sigs(a, b, aSign, status);
+ }
+ else {
+ return subFloatx80Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the extended double-precision floating-
+| point values `a' and `b'. The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return subFloatx80Sigs(a, b, aSign, status);
+ }
+ else {
+ return addFloatx80Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the extended double-precision floating-
+| point values `a' and `b'. The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig0, zSig1;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( aSig<<1 )
+ || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ if ( ( bExp | bSig ) == 0 ) goto invalid;
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FFE;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ if ( 0 < (int64_t) zSig0 ) {
+ shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ --zExp;
+ }
+ return roundAndPackFloatx80(status->floatx80_rounding_precision,
+ zSign, zExp, zSig0, zSig1, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the extended double-precision floating-point
+| value `a' by the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ uint64_t aSig, bSig, zSig0, zSig1;
+ uint64_t rem0, rem1, rem2, term0, term1, term2;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ((uint64_t)(aSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ goto invalid;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return packFloatx80( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ float_raise(float_flag_divbyzero, status);
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FFE;
+ rem1 = 0;
+ if ( bSig <= aSig ) {
+ shift128Right( aSig, 0, 1, &aSig, &rem1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig, rem1, bSig );
+ mul64To128( bSig, zSig0, &term0, &term1 );
+ sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig0;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, bSig );
+ if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
+ mul64To128( bSig, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ while ( (int64_t) rem1 < 0 ) {
+ --zSig1;
+ add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
+ }
+ zSig1 |= ( ( rem1 | rem2 ) != 0 );
+ }
+ return roundAndPackFloatx80(status->floatx80_rounding_precision,
+ zSign, zExp, zSig0, zSig1, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the extended double-precision floating-point value
+| `a' with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, zSign;
+ int32 aExp, bExp, expDiff;
+ uint64_t aSig0, aSig1, bSig;
+ uint64_t q, term0, term1, alternateASig0, alternateASig1;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ if ( aExp == 0x7FFF ) {
+ if ( (uint64_t) ( aSig0<<1 )
+ || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ((uint64_t)(bSig << 1)) {
+ return propagateFloatx80NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ bSig |= LIT64( 0x8000000000000000 );
+ zSign = aSign;
+ expDiff = aExp - bExp;
+ aSig1 = 0;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
+ expDiff = 0;
+ }
+ q = ( bSig <= aSig0 );
+ if ( q ) aSig0 -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ mul64To128( bSig, q, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
+ while ( le128( term0, term1, aSig0, aSig1 ) ) {
+ ++q;
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ }
+ }
+ else {
+ term1 = 0;
+ term0 = bSig;
+ }
+ sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
+ if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ && ( q & 1 ) )
+ ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ zSign = ! zSign;
+ }
+ return
+ normalizeRoundAndPackFloatx80(
+ 80, zSign, bExp + expDiff, aSig0, aSig1, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the extended double-precision floating-point
+| value `a'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sqrt(floatx80 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, zExp;
+ uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ((uint64_t)(aSig0 << 1)) {
+ return propagateFloatx80NaN(a, a, status);
+ }
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 ) == 0 ) return a;
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
+ zSig0 = estimateSqrt32( aExp, aSig0>>32 );
+ shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (int64_t) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= doubleZSig0;
+ return roundAndPackFloatx80(status->floatx80_rounding_precision,
+ 0, zExp, zSig0, zSig1, status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is equal
+| to the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than or equal to the corresponding value `b', and 0 otherwise. The
+| invalid exception is raised if either operand is a NaN. The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_le(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. The invalid exception is raised if
+| either operand is a NaN. The comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
+| do not cause an exception. Otherwise, the comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
+| an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
+| The comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ aSig0 |= ( aSig1 != 0 );
+ shiftCount = 0x4028 - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
+ return roundAndPackInt32(aSign, aSig0, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero. If
+| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
+| conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32_round_to_zero(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig0, aSig1, savedASig;
+ int32_t z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ aSig0 |= ( aSig1 != 0 );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if (aExp || aSig0) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ savedASig = aSig0;
+ aSig0 >>= shiftCount;
+ z = aSig0;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig0<<shiftCount ) != savedASig ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( 0x403E < aExp ) {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
+ )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
+ }
+ else {
+ shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
+ }
+ return roundAndPackInt64(aSign, aSig0, aSig1, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64_round_to_zero(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ uint64_t aSig0, aSig1;
+ int64 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = aExp - 0x402F;
+ if ( 0 < shiftCount ) {
+ if ( 0x403E <= aExp ) {
+ aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
+ if ( ( a.high == LIT64( 0xC03E000000000000 ) )
+ && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
+ if (aSig1) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ }
+ else {
+ float_raise(float_flag_invalid, status);
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (int64_t) LIT64( 0x8000000000000000 );
+ }
+ z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
+ if ( (uint64_t) ( aSig1<<shiftCount ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( aExp | aSig0 | aSig1 ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ z = aSig0>>( - shiftCount );
+ if ( aSig1
+ || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the single-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float128_to_float32(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t aSig0, aSig1;
+ uint32_t zSig;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ aSig0 |= ( aSig1 != 0 );
+ shift64RightJamming( aSig0, 18, &aSig0 );
+ zSig = aSig0;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x3F81;
+ }
+ return roundAndPackFloat32(aSign, aExp, zSig, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float128_to_float64(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ aSig0 |= ( aSig1 != 0 );
+ if ( aExp || aSig0 ) {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aExp -= 0x3C01;
+ }
+ return roundAndPackFloat64(aSign, aExp, aSig0, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the extended double-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float128_to_floatx80(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
+ }
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
+ return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the quadruple-precision floating-point value `a' to an integer, and
+| returns the result as a quadruple-precision floating-point value. The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_round_to_int(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp;
+ uint64_t lastBitMask, roundBitsMask;
+ float128 z;
+
+ aExp = extractFloat128Exp( a );
+ if ( 0x402F <= aExp ) {
+ if ( 0x406F <= aExp ) {
+ if ( ( aExp == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
+ ) {
+ return propagateFloat128NaN(a, a, status);
+ }
+ return a;
+ }
+ lastBitMask = 1;
+ lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ if ( lastBitMask ) {
+ add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else {
+ if ( (int64_t) z.low < 0 ) {
+ ++z.high;
+ if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
+ }
+ }
+ break;
+ case float_round_ties_away:
+ if (lastBitMask) {
+ add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
+ } else {
+ if ((int64_t) z.low < 0) {
+ ++z.high;
+ }
+ }
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ if (!extractFloat128Sign(z)) {
+ add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
+ }
+ break;
+ case float_round_down:
+ if (extractFloat128Sign(z)) {
+ add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
+ }
+ break;
+ default:
+ abort();
+ }
+ z.low &= ~ roundBitsMask;
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+ status->float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat128Sign( a );
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE )
+ && ( extractFloat128Frac0( a )
+ | extractFloat128Frac1( a ) )
+ ) {
+ return packFloat128( aSign, 0x3FFF, 0, 0 );
+ }
+ break;
+ case float_round_ties_away:
+ if (aExp == 0x3FFE) {
+ return packFloat128(aSign, 0x3FFF, 0, 0);
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
+ : packFloat128( 0, 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloat128( 1, 0, 0, 0 )
+ : packFloat128( 0, 0x3FFF, 0, 0 );
+ }
+ return packFloat128( aSign, 0, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x402F - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z.low = 0;
+ z.high = a.high;
+ switch (status->float_rounding_mode) {
+ case float_round_nearest_even:
+ z.high += lastBitMask>>1;
+ if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+ z.high &= ~ lastBitMask;
+ }
+ break;
+ case float_round_ties_away:
+ z.high += lastBitMask>>1;
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ if (!extractFloat128Sign(z)) {
+ z.high |= ( a.low != 0 );
+ z.high += roundBitsMask;
+ }
+ break;
+ case float_round_down:
+ if (extractFloat128Sign(z)) {
+ z.high |= (a.low != 0);
+ z.high += roundBitsMask;
+ }
+ break;
+ default:
+ abort();
+ }
+ z.high &= ~ roundBitsMask;
+ }
+ if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+ status->float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the quadruple-precision
+| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+| before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
+ float_status *status)
+{
+ int32 aExp, bExp, zExp;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ int32 expDiff;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if (aSig0 | aSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return a;
+ }
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ if ( aExp == 0 ) {
+ if (status->flush_to_zero) {
+ if (zSig0 | zSig1) {
+ float_raise(float_flag_output_denormal, status);
+ }
+ return packFloat128(zSign, 0, 0, 0);
+ }
+ return packFloat128( zSign, 0, zSig0, zSig1 );
+ }
+ zSig2 = 0;
+ zSig0 |= LIT64( 0x0002000000000000 );
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ --zExp;
+ if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
+ ++zExp;
+ shiftRight1:
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+ return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the quadruple-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
+ float_status *status)
+{
+ int32 aExp, bExp, zExp;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+ int32 expDiff;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ float_raise(float_flag_invalid, status);
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig0 < aSig0 ) goto aBigger;
+ if ( aSig0 < bSig0 ) goto bBigger;
+ if ( bSig1 < aSig1 ) goto aBigger;
+ if ( aSig1 < bSig1 ) goto bBigger;
+ return packFloat128(status->float_rounding_mode == float_round_down,
+ 0, 0, 0);
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ bSig0 |= LIT64( 0x4000000000000000 );
+ bBigger:
+ sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if (aSig0 | aSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aBigger:
+ sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
+ status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the quadruple-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_add(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat128Sigs(a, b, aSign, status);
+ }
+ else {
+ return subFloat128Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the quadruple-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sub(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat128Sigs(a, b, aSign, status);
+ }
+ else {
+ return addFloat128Sigs(a, b, aSign, status);
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the quadruple-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_mul(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ zExp = aExp + bExp - 0x4000;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
+ mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+ add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zSig2 |= ( zSig3 != 0 );
+ if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ ++zExp;
+ }
+ return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the quadruple-precision floating-point value
+| `a' by the corresponding value `b'. The operation is performed according to
+| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_div(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if (aSig0 | aSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ goto invalid;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return packFloat128( zSign, 0, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ float_raise(float_flag_divbyzero, status);
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = aExp - bExp + 0x3FFD;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
+ shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+ sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig0;
+ add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+ }
+ zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
+ if ( ( zSig1 & 0x3FFF ) <= 4 ) {
+ mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+ sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (int64_t) rem1 < 0 ) {
+ --zSig1;
+ add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the quadruple-precision floating-point value `a'
+| with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_rem(float128 a, float128 b, float_status *status)
+{
+ flag aSign, zSign;
+ int32 aExp, bExp, expDiff;
+ uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+ uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
+ int64_t sigMean0;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if (bSig0 | bSig1) {
+ return propagateFloat128NaN(a, b, status);
+ }
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return a;
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ expDiff = aExp - bExp;
+ if ( expDiff < -1 ) return a;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ),
+ aSig1,
+ 15 - ( expDiff < 0 ),
+ &aSig0,
+ &aSig1
+ );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ q = le128( bSig0, bSig1, aSig0, aSig1 );
+ if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
+ shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
+ sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+ expDiff -= 61;
+ }
+ if ( -64 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ q >>= - expDiff;
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ expDiff += 52;
+ if ( expDiff < 0 ) {
+ shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ }
+ else {
+ shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+ }
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+ }
+ else {
+ shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ }
+ do {
+ alternateASig0 = aSig0;
+ alternateASig1 = aSig1;
+ ++q;
+ sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ } while ( 0 <= (int64_t) aSig0 );
+ add128(
+ aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
+ if ( ( sigMean0 < 0 )
+ || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ }
+ zSign = ( (int64_t) aSig0 < 0 );
+ if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+ return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
+ status);
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the quadruple-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sqrt(float128 a, float_status *status)
+{
+ flag aSign;
+ int32 aExp, zExp;
+ uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if (aSig0 | aSig1) {
+ return propagateFloat128NaN(a, a, status);
+ }
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+ float_raise(float_flag_invalid, status);
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ zSig0 = estimateSqrt32( aExp, aSig0>>17 );
+ shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (int64_t) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & 0x1FFF ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (int64_t) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_eq(float128 a, float128 b, float_status *status)
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_le(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_lt(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered(float128 a, float128 b, float_status *status)
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise(float_flag_invalid, status);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_eq_quiet(float128 a, float128 b, float_status *status)
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_le_quiet(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_lt_quiet(float128 a, float128 b, float_status *status)
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered_quiet(float128 a, float128 b, float_status *status)
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* misc functions */
+float32 uint32_to_float32(uint32_t a, float_status *status)
+{
+ return int64_to_float32(a, status);
+}
+
+float64 uint32_to_float64(uint32_t a, float_status *status)
+{
+ return int64_to_float64(a, status);
+}
+
+uint32 float32_to_uint32(float32 a, float_status *status)
+{
+ int64_t v;
+ uint32 res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float32_to_int64(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffffffff) {
+ res = 0xffffffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint32 float32_to_uint32_round_to_zero(float32 a, float_status *status)
+{
+ int64_t v;
+ uint32 res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float32_to_int64_round_to_zero(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffffffff) {
+ res = 0xffffffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+int_fast16_t float32_to_int16(float32 a, float_status *status)
+{
+ int32_t v;
+ int_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float32_to_int32(a, status);
+ if (v < -0x8000) {
+ res = -0x8000;
+ } else if (v > 0x7fff) {
+ res = 0x7fff;
+ } else {
+ return v;
+ }
+
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint_fast16_t float32_to_uint16(float32 a, float_status *status)
+{
+ int32_t v;
+ uint_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float32_to_int32(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ } else {
+ return v;
+ }
+
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint_fast16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
+{
+ int64_t v;
+ uint_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float32_to_int64_round_to_zero(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint32 float64_to_uint32(float64 a, float_status *status)
+{
+ uint64_t v;
+ uint32 res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float64_to_uint64(a, status);
+ if (v > 0xffffffff) {
+ res = 0xffffffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint32 float64_to_uint32_round_to_zero(float64 a, float_status *status)
+{
+ uint64_t v;
+ uint32 res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float64_to_uint64_round_to_zero(a, status);
+ if (v > 0xffffffff) {
+ res = 0xffffffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+int_fast16_t float64_to_int16(float64 a, float_status *status)
+{
+ int64_t v;
+ int_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float64_to_int32(a, status);
+ if (v < -0x8000) {
+ res = -0x8000;
+ } else if (v > 0x7fff) {
+ res = 0x7fff;
+ } else {
+ return v;
+ }
+
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint_fast16_t float64_to_uint16(float64 a, float_status *status)
+{
+ int64_t v;
+ uint_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float64_to_int32(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ } else {
+ return v;
+ }
+
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+uint_fast16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
+{
+ int64_t v;
+ uint_fast16_t res;
+ int old_exc_flags = get_float_exception_flags(status);
+
+ v = float64_to_int64_round_to_zero(a, status);
+ if (v < 0) {
+ res = 0;
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ } else {
+ return v;
+ }
+ set_float_exception_flags(old_exc_flags, status);
+ float_raise(float_flag_invalid, status);
+ return res;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 64-bit unsigned integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. If the conversion overflows, the
+| largest unsigned integer is returned. If 'a' is negative, the value is
+| rounded and zero is returned; negative values that do not round to zero
+| will raise the inexact exception.
+*----------------------------------------------------------------------------*/
+
+uint64_t float64_to_uint64(float64 a, float_status *status)
+{
+ flag aSign;
+ int_fast16_t aExp, shiftCount;
+ uint64_t aSig, aSigExtra;
+ a = float64_squash_input_denormal(a, status);
+
+ aSig = extractFloat64Frac(a);
+ aExp = extractFloat64Exp(a);
+ aSign = extractFloat64Sign(a);
+ if (aSign && (aExp > 1022)) {
+ float_raise(float_flag_invalid, status);
+ if (float64_is_any_nan(a)) {
+ return LIT64(0xFFFFFFFFFFFFFFFF);
+ } else {
+ return 0;
+ }
+ }
+ if (aExp) {
+ aSig |= LIT64(0x0010000000000000);
+ }
+ shiftCount = 0x433 - aExp;
+ if (shiftCount <= 0) {
+ if (0x43E < aExp) {
+ float_raise(float_flag_invalid, status);
+ return LIT64(0xFFFFFFFFFFFFFFFF);
+ }
+ aSigExtra = 0;
+ aSig <<= -shiftCount;
+ } else {
+ shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
+ }
+ return roundAndPackUint64(aSign, aSig, aSigExtra, status);
+}
+
+uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
+{
+ signed char current_rounding_mode = status->float_rounding_mode;
+ set_float_rounding_mode(float_round_to_zero, status);
+ int64_t v = float64_to_uint64(a, status);
+ set_float_rounding_mode(current_rounding_mode, status);
+ return v;
+}
+
+#define COMPARE(s, nan_exp) \
+static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
+ int is_quiet, float_status *status) \
+{ \
+ flag aSign, bSign; \
+ uint ## s ## _t av, bv; \
+ a = float ## s ## _squash_input_denormal(a, status); \
+ b = float ## s ## _squash_input_denormal(b, status); \
+ \
+ if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
+ extractFloat ## s ## Frac( a ) ) || \
+ ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
+ extractFloat ## s ## Frac( b ) )) { \
+ if (!is_quiet || \
+ float ## s ## _is_signaling_nan( a ) || \
+ float ## s ## _is_signaling_nan( b ) ) { \
+ float_raise(float_flag_invalid, status); \
+ } \
+ return float_relation_unordered; \
+ } \
+ aSign = extractFloat ## s ## Sign( a ); \
+ bSign = extractFloat ## s ## Sign( b ); \
+ av = float ## s ## _val(a); \
+ bv = float ## s ## _val(b); \
+ if ( aSign != bSign ) { \
+ if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
+ /* zero case */ \
+ return float_relation_equal; \
+ } else { \
+ return 1 - (2 * aSign); \
+ } \
+ } else { \
+ if (av == bv) { \
+ return float_relation_equal; \
+ } else { \
+ return 1 - 2 * (aSign ^ ( av < bv )); \
+ } \
+ } \
+} \
+ \
+int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
+{ \
+ return float ## s ## _compare_internal(a, b, 0, status); \
+} \
+ \
+int float ## s ## _compare_quiet(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _compare_internal(a, b, 1, status); \
+}
+
+COMPARE(32, 0xff)
+COMPARE(64, 0x7ff)
+
+static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
+ int is_quiet, float_status *status)
+{
+ flag aSign, bSign;
+
+ if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
+ ( extractFloatx80Frac( a )<<1 ) ) ||
+ ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
+ ( extractFloatx80Frac( b )<<1 ) )) {
+ if (!is_quiet ||
+ floatx80_is_signaling_nan( a ) ||
+ floatx80_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return float_relation_unordered;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+
+ if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
+ ( ( a.low | b.low ) == 0 ) ) {
+ /* zero case */
+ return float_relation_equal;
+ } else {
+ return 1 - (2 * aSign);
+ }
+ } else {
+ if (a.low == b.low && a.high == b.high) {
+ return float_relation_equal;
+ } else {
+ return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
+ }
+ }
+}
+
+int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
+{
+ return floatx80_compare_internal(a, b, 0, status);
+}
+
+int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
+{
+ return floatx80_compare_internal(a, b, 1, status);
+}
+
+static inline int float128_compare_internal(float128 a, float128 b,
+ int is_quiet, float_status *status)
+{
+ flag aSign, bSign;
+
+ if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
+ ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
+ ( ( extractFloat128Exp( b ) == 0x7fff ) &&
+ ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
+ if (!is_quiet ||
+ float128_is_signaling_nan( a ) ||
+ float128_is_signaling_nan( b ) ) {
+ float_raise(float_flag_invalid, status);
+ }
+ return float_relation_unordered;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
+ /* zero case */
+ return float_relation_equal;
+ } else {
+ return 1 - (2 * aSign);
+ }
+ } else {
+ if (a.low == b.low && a.high == b.high) {
+ return float_relation_equal;
+ } else {
+ return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
+ }
+ }
+}
+
+int float128_compare(float128 a, float128 b, float_status *status)
+{
+ return float128_compare_internal(a, b, 0, status);
+}
+
+int float128_compare_quiet(float128 a, float128 b, float_status *status)
+{
+ return float128_compare_internal(a, b, 1, status);
+}
+
+/* min() and max() functions. These can't be implemented as
+ * 'compare and pick one input' because that would mishandle
+ * NaNs and +0 vs -0.
+ *
+ * minnum() and maxnum() functions. These are similar to the min()
+ * and max() functions but if one of the arguments is a QNaN and
+ * the other is numerical then the numerical argument is returned.
+ * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
+ * and maxNum() operations. min() and max() are the typical min/max
+ * semantics provided by many CPUs which predate that specification.
+ *
+ * minnummag() and maxnummag() functions correspond to minNumMag()
+ * and minNumMag() from the IEEE-754 2008.
+ */
+#define MINMAX(s) \
+static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \
+ int ismin, int isieee, \
+ int ismag, \
+ float_status *status) \
+{ \
+ flag aSign, bSign; \
+ uint ## s ## _t av, bv, aav, abv; \
+ a = float ## s ## _squash_input_denormal(a, status); \
+ b = float ## s ## _squash_input_denormal(b, status); \
+ if (float ## s ## _is_any_nan(a) || \
+ float ## s ## _is_any_nan(b)) { \
+ if (isieee) { \
+ if (float ## s ## _is_quiet_nan(a) && \
+ !float ## s ##_is_any_nan(b)) { \
+ return b; \
+ } else if (float ## s ## _is_quiet_nan(b) && \
+ !float ## s ## _is_any_nan(a)) { \
+ return a; \
+ } \
+ } \
+ return propagateFloat ## s ## NaN(a, b, status); \
+ } \
+ aSign = extractFloat ## s ## Sign(a); \
+ bSign = extractFloat ## s ## Sign(b); \
+ av = float ## s ## _val(a); \
+ bv = float ## s ## _val(b); \
+ if (ismag) { \
+ aav = float ## s ## _abs(av); \
+ abv = float ## s ## _abs(bv); \
+ if (aav != abv) { \
+ if (ismin) { \
+ return (aav < abv) ? a : b; \
+ } else { \
+ return (aav < abv) ? b : a; \
+ } \
+ } \
+ } \
+ if (aSign != bSign) { \
+ if (ismin) { \
+ return aSign ? a : b; \
+ } else { \
+ return aSign ? b : a; \
+ } \
+ } else { \
+ if (ismin) { \
+ return (aSign ^ (av < bv)) ? a : b; \
+ } else { \
+ return (aSign ^ (av < bv)) ? b : a; \
+ } \
+ } \
+} \
+ \
+float ## s float ## s ## _min(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 1, 0, 0, status); \
+} \
+ \
+float ## s float ## s ## _max(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 0, 0, 0, status); \
+} \
+ \
+float ## s float ## s ## _minnum(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 1, 1, 0, status); \
+} \
+ \
+float ## s float ## s ## _maxnum(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 0, 1, 0, status); \
+} \
+ \
+float ## s float ## s ## _minnummag(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 1, 1, 1, status); \
+} \
+ \
+float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \
+ float_status *status) \
+{ \
+ return float ## s ## _minmax(a, b, 0, 1, 1, status); \
+}
+
+MINMAX(32)
+MINMAX(64)
+
+
+/* Multiply A by 2 raised to the power N. */
+float32 float32_scalbn(float32 a, int n, float_status *status)
+{
+ flag aSign;
+ int16_t aExp;
+ uint32_t aSig;
+
+ a = float32_squash_input_denormal(a, status);
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+
+ if ( aExp == 0xFF ) {
+ if ( aSig ) {
+ return propagateFloat32NaN(a, a, status);
+ }
+ return a;
+ }
+ if (aExp != 0) {
+ aSig |= 0x00800000;
+ } else if (aSig == 0) {
+ return a;
+ } else {
+ aExp++;
+ }
+
+ if (n > 0x200) {
+ n = 0x200;
+ } else if (n < -0x200) {
+ n = -0x200;
+ }
+
+ aExp += n - 1;
+ aSig <<= 7;
+ return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
+}
+
+float64 float64_scalbn(float64 a, int n, float_status *status)
+{
+ flag aSign;
+ int16_t aExp;
+ uint64_t aSig;
+
+ a = float64_squash_input_denormal(a, status);
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) {
+ return propagateFloat64NaN(a, a, status);
+ }
+ return a;
+ }
+ if (aExp != 0) {
+ aSig |= LIT64( 0x0010000000000000 );
+ } else if (aSig == 0) {
+ return a;
+ } else {
+ aExp++;
+ }
+
+ if (n > 0x1000) {
+ n = 0x1000;
+ } else if (n < -0x1000) {
+ n = -0x1000;
+ }
+
+ aExp += n - 1;
+ aSig <<= 10;
+ return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
+}
+
+floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
+{
+ flag aSign;
+ int32_t aExp;
+ uint64_t aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+
+ if ( aExp == 0x7FFF ) {
+ if ( aSig<<1 ) {
+ return propagateFloatx80NaN(a, a, status);
+ }
+ return a;
+ }
+
+ if (aExp == 0) {
+ if (aSig == 0) {
+ return a;
+ }
+ aExp++;
+ }
+
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
+ aExp += n;
+ return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
+ aSign, aExp, aSig, 0, status);
+}
+
+float128 float128_scalbn(float128 a, int n, float_status *status)
+{
+ flag aSign;
+ int32_t aExp;
+ uint64_t aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return propagateFloat128NaN(a, a, status);
+ }
+ return a;
+ }
+ if (aExp != 0) {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ } else if (aSig0 == 0 && aSig1 == 0) {
+ return a;
+ } else {
+ aExp++;
+ }
+
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
+ aExp += n - 1;
+ return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
+ , status);
+
+}