summaryrefslogtreecommitdiffstats
path: root/qemu/exec.c
diff options
context:
space:
mode:
authorRajithaY <rajithax.yerrumsetty@intel.com>2017-04-25 03:31:15 -0700
committerRajitha Yerrumchetty <rajithax.yerrumsetty@intel.com>2017-05-22 06:48:08 +0000
commitbb756eebdac6fd24e8919e2c43f7d2c8c4091f59 (patch)
treeca11e03542edf2d8f631efeca5e1626d211107e3 /qemu/exec.c
parenta14b48d18a9ed03ec191cf16b162206998a895ce (diff)
Adding qemu as a submodule of KVMFORNFV
This Patch includes the changes to add qemu as a submodule to kvmfornfv repo and make use of the updated latest qemu for the execution of all testcase Change-Id: I1280af507a857675c7f81d30c95255635667bdd7 Signed-off-by:RajithaY<rajithax.yerrumsetty@intel.com>
Diffstat (limited to 'qemu/exec.c')
-rw-r--r--qemu/exec.c3766
1 files changed, 0 insertions, 3766 deletions
diff --git a/qemu/exec.c b/qemu/exec.c
deleted file mode 100644
index c4f903618..000000000
--- a/qemu/exec.c
+++ /dev/null
@@ -1,3766 +0,0 @@
-/*
- * Virtual page mapping
- *
- * Copyright (c) 2003 Fabrice Bellard
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-#include "qemu/osdep.h"
-#include "qapi/error.h"
-#ifndef _WIN32
-#include <sys/mman.h>
-#endif
-
-#include "qemu/cutils.h"
-#include "cpu.h"
-#include "tcg.h"
-#include "hw/hw.h"
-#if !defined(CONFIG_USER_ONLY)
-#include "hw/boards.h"
-#endif
-#include "hw/qdev.h"
-#include "sysemu/kvm.h"
-#include "sysemu/sysemu.h"
-#include "hw/xen/xen.h"
-#include "qemu/timer.h"
-#include "qemu/config-file.h"
-#include "qemu/error-report.h"
-#include "exec/memory.h"
-#include "sysemu/dma.h"
-#include "exec/address-spaces.h"
-#if defined(CONFIG_USER_ONLY)
-#include <qemu.h>
-#else /* !CONFIG_USER_ONLY */
-#include "sysemu/xen-mapcache.h"
-#include "trace.h"
-#endif
-#include "exec/cpu-all.h"
-#include "qemu/rcu_queue.h"
-#include "qemu/main-loop.h"
-#include "translate-all.h"
-#include "sysemu/replay.h"
-
-#include "exec/memory-internal.h"
-#include "exec/ram_addr.h"
-#include "exec/log.h"
-
-#include "qemu/range.h"
-#ifndef _WIN32
-#include "qemu/mmap-alloc.h"
-#endif
-
-//#define DEBUG_SUBPAGE
-
-#if !defined(CONFIG_USER_ONLY)
-/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
- * are protected by the ramlist lock.
- */
-RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
-
-static MemoryRegion *system_memory;
-static MemoryRegion *system_io;
-
-AddressSpace address_space_io;
-AddressSpace address_space_memory;
-
-MemoryRegion io_mem_rom, io_mem_notdirty;
-static MemoryRegion io_mem_unassigned;
-
-/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
-#define RAM_PREALLOC (1 << 0)
-
-/* RAM is mmap-ed with MAP_SHARED */
-#define RAM_SHARED (1 << 1)
-
-/* Only a portion of RAM (used_length) is actually used, and migrated.
- * This used_length size can change across reboots.
- */
-#define RAM_RESIZEABLE (1 << 2)
-
-#endif
-
-struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
-/* current CPU in the current thread. It is only valid inside
- cpu_exec() */
-__thread CPUState *current_cpu;
-/* 0 = Do not count executed instructions.
- 1 = Precise instruction counting.
- 2 = Adaptive rate instruction counting. */
-int use_icount;
-
-#if !defined(CONFIG_USER_ONLY)
-
-typedef struct PhysPageEntry PhysPageEntry;
-
-struct PhysPageEntry {
- /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
- uint32_t skip : 6;
- /* index into phys_sections (!skip) or phys_map_nodes (skip) */
- uint32_t ptr : 26;
-};
-
-#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
-
-/* Size of the L2 (and L3, etc) page tables. */
-#define ADDR_SPACE_BITS 64
-
-#define P_L2_BITS 9
-#define P_L2_SIZE (1 << P_L2_BITS)
-
-#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
-
-typedef PhysPageEntry Node[P_L2_SIZE];
-
-typedef struct PhysPageMap {
- struct rcu_head rcu;
-
- unsigned sections_nb;
- unsigned sections_nb_alloc;
- unsigned nodes_nb;
- unsigned nodes_nb_alloc;
- Node *nodes;
- MemoryRegionSection *sections;
-} PhysPageMap;
-
-struct AddressSpaceDispatch {
- struct rcu_head rcu;
-
- MemoryRegionSection *mru_section;
- /* This is a multi-level map on the physical address space.
- * The bottom level has pointers to MemoryRegionSections.
- */
- PhysPageEntry phys_map;
- PhysPageMap map;
- AddressSpace *as;
-};
-
-#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
-typedef struct subpage_t {
- MemoryRegion iomem;
- AddressSpace *as;
- hwaddr base;
- uint16_t sub_section[TARGET_PAGE_SIZE];
-} subpage_t;
-
-#define PHYS_SECTION_UNASSIGNED 0
-#define PHYS_SECTION_NOTDIRTY 1
-#define PHYS_SECTION_ROM 2
-#define PHYS_SECTION_WATCH 3
-
-static void io_mem_init(void);
-static void memory_map_init(void);
-static void tcg_commit(MemoryListener *listener);
-
-static MemoryRegion io_mem_watch;
-
-/**
- * CPUAddressSpace: all the information a CPU needs about an AddressSpace
- * @cpu: the CPU whose AddressSpace this is
- * @as: the AddressSpace itself
- * @memory_dispatch: its dispatch pointer (cached, RCU protected)
- * @tcg_as_listener: listener for tracking changes to the AddressSpace
- */
-struct CPUAddressSpace {
- CPUState *cpu;
- AddressSpace *as;
- struct AddressSpaceDispatch *memory_dispatch;
- MemoryListener tcg_as_listener;
-};
-
-#endif
-
-#if !defined(CONFIG_USER_ONLY)
-
-static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
-{
- if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
- map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
- map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
- map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
- }
-}
-
-static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
-{
- unsigned i;
- uint32_t ret;
- PhysPageEntry e;
- PhysPageEntry *p;
-
- ret = map->nodes_nb++;
- p = map->nodes[ret];
- assert(ret != PHYS_MAP_NODE_NIL);
- assert(ret != map->nodes_nb_alloc);
-
- e.skip = leaf ? 0 : 1;
- e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
- for (i = 0; i < P_L2_SIZE; ++i) {
- memcpy(&p[i], &e, sizeof(e));
- }
- return ret;
-}
-
-static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
- hwaddr *index, hwaddr *nb, uint16_t leaf,
- int level)
-{
- PhysPageEntry *p;
- hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
-
- if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
- lp->ptr = phys_map_node_alloc(map, level == 0);
- }
- p = map->nodes[lp->ptr];
- lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
-
- while (*nb && lp < &p[P_L2_SIZE]) {
- if ((*index & (step - 1)) == 0 && *nb >= step) {
- lp->skip = 0;
- lp->ptr = leaf;
- *index += step;
- *nb -= step;
- } else {
- phys_page_set_level(map, lp, index, nb, leaf, level - 1);
- }
- ++lp;
- }
-}
-
-static void phys_page_set(AddressSpaceDispatch *d,
- hwaddr index, hwaddr nb,
- uint16_t leaf)
-{
- /* Wildly overreserve - it doesn't matter much. */
- phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
-
- phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
-}
-
-/* Compact a non leaf page entry. Simply detect that the entry has a single child,
- * and update our entry so we can skip it and go directly to the destination.
- */
-static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
-{
- unsigned valid_ptr = P_L2_SIZE;
- int valid = 0;
- PhysPageEntry *p;
- int i;
-
- if (lp->ptr == PHYS_MAP_NODE_NIL) {
- return;
- }
-
- p = nodes[lp->ptr];
- for (i = 0; i < P_L2_SIZE; i++) {
- if (p[i].ptr == PHYS_MAP_NODE_NIL) {
- continue;
- }
-
- valid_ptr = i;
- valid++;
- if (p[i].skip) {
- phys_page_compact(&p[i], nodes, compacted);
- }
- }
-
- /* We can only compress if there's only one child. */
- if (valid != 1) {
- return;
- }
-
- assert(valid_ptr < P_L2_SIZE);
-
- /* Don't compress if it won't fit in the # of bits we have. */
- if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
- return;
- }
-
- lp->ptr = p[valid_ptr].ptr;
- if (!p[valid_ptr].skip) {
- /* If our only child is a leaf, make this a leaf. */
- /* By design, we should have made this node a leaf to begin with so we
- * should never reach here.
- * But since it's so simple to handle this, let's do it just in case we
- * change this rule.
- */
- lp->skip = 0;
- } else {
- lp->skip += p[valid_ptr].skip;
- }
-}
-
-static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
-{
- DECLARE_BITMAP(compacted, nodes_nb);
-
- if (d->phys_map.skip) {
- phys_page_compact(&d->phys_map, d->map.nodes, compacted);
- }
-}
-
-static inline bool section_covers_addr(const MemoryRegionSection *section,
- hwaddr addr)
-{
- /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
- * the section must cover the entire address space.
- */
- return section->size.hi ||
- range_covers_byte(section->offset_within_address_space,
- section->size.lo, addr);
-}
-
-static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
- Node *nodes, MemoryRegionSection *sections)
-{
- PhysPageEntry *p;
- hwaddr index = addr >> TARGET_PAGE_BITS;
- int i;
-
- for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
- if (lp.ptr == PHYS_MAP_NODE_NIL) {
- return &sections[PHYS_SECTION_UNASSIGNED];
- }
- p = nodes[lp.ptr];
- lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
- }
-
- if (section_covers_addr(&sections[lp.ptr], addr)) {
- return &sections[lp.ptr];
- } else {
- return &sections[PHYS_SECTION_UNASSIGNED];
- }
-}
-
-bool memory_region_is_unassigned(MemoryRegion *mr)
-{
- return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
- && mr != &io_mem_watch;
-}
-
-/* Called from RCU critical section */
-static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
- hwaddr addr,
- bool resolve_subpage)
-{
- MemoryRegionSection *section = atomic_read(&d->mru_section);
- subpage_t *subpage;
- bool update;
-
- if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
- section_covers_addr(section, addr)) {
- update = false;
- } else {
- section = phys_page_find(d->phys_map, addr, d->map.nodes,
- d->map.sections);
- update = true;
- }
- if (resolve_subpage && section->mr->subpage) {
- subpage = container_of(section->mr, subpage_t, iomem);
- section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
- }
- if (update) {
- atomic_set(&d->mru_section, section);
- }
- return section;
-}
-
-/* Called from RCU critical section */
-static MemoryRegionSection *
-address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
- hwaddr *plen, bool resolve_subpage)
-{
- MemoryRegionSection *section;
- MemoryRegion *mr;
- Int128 diff;
-
- section = address_space_lookup_region(d, addr, resolve_subpage);
- /* Compute offset within MemoryRegionSection */
- addr -= section->offset_within_address_space;
-
- /* Compute offset within MemoryRegion */
- *xlat = addr + section->offset_within_region;
-
- mr = section->mr;
-
- /* MMIO registers can be expected to perform full-width accesses based only
- * on their address, without considering adjacent registers that could
- * decode to completely different MemoryRegions. When such registers
- * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
- * regions overlap wildly. For this reason we cannot clamp the accesses
- * here.
- *
- * If the length is small (as is the case for address_space_ldl/stl),
- * everything works fine. If the incoming length is large, however,
- * the caller really has to do the clamping through memory_access_size.
- */
- if (memory_region_is_ram(mr)) {
- diff = int128_sub(section->size, int128_make64(addr));
- *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
- }
- return section;
-}
-
-/* Called from RCU critical section */
-MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
- hwaddr *xlat, hwaddr *plen,
- bool is_write)
-{
- IOMMUTLBEntry iotlb;
- MemoryRegionSection *section;
- MemoryRegion *mr;
-
- for (;;) {
- AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
- section = address_space_translate_internal(d, addr, &addr, plen, true);
- mr = section->mr;
-
- if (!mr->iommu_ops) {
- break;
- }
-
- iotlb = mr->iommu_ops->translate(mr, addr, is_write);
- addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
- | (addr & iotlb.addr_mask));
- *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
- if (!(iotlb.perm & (1 << is_write))) {
- mr = &io_mem_unassigned;
- break;
- }
-
- as = iotlb.target_as;
- }
-
- if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
- hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
- *plen = MIN(page, *plen);
- }
-
- *xlat = addr;
- return mr;
-}
-
-/* Called from RCU critical section */
-MemoryRegionSection *
-address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
- hwaddr *xlat, hwaddr *plen)
-{
- MemoryRegionSection *section;
- AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
-
- section = address_space_translate_internal(d, addr, xlat, plen, false);
-
- assert(!section->mr->iommu_ops);
- return section;
-}
-#endif
-
-#if !defined(CONFIG_USER_ONLY)
-
-static int cpu_common_post_load(void *opaque, int version_id)
-{
- CPUState *cpu = opaque;
-
- /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
- version_id is increased. */
- cpu->interrupt_request &= ~0x01;
- tlb_flush(cpu, 1);
-
- return 0;
-}
-
-static int cpu_common_pre_load(void *opaque)
-{
- CPUState *cpu = opaque;
-
- cpu->exception_index = -1;
-
- return 0;
-}
-
-static bool cpu_common_exception_index_needed(void *opaque)
-{
- CPUState *cpu = opaque;
-
- return tcg_enabled() && cpu->exception_index != -1;
-}
-
-static const VMStateDescription vmstate_cpu_common_exception_index = {
- .name = "cpu_common/exception_index",
- .version_id = 1,
- .minimum_version_id = 1,
- .needed = cpu_common_exception_index_needed,
- .fields = (VMStateField[]) {
- VMSTATE_INT32(exception_index, CPUState),
- VMSTATE_END_OF_LIST()
- }
-};
-
-static bool cpu_common_crash_occurred_needed(void *opaque)
-{
- CPUState *cpu = opaque;
-
- return cpu->crash_occurred;
-}
-
-static const VMStateDescription vmstate_cpu_common_crash_occurred = {
- .name = "cpu_common/crash_occurred",
- .version_id = 1,
- .minimum_version_id = 1,
- .needed = cpu_common_crash_occurred_needed,
- .fields = (VMStateField[]) {
- VMSTATE_BOOL(crash_occurred, CPUState),
- VMSTATE_END_OF_LIST()
- }
-};
-
-const VMStateDescription vmstate_cpu_common = {
- .name = "cpu_common",
- .version_id = 1,
- .minimum_version_id = 1,
- .pre_load = cpu_common_pre_load,
- .post_load = cpu_common_post_load,
- .fields = (VMStateField[]) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
- VMSTATE_END_OF_LIST()
- },
- .subsections = (const VMStateDescription*[]) {
- &vmstate_cpu_common_exception_index,
- &vmstate_cpu_common_crash_occurred,
- NULL
- }
-};
-
-#endif
-
-CPUState *qemu_get_cpu(int index)
-{
- CPUState *cpu;
-
- CPU_FOREACH(cpu) {
- if (cpu->cpu_index == index) {
- return cpu;
- }
- }
-
- return NULL;
-}
-
-#if !defined(CONFIG_USER_ONLY)
-void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
-{
- CPUAddressSpace *newas;
-
- /* Target code should have set num_ases before calling us */
- assert(asidx < cpu->num_ases);
-
- if (asidx == 0) {
- /* address space 0 gets the convenience alias */
- cpu->as = as;
- }
-
- /* KVM cannot currently support multiple address spaces. */
- assert(asidx == 0 || !kvm_enabled());
-
- if (!cpu->cpu_ases) {
- cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
- }
-
- newas = &cpu->cpu_ases[asidx];
- newas->cpu = cpu;
- newas->as = as;
- if (tcg_enabled()) {
- newas->tcg_as_listener.commit = tcg_commit;
- memory_listener_register(&newas->tcg_as_listener, as);
- }
-}
-
-AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
-{
- /* Return the AddressSpace corresponding to the specified index */
- return cpu->cpu_ases[asidx].as;
-}
-#endif
-
-#ifndef CONFIG_USER_ONLY
-static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
-
-static int cpu_get_free_index(Error **errp)
-{
- int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
-
- if (cpu >= MAX_CPUMASK_BITS) {
- error_setg(errp, "Trying to use more CPUs than max of %d",
- MAX_CPUMASK_BITS);
- return -1;
- }
-
- bitmap_set(cpu_index_map, cpu, 1);
- return cpu;
-}
-
-void cpu_exec_exit(CPUState *cpu)
-{
- if (cpu->cpu_index == -1) {
- /* cpu_index was never allocated by this @cpu or was already freed. */
- return;
- }
-
- bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
- cpu->cpu_index = -1;
-}
-#else
-
-static int cpu_get_free_index(Error **errp)
-{
- CPUState *some_cpu;
- int cpu_index = 0;
-
- CPU_FOREACH(some_cpu) {
- cpu_index++;
- }
- return cpu_index;
-}
-
-void cpu_exec_exit(CPUState *cpu)
-{
-}
-#endif
-
-void cpu_exec_init(CPUState *cpu, Error **errp)
-{
- CPUClass *cc = CPU_GET_CLASS(cpu);
- int cpu_index;
- Error *local_err = NULL;
-
- cpu->as = NULL;
- cpu->num_ases = 0;
-
-#ifndef CONFIG_USER_ONLY
- cpu->thread_id = qemu_get_thread_id();
-
- /* This is a softmmu CPU object, so create a property for it
- * so users can wire up its memory. (This can't go in qom/cpu.c
- * because that file is compiled only once for both user-mode
- * and system builds.) The default if no link is set up is to use
- * the system address space.
- */
- object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
- (Object **)&cpu->memory,
- qdev_prop_allow_set_link_before_realize,
- OBJ_PROP_LINK_UNREF_ON_RELEASE,
- &error_abort);
- cpu->memory = system_memory;
- object_ref(OBJECT(cpu->memory));
-#endif
-
-#if defined(CONFIG_USER_ONLY)
- cpu_list_lock();
-#endif
- cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
- if (local_err) {
- error_propagate(errp, local_err);
-#if defined(CONFIG_USER_ONLY)
- cpu_list_unlock();
-#endif
- return;
- }
- QTAILQ_INSERT_TAIL(&cpus, cpu, node);
-#if defined(CONFIG_USER_ONLY)
- cpu_list_unlock();
-#endif
- if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
- vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
- }
- if (cc->vmsd != NULL) {
- vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
- }
-}
-
-#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
-{
- tb_invalidate_phys_page_range(pc, pc + 1, 0);
-}
-#else
-static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
-{
- MemTxAttrs attrs;
- hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
- int asidx = cpu_asidx_from_attrs(cpu, attrs);
- if (phys != -1) {
- tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
- phys | (pc & ~TARGET_PAGE_MASK));
- }
-}
-#endif
-
-#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
-
-{
-}
-
-int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
- int flags)
-{
- return -ENOSYS;
-}
-
-void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
-{
-}
-
-int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
- int flags, CPUWatchpoint **watchpoint)
-{
- return -ENOSYS;
-}
-#else
-/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
- int flags, CPUWatchpoint **watchpoint)
-{
- CPUWatchpoint *wp;
-
- /* forbid ranges which are empty or run off the end of the address space */
- if (len == 0 || (addr + len - 1) < addr) {
- error_report("tried to set invalid watchpoint at %"
- VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
- return -EINVAL;
- }
- wp = g_malloc(sizeof(*wp));
-
- wp->vaddr = addr;
- wp->len = len;
- wp->flags = flags;
-
- /* keep all GDB-injected watchpoints in front */
- if (flags & BP_GDB) {
- QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
- } else {
- QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
- }
-
- tlb_flush_page(cpu, addr);
-
- if (watchpoint)
- *watchpoint = wp;
- return 0;
-}
-
-/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
- int flags)
-{
- CPUWatchpoint *wp;
-
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (addr == wp->vaddr && len == wp->len
- && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
- cpu_watchpoint_remove_by_ref(cpu, wp);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
-{
- QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
-
- tlb_flush_page(cpu, watchpoint->vaddr);
-
- g_free(watchpoint);
-}
-
-/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
-{
- CPUWatchpoint *wp, *next;
-
- QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
- if (wp->flags & mask) {
- cpu_watchpoint_remove_by_ref(cpu, wp);
- }
- }
-}
-
-/* Return true if this watchpoint address matches the specified
- * access (ie the address range covered by the watchpoint overlaps
- * partially or completely with the address range covered by the
- * access).
- */
-static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
- vaddr addr,
- vaddr len)
-{
- /* We know the lengths are non-zero, but a little caution is
- * required to avoid errors in the case where the range ends
- * exactly at the top of the address space and so addr + len
- * wraps round to zero.
- */
- vaddr wpend = wp->vaddr + wp->len - 1;
- vaddr addrend = addr + len - 1;
-
- return !(addr > wpend || wp->vaddr > addrend);
-}
-
-#endif
-
-/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
- CPUBreakpoint **breakpoint)
-{
- CPUBreakpoint *bp;
-
- bp = g_malloc(sizeof(*bp));
-
- bp->pc = pc;
- bp->flags = flags;
-
- /* keep all GDB-injected breakpoints in front */
- if (flags & BP_GDB) {
- QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
- } else {
- QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
- }
-
- breakpoint_invalidate(cpu, pc);
-
- if (breakpoint) {
- *breakpoint = bp;
- }
- return 0;
-}
-
-/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
-{
- CPUBreakpoint *bp;
-
- QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
- if (bp->pc == pc && bp->flags == flags) {
- cpu_breakpoint_remove_by_ref(cpu, bp);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
-{
- QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
-
- breakpoint_invalidate(cpu, breakpoint->pc);
-
- g_free(breakpoint);
-}
-
-/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
-{
- CPUBreakpoint *bp, *next;
-
- QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
- if (bp->flags & mask) {
- cpu_breakpoint_remove_by_ref(cpu, bp);
- }
- }
-}
-
-/* enable or disable single step mode. EXCP_DEBUG is returned by the
- CPU loop after each instruction */
-void cpu_single_step(CPUState *cpu, int enabled)
-{
- if (cpu->singlestep_enabled != enabled) {
- cpu->singlestep_enabled = enabled;
- if (kvm_enabled()) {
- kvm_update_guest_debug(cpu, 0);
- } else {
- /* must flush all the translated code to avoid inconsistencies */
- /* XXX: only flush what is necessary */
- tb_flush(cpu);
- }
- }
-}
-
-void cpu_abort(CPUState *cpu, const char *fmt, ...)
-{
- va_list ap;
- va_list ap2;
-
- va_start(ap, fmt);
- va_copy(ap2, ap);
- fprintf(stderr, "qemu: fatal: ");
- vfprintf(stderr, fmt, ap);
- fprintf(stderr, "\n");
- cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
- if (qemu_log_separate()) {
- qemu_log("qemu: fatal: ");
- qemu_log_vprintf(fmt, ap2);
- qemu_log("\n");
- log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
- qemu_log_flush();
- qemu_log_close();
- }
- va_end(ap2);
- va_end(ap);
- replay_finish();
-#if defined(CONFIG_USER_ONLY)
- {
- struct sigaction act;
- sigfillset(&act.sa_mask);
- act.sa_handler = SIG_DFL;
- sigaction(SIGABRT, &act, NULL);
- }
-#endif
- abort();
-}
-
-#if !defined(CONFIG_USER_ONLY)
-/* Called from RCU critical section */
-static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
-{
- RAMBlock *block;
-
- block = atomic_rcu_read(&ram_list.mru_block);
- if (block && addr - block->offset < block->max_length) {
- return block;
- }
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- if (addr - block->offset < block->max_length) {
- goto found;
- }
- }
-
- fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
- abort();
-
-found:
- /* It is safe to write mru_block outside the iothread lock. This
- * is what happens:
- *
- * mru_block = xxx
- * rcu_read_unlock()
- * xxx removed from list
- * rcu_read_lock()
- * read mru_block
- * mru_block = NULL;
- * call_rcu(reclaim_ramblock, xxx);
- * rcu_read_unlock()
- *
- * atomic_rcu_set is not needed here. The block was already published
- * when it was placed into the list. Here we're just making an extra
- * copy of the pointer.
- */
- ram_list.mru_block = block;
- return block;
-}
-
-static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
-{
- CPUState *cpu;
- ram_addr_t start1;
- RAMBlock *block;
- ram_addr_t end;
-
- end = TARGET_PAGE_ALIGN(start + length);
- start &= TARGET_PAGE_MASK;
-
- rcu_read_lock();
- block = qemu_get_ram_block(start);
- assert(block == qemu_get_ram_block(end - 1));
- start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
- CPU_FOREACH(cpu) {
- tlb_reset_dirty(cpu, start1, length);
- }
- rcu_read_unlock();
-}
-
-/* Note: start and end must be within the same ram block. */
-bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
- ram_addr_t length,
- unsigned client)
-{
- DirtyMemoryBlocks *blocks;
- unsigned long end, page;
- bool dirty = false;
-
- if (length == 0) {
- return false;
- }
-
- end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
- page = start >> TARGET_PAGE_BITS;
-
- rcu_read_lock();
-
- blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
-
- while (page < end) {
- unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
-
- dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
- offset, num);
- page += num;
- }
-
- rcu_read_unlock();
-
- if (dirty && tcg_enabled()) {
- tlb_reset_dirty_range_all(start, length);
- }
-
- return dirty;
-}
-
-/* Called from RCU critical section */
-hwaddr memory_region_section_get_iotlb(CPUState *cpu,
- MemoryRegionSection *section,
- target_ulong vaddr,
- hwaddr paddr, hwaddr xlat,
- int prot,
- target_ulong *address)
-{
- hwaddr iotlb;
- CPUWatchpoint *wp;
-
- if (memory_region_is_ram(section->mr)) {
- /* Normal RAM. */
- iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
- + xlat;
- if (!section->readonly) {
- iotlb |= PHYS_SECTION_NOTDIRTY;
- } else {
- iotlb |= PHYS_SECTION_ROM;
- }
- } else {
- AddressSpaceDispatch *d;
-
- d = atomic_rcu_read(&section->address_space->dispatch);
- iotlb = section - d->map.sections;
- iotlb += xlat;
- }
-
- /* Make accesses to pages with watchpoints go via the
- watchpoint trap routines. */
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
- /* Avoid trapping reads of pages with a write breakpoint. */
- if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = PHYS_SECTION_WATCH + paddr;
- *address |= TLB_MMIO;
- break;
- }
- }
- }
-
- return iotlb;
-}
-#endif /* defined(CONFIG_USER_ONLY) */
-
-#if !defined(CONFIG_USER_ONLY)
-
-static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- uint16_t section);
-static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
-
-static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
- qemu_anon_ram_alloc;
-
-/*
- * Set a custom physical guest memory alloator.
- * Accelerators with unusual needs may need this. Hopefully, we can
- * get rid of it eventually.
- */
-void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
-{
- phys_mem_alloc = alloc;
-}
-
-static uint16_t phys_section_add(PhysPageMap *map,
- MemoryRegionSection *section)
-{
- /* The physical section number is ORed with a page-aligned
- * pointer to produce the iotlb entries. Thus it should
- * never overflow into the page-aligned value.
- */
- assert(map->sections_nb < TARGET_PAGE_SIZE);
-
- if (map->sections_nb == map->sections_nb_alloc) {
- map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
- map->sections = g_renew(MemoryRegionSection, map->sections,
- map->sections_nb_alloc);
- }
- map->sections[map->sections_nb] = *section;
- memory_region_ref(section->mr);
- return map->sections_nb++;
-}
-
-static void phys_section_destroy(MemoryRegion *mr)
-{
- bool have_sub_page = mr->subpage;
-
- memory_region_unref(mr);
-
- if (have_sub_page) {
- subpage_t *subpage = container_of(mr, subpage_t, iomem);
- object_unref(OBJECT(&subpage->iomem));
- g_free(subpage);
- }
-}
-
-static void phys_sections_free(PhysPageMap *map)
-{
- while (map->sections_nb > 0) {
- MemoryRegionSection *section = &map->sections[--map->sections_nb];
- phys_section_destroy(section->mr);
- }
- g_free(map->sections);
- g_free(map->nodes);
-}
-
-static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
-{
- subpage_t *subpage;
- hwaddr base = section->offset_within_address_space
- & TARGET_PAGE_MASK;
- MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
- d->map.nodes, d->map.sections);
- MemoryRegionSection subsection = {
- .offset_within_address_space = base,
- .size = int128_make64(TARGET_PAGE_SIZE),
- };
- hwaddr start, end;
-
- assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
-
- if (!(existing->mr->subpage)) {
- subpage = subpage_init(d->as, base);
- subsection.address_space = d->as;
- subsection.mr = &subpage->iomem;
- phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
- phys_section_add(&d->map, &subsection));
- } else {
- subpage = container_of(existing->mr, subpage_t, iomem);
- }
- start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
- end = start + int128_get64(section->size) - 1;
- subpage_register(subpage, start, end,
- phys_section_add(&d->map, section));
-}
-
-
-static void register_multipage(AddressSpaceDispatch *d,
- MemoryRegionSection *section)
-{
- hwaddr start_addr = section->offset_within_address_space;
- uint16_t section_index = phys_section_add(&d->map, section);
- uint64_t num_pages = int128_get64(int128_rshift(section->size,
- TARGET_PAGE_BITS));
-
- assert(num_pages);
- phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
-}
-
-static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
-{
- AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
- AddressSpaceDispatch *d = as->next_dispatch;
- MemoryRegionSection now = *section, remain = *section;
- Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
-
- if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
- uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
- - now.offset_within_address_space;
-
- now.size = int128_min(int128_make64(left), now.size);
- register_subpage(d, &now);
- } else {
- now.size = int128_zero();
- }
- while (int128_ne(remain.size, now.size)) {
- remain.size = int128_sub(remain.size, now.size);
- remain.offset_within_address_space += int128_get64(now.size);
- remain.offset_within_region += int128_get64(now.size);
- now = remain;
- if (int128_lt(remain.size, page_size)) {
- register_subpage(d, &now);
- } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
- now.size = page_size;
- register_subpage(d, &now);
- } else {
- now.size = int128_and(now.size, int128_neg(page_size));
- register_multipage(d, &now);
- }
- }
-}
-
-void qemu_flush_coalesced_mmio_buffer(void)
-{
- if (kvm_enabled())
- kvm_flush_coalesced_mmio_buffer();
-}
-
-void qemu_mutex_lock_ramlist(void)
-{
- qemu_mutex_lock(&ram_list.mutex);
-}
-
-void qemu_mutex_unlock_ramlist(void)
-{
- qemu_mutex_unlock(&ram_list.mutex);
-}
-
-#ifdef __linux__
-static void *file_ram_alloc(RAMBlock *block,
- ram_addr_t memory,
- const char *path,
- Error **errp)
-{
- bool unlink_on_error = false;
- char *filename;
- char *sanitized_name;
- char *c;
- void *area;
- int fd = -1;
- int64_t page_size;
-
- if (kvm_enabled() && !kvm_has_sync_mmu()) {
- error_setg(errp,
- "host lacks kvm mmu notifiers, -mem-path unsupported");
- return NULL;
- }
-
- for (;;) {
- fd = open(path, O_RDWR);
- if (fd >= 0) {
- /* @path names an existing file, use it */
- break;
- }
- if (errno == ENOENT) {
- /* @path names a file that doesn't exist, create it */
- fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
- if (fd >= 0) {
- unlink_on_error = true;
- break;
- }
- } else if (errno == EISDIR) {
- /* @path names a directory, create a file there */
- /* Make name safe to use with mkstemp by replacing '/' with '_'. */
- sanitized_name = g_strdup(memory_region_name(block->mr));
- for (c = sanitized_name; *c != '\0'; c++) {
- if (*c == '/') {
- *c = '_';
- }
- }
-
- filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
- sanitized_name);
- g_free(sanitized_name);
-
- fd = mkstemp(filename);
- if (fd >= 0) {
- unlink(filename);
- g_free(filename);
- break;
- }
- g_free(filename);
- }
- if (errno != EEXIST && errno != EINTR) {
- error_setg_errno(errp, errno,
- "can't open backing store %s for guest RAM",
- path);
- goto error;
- }
- /*
- * Try again on EINTR and EEXIST. The latter happens when
- * something else creates the file between our two open().
- */
- }
-
- page_size = qemu_fd_getpagesize(fd);
- block->mr->align = page_size;
-
- if (memory < page_size) {
- error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
- "or larger than page size 0x%" PRIx64,
- memory, page_size);
- goto error;
- }
-
- memory = ROUND_UP(memory, page_size);
-
- /*
- * ftruncate is not supported by hugetlbfs in older
- * hosts, so don't bother bailing out on errors.
- * If anything goes wrong with it under other filesystems,
- * mmap will fail.
- */
- if (ftruncate(fd, memory)) {
- perror("ftruncate");
- }
-
- area = qemu_ram_mmap(fd, memory, page_size, block->flags & RAM_SHARED);
- if (area == MAP_FAILED) {
- error_setg_errno(errp, errno,
- "unable to map backing store for guest RAM");
- goto error;
- }
-
- if (mem_prealloc) {
- os_mem_prealloc(fd, area, memory);
- }
-
- block->fd = fd;
- return area;
-
-error:
- if (unlink_on_error) {
- unlink(path);
- }
- if (fd != -1) {
- close(fd);
- }
- return NULL;
-}
-#endif
-
-/* Called with the ramlist lock held. */
-static ram_addr_t find_ram_offset(ram_addr_t size)
-{
- RAMBlock *block, *next_block;
- ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
-
- assert(size != 0); /* it would hand out same offset multiple times */
-
- if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
- return 0;
- }
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- ram_addr_t end, next = RAM_ADDR_MAX;
-
- end = block->offset + block->max_length;
-
- QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
- if (next_block->offset >= end) {
- next = MIN(next, next_block->offset);
- }
- }
- if (next - end >= size && next - end < mingap) {
- offset = end;
- mingap = next - end;
- }
- }
-
- if (offset == RAM_ADDR_MAX) {
- fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
- (uint64_t)size);
- abort();
- }
-
- return offset;
-}
-
-ram_addr_t last_ram_offset(void)
-{
- RAMBlock *block;
- ram_addr_t last = 0;
-
- rcu_read_lock();
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- last = MAX(last, block->offset + block->max_length);
- }
- rcu_read_unlock();
- return last;
-}
-
-static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
-{
- int ret;
-
- /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
- if (!machine_dump_guest_core(current_machine)) {
- ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
- if (ret) {
- perror("qemu_madvise");
- fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
- "but dump_guest_core=off specified\n");
- }
- }
-}
-
-/* Called within an RCU critical section, or while the ramlist lock
- * is held.
- */
-static RAMBlock *find_ram_block(ram_addr_t addr)
-{
- RAMBlock *block;
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- if (block->offset == addr) {
- return block;
- }
- }
-
- return NULL;
-}
-
-const char *qemu_ram_get_idstr(RAMBlock *rb)
-{
- return rb->idstr;
-}
-
-/* Called with iothread lock held. */
-void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
-{
- RAMBlock *new_block, *block;
-
- rcu_read_lock();
- new_block = find_ram_block(addr);
- assert(new_block);
- assert(!new_block->idstr[0]);
-
- if (dev) {
- char *id = qdev_get_dev_path(dev);
- if (id) {
- snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
- g_free(id);
- }
- }
- pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
- fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
- new_block->idstr);
- abort();
- }
- }
- rcu_read_unlock();
-}
-
-/* Called with iothread lock held. */
-void qemu_ram_unset_idstr(ram_addr_t addr)
-{
- RAMBlock *block;
-
- /* FIXME: arch_init.c assumes that this is not called throughout
- * migration. Ignore the problem since hot-unplug during migration
- * does not work anyway.
- */
-
- rcu_read_lock();
- block = find_ram_block(addr);
- if (block) {
- memset(block->idstr, 0, sizeof(block->idstr));
- }
- rcu_read_unlock();
-}
-
-static int memory_try_enable_merging(void *addr, size_t len)
-{
- if (!machine_mem_merge(current_machine)) {
- /* disabled by the user */
- return 0;
- }
-
- return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
-}
-
-/* Only legal before guest might have detected the memory size: e.g. on
- * incoming migration, or right after reset.
- *
- * As memory core doesn't know how is memory accessed, it is up to
- * resize callback to update device state and/or add assertions to detect
- * misuse, if necessary.
- */
-int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
-{
- RAMBlock *block = find_ram_block(base);
-
- assert(block);
-
- newsize = HOST_PAGE_ALIGN(newsize);
-
- if (block->used_length == newsize) {
- return 0;
- }
-
- if (!(block->flags & RAM_RESIZEABLE)) {
- error_setg_errno(errp, EINVAL,
- "Length mismatch: %s: 0x" RAM_ADDR_FMT
- " in != 0x" RAM_ADDR_FMT, block->idstr,
- newsize, block->used_length);
- return -EINVAL;
- }
-
- if (block->max_length < newsize) {
- error_setg_errno(errp, EINVAL,
- "Length too large: %s: 0x" RAM_ADDR_FMT
- " > 0x" RAM_ADDR_FMT, block->idstr,
- newsize, block->max_length);
- return -EINVAL;
- }
-
- cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
- block->used_length = newsize;
- cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
- DIRTY_CLIENTS_ALL);
- memory_region_set_size(block->mr, newsize);
- if (block->resized) {
- block->resized(block->idstr, newsize, block->host);
- }
- return 0;
-}
-
-/* Called with ram_list.mutex held */
-static void dirty_memory_extend(ram_addr_t old_ram_size,
- ram_addr_t new_ram_size)
-{
- ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
- DIRTY_MEMORY_BLOCK_SIZE);
- ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
- DIRTY_MEMORY_BLOCK_SIZE);
- int i;
-
- /* Only need to extend if block count increased */
- if (new_num_blocks <= old_num_blocks) {
- return;
- }
-
- for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
- DirtyMemoryBlocks *old_blocks;
- DirtyMemoryBlocks *new_blocks;
- int j;
-
- old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
- new_blocks = g_malloc(sizeof(*new_blocks) +
- sizeof(new_blocks->blocks[0]) * new_num_blocks);
-
- if (old_num_blocks) {
- memcpy(new_blocks->blocks, old_blocks->blocks,
- old_num_blocks * sizeof(old_blocks->blocks[0]));
- }
-
- for (j = old_num_blocks; j < new_num_blocks; j++) {
- new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
- }
-
- atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
-
- if (old_blocks) {
- g_free_rcu(old_blocks, rcu);
- }
- }
-}
-
-static void ram_block_add(RAMBlock *new_block, Error **errp)
-{
- RAMBlock *block;
- RAMBlock *last_block = NULL;
- ram_addr_t old_ram_size, new_ram_size;
- Error *err = NULL;
-
- old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
-
- qemu_mutex_lock_ramlist();
- new_block->offset = find_ram_offset(new_block->max_length);
-
- if (!new_block->host) {
- if (xen_enabled()) {
- xen_ram_alloc(new_block->offset, new_block->max_length,
- new_block->mr, &err);
- if (err) {
- error_propagate(errp, err);
- qemu_mutex_unlock_ramlist();
- return;
- }
- } else {
- new_block->host = phys_mem_alloc(new_block->max_length,
- &new_block->mr->align);
- if (!new_block->host) {
- error_setg_errno(errp, errno,
- "cannot set up guest memory '%s'",
- memory_region_name(new_block->mr));
- qemu_mutex_unlock_ramlist();
- return;
- }
- memory_try_enable_merging(new_block->host, new_block->max_length);
- }
- }
-
- new_ram_size = MAX(old_ram_size,
- (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
- if (new_ram_size > old_ram_size) {
- migration_bitmap_extend(old_ram_size, new_ram_size);
- dirty_memory_extend(old_ram_size, new_ram_size);
- }
- /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
- * QLIST (which has an RCU-friendly variant) does not have insertion at
- * tail, so save the last element in last_block.
- */
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- last_block = block;
- if (block->max_length < new_block->max_length) {
- break;
- }
- }
- if (block) {
- QLIST_INSERT_BEFORE_RCU(block, new_block, next);
- } else if (last_block) {
- QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
- } else { /* list is empty */
- QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
- }
- ram_list.mru_block = NULL;
-
- /* Write list before version */
- smp_wmb();
- ram_list.version++;
- qemu_mutex_unlock_ramlist();
-
- cpu_physical_memory_set_dirty_range(new_block->offset,
- new_block->used_length,
- DIRTY_CLIENTS_ALL);
-
- if (new_block->host) {
- qemu_ram_setup_dump(new_block->host, new_block->max_length);
- qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
- qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
- if (kvm_enabled()) {
- kvm_setup_guest_memory(new_block->host, new_block->max_length);
- }
- }
-}
-
-#ifdef __linux__
-RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
- bool share, const char *mem_path,
- Error **errp)
-{
- RAMBlock *new_block;
- Error *local_err = NULL;
-
- if (xen_enabled()) {
- error_setg(errp, "-mem-path not supported with Xen");
- return NULL;
- }
-
- if (phys_mem_alloc != qemu_anon_ram_alloc) {
- /*
- * file_ram_alloc() needs to allocate just like
- * phys_mem_alloc, but we haven't bothered to provide
- * a hook there.
- */
- error_setg(errp,
- "-mem-path not supported with this accelerator");
- return NULL;
- }
-
- size = HOST_PAGE_ALIGN(size);
- new_block = g_malloc0(sizeof(*new_block));
- new_block->mr = mr;
- new_block->used_length = size;
- new_block->max_length = size;
- new_block->flags = share ? RAM_SHARED : 0;
- new_block->host = file_ram_alloc(new_block, size,
- mem_path, errp);
- if (!new_block->host) {
- g_free(new_block);
- return NULL;
- }
-
- ram_block_add(new_block, &local_err);
- if (local_err) {
- g_free(new_block);
- error_propagate(errp, local_err);
- return NULL;
- }
- return new_block;
-}
-#endif
-
-static
-RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
- void (*resized)(const char*,
- uint64_t length,
- void *host),
- void *host, bool resizeable,
- MemoryRegion *mr, Error **errp)
-{
- RAMBlock *new_block;
- Error *local_err = NULL;
-
- size = HOST_PAGE_ALIGN(size);
- max_size = HOST_PAGE_ALIGN(max_size);
- new_block = g_malloc0(sizeof(*new_block));
- new_block->mr = mr;
- new_block->resized = resized;
- new_block->used_length = size;
- new_block->max_length = max_size;
- assert(max_size >= size);
- new_block->fd = -1;
- new_block->host = host;
- if (host) {
- new_block->flags |= RAM_PREALLOC;
- }
- if (resizeable) {
- new_block->flags |= RAM_RESIZEABLE;
- }
- ram_block_add(new_block, &local_err);
- if (local_err) {
- g_free(new_block);
- error_propagate(errp, local_err);
- return NULL;
- }
- return new_block;
-}
-
-RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
- MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
-}
-
-RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
-}
-
-RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
- void (*resized)(const char*,
- uint64_t length,
- void *host),
- MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
-}
-
-static void reclaim_ramblock(RAMBlock *block)
-{
- if (block->flags & RAM_PREALLOC) {
- ;
- } else if (xen_enabled()) {
- xen_invalidate_map_cache_entry(block->host);
-#ifndef _WIN32
- } else if (block->fd >= 0) {
- qemu_ram_munmap(block->host, block->max_length);
- close(block->fd);
-#endif
- } else {
- qemu_anon_ram_free(block->host, block->max_length);
- }
- g_free(block);
-}
-
-void qemu_ram_free(RAMBlock *block)
-{
- if (!block) {
- return;
- }
-
- qemu_mutex_lock_ramlist();
- QLIST_REMOVE_RCU(block, next);
- ram_list.mru_block = NULL;
- /* Write list before version */
- smp_wmb();
- ram_list.version++;
- call_rcu(block, reclaim_ramblock, rcu);
- qemu_mutex_unlock_ramlist();
-}
-
-#ifndef _WIN32
-void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
-{
- RAMBlock *block;
- ram_addr_t offset;
- int flags;
- void *area, *vaddr;
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- offset = addr - block->offset;
- if (offset < block->max_length) {
- vaddr = ramblock_ptr(block, offset);
- if (block->flags & RAM_PREALLOC) {
- ;
- } else if (xen_enabled()) {
- abort();
- } else {
- flags = MAP_FIXED;
- if (block->fd >= 0) {
- flags |= (block->flags & RAM_SHARED ?
- MAP_SHARED : MAP_PRIVATE);
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, block->fd, offset);
- } else {
- /*
- * Remap needs to match alloc. Accelerators that
- * set phys_mem_alloc never remap. If they did,
- * we'd need a remap hook here.
- */
- assert(phys_mem_alloc == qemu_anon_ram_alloc);
-
- flags |= MAP_PRIVATE | MAP_ANONYMOUS;
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, -1, 0);
- }
- if (area != vaddr) {
- fprintf(stderr, "Could not remap addr: "
- RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
- length, addr);
- exit(1);
- }
- memory_try_enable_merging(vaddr, length);
- qemu_ram_setup_dump(vaddr, length);
- }
- }
- }
-}
-#endif /* !_WIN32 */
-
-int qemu_get_ram_fd(ram_addr_t addr)
-{
- RAMBlock *block;
- int fd;
-
- rcu_read_lock();
- block = qemu_get_ram_block(addr);
- fd = block->fd;
- rcu_read_unlock();
- return fd;
-}
-
-void qemu_set_ram_fd(ram_addr_t addr, int fd)
-{
- RAMBlock *block;
-
- rcu_read_lock();
- block = qemu_get_ram_block(addr);
- block->fd = fd;
- rcu_read_unlock();
-}
-
-void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
-{
- RAMBlock *block;
- void *ptr;
-
- rcu_read_lock();
- block = qemu_get_ram_block(addr);
- ptr = ramblock_ptr(block, 0);
- rcu_read_unlock();
- return ptr;
-}
-
-/* Return a host pointer to ram allocated with qemu_ram_alloc.
- * This should not be used for general purpose DMA. Use address_space_map
- * or address_space_rw instead. For local memory (e.g. video ram) that the
- * device owns, use memory_region_get_ram_ptr.
- *
- * Called within RCU critical section.
- */
-void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
-{
- RAMBlock *block = ram_block;
-
- if (block == NULL) {
- block = qemu_get_ram_block(addr);
- }
-
- if (xen_enabled() && block->host == NULL) {
- /* We need to check if the requested address is in the RAM
- * because we don't want to map the entire memory in QEMU.
- * In that case just map until the end of the page.
- */
- if (block->offset == 0) {
- return xen_map_cache(addr, 0, 0);
- }
-
- block->host = xen_map_cache(block->offset, block->max_length, 1);
- }
- return ramblock_ptr(block, addr - block->offset);
-}
-
-/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
- * but takes a size argument.
- *
- * Called within RCU critical section.
- */
-static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
- hwaddr *size)
-{
- RAMBlock *block = ram_block;
- ram_addr_t offset_inside_block;
- if (*size == 0) {
- return NULL;
- }
-
- if (block == NULL) {
- block = qemu_get_ram_block(addr);
- }
- offset_inside_block = addr - block->offset;
- *size = MIN(*size, block->max_length - offset_inside_block);
-
- if (xen_enabled() && block->host == NULL) {
- /* We need to check if the requested address is in the RAM
- * because we don't want to map the entire memory in QEMU.
- * In that case just map the requested area.
- */
- if (block->offset == 0) {
- return xen_map_cache(addr, *size, 1);
- }
-
- block->host = xen_map_cache(block->offset, block->max_length, 1);
- }
-
- return ramblock_ptr(block, offset_inside_block);
-}
-
-/*
- * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
- * in that RAMBlock.
- *
- * ptr: Host pointer to look up
- * round_offset: If true round the result offset down to a page boundary
- * *ram_addr: set to result ram_addr
- * *offset: set to result offset within the RAMBlock
- *
- * Returns: RAMBlock (or NULL if not found)
- *
- * By the time this function returns, the returned pointer is not protected
- * by RCU anymore. If the caller is not within an RCU critical section and
- * does not hold the iothread lock, it must have other means of protecting the
- * pointer, such as a reference to the region that includes the incoming
- * ram_addr_t.
- */
-RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
- ram_addr_t *ram_addr,
- ram_addr_t *offset)
-{
- RAMBlock *block;
- uint8_t *host = ptr;
-
- if (xen_enabled()) {
- rcu_read_lock();
- *ram_addr = xen_ram_addr_from_mapcache(ptr);
- block = qemu_get_ram_block(*ram_addr);
- if (block) {
- *offset = (host - block->host);
- }
- rcu_read_unlock();
- return block;
- }
-
- rcu_read_lock();
- block = atomic_rcu_read(&ram_list.mru_block);
- if (block && block->host && host - block->host < block->max_length) {
- goto found;
- }
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- /* This case append when the block is not mapped. */
- if (block->host == NULL) {
- continue;
- }
- if (host - block->host < block->max_length) {
- goto found;
- }
- }
-
- rcu_read_unlock();
- return NULL;
-
-found:
- *offset = (host - block->host);
- if (round_offset) {
- *offset &= TARGET_PAGE_MASK;
- }
- *ram_addr = block->offset + *offset;
- rcu_read_unlock();
- return block;
-}
-
-/*
- * Finds the named RAMBlock
- *
- * name: The name of RAMBlock to find
- *
- * Returns: RAMBlock (or NULL if not found)
- */
-RAMBlock *qemu_ram_block_by_name(const char *name)
-{
- RAMBlock *block;
-
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- if (!strcmp(name, block->idstr)) {
- return block;
- }
- }
-
- return NULL;
-}
-
-/* Some of the softmmu routines need to translate from a host pointer
- (typically a TLB entry) back to a ram offset. */
-MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
-{
- RAMBlock *block;
- ram_addr_t offset; /* Not used */
-
- block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
-
- if (!block) {
- return NULL;
- }
-
- return block->mr;
-}
-
-/* Called within RCU critical section. */
-static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
- uint64_t val, unsigned size)
-{
- if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
- tb_invalidate_phys_page_fast(ram_addr, size);
- }
- switch (size) {
- case 1:
- stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
- break;
- case 2:
- stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
- break;
- case 4:
- stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
- break;
- default:
- abort();
- }
- /* Set both VGA and migration bits for simplicity and to remove
- * the notdirty callback faster.
- */
- cpu_physical_memory_set_dirty_range(ram_addr, size,
- DIRTY_CLIENTS_NOCODE);
- /* we remove the notdirty callback only if the code has been
- flushed */
- if (!cpu_physical_memory_is_clean(ram_addr)) {
- tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
- }
-}
-
-static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
- unsigned size, bool is_write)
-{
- return is_write;
-}
-
-static const MemoryRegionOps notdirty_mem_ops = {
- .write = notdirty_mem_write,
- .valid.accepts = notdirty_mem_accepts,
- .endianness = DEVICE_NATIVE_ENDIAN,
-};
-
-/* Generate a debug exception if a watchpoint has been hit. */
-static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
-{
- CPUState *cpu = current_cpu;
- CPUClass *cc = CPU_GET_CLASS(cpu);
- CPUArchState *env = cpu->env_ptr;
- target_ulong pc, cs_base;
- target_ulong vaddr;
- CPUWatchpoint *wp;
- int cpu_flags;
-
- if (cpu->watchpoint_hit) {
- /* We re-entered the check after replacing the TB. Now raise
- * the debug interrupt so that is will trigger after the
- * current instruction. */
- cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
- return;
- }
- vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (cpu_watchpoint_address_matches(wp, vaddr, len)
- && (wp->flags & flags)) {
- if (flags == BP_MEM_READ) {
- wp->flags |= BP_WATCHPOINT_HIT_READ;
- } else {
- wp->flags |= BP_WATCHPOINT_HIT_WRITE;
- }
- wp->hitaddr = vaddr;
- wp->hitattrs = attrs;
- if (!cpu->watchpoint_hit) {
- if (wp->flags & BP_CPU &&
- !cc->debug_check_watchpoint(cpu, wp)) {
- wp->flags &= ~BP_WATCHPOINT_HIT;
- continue;
- }
- cpu->watchpoint_hit = wp;
- tb_check_watchpoint(cpu);
- if (wp->flags & BP_STOP_BEFORE_ACCESS) {
- cpu->exception_index = EXCP_DEBUG;
- cpu_loop_exit(cpu);
- } else {
- cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
- tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
- cpu_resume_from_signal(cpu, NULL);
- }
- }
- } else {
- wp->flags &= ~BP_WATCHPOINT_HIT;
- }
- }
-}
-
-/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
- so these check for a hit then pass through to the normal out-of-line
- phys routines. */
-static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
- unsigned size, MemTxAttrs attrs)
-{
- MemTxResult res;
- uint64_t data;
- int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
- AddressSpace *as = current_cpu->cpu_ases[asidx].as;
-
- check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
- switch (size) {
- case 1:
- data = address_space_ldub(as, addr, attrs, &res);
- break;
- case 2:
- data = address_space_lduw(as, addr, attrs, &res);
- break;
- case 4:
- data = address_space_ldl(as, addr, attrs, &res);
- break;
- default: abort();
- }
- *pdata = data;
- return res;
-}
-
-static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
- uint64_t val, unsigned size,
- MemTxAttrs attrs)
-{
- MemTxResult res;
- int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
- AddressSpace *as = current_cpu->cpu_ases[asidx].as;
-
- check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
- switch (size) {
- case 1:
- address_space_stb(as, addr, val, attrs, &res);
- break;
- case 2:
- address_space_stw(as, addr, val, attrs, &res);
- break;
- case 4:
- address_space_stl(as, addr, val, attrs, &res);
- break;
- default: abort();
- }
- return res;
-}
-
-static const MemoryRegionOps watch_mem_ops = {
- .read_with_attrs = watch_mem_read,
- .write_with_attrs = watch_mem_write,
- .endianness = DEVICE_NATIVE_ENDIAN,
-};
-
-static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
- unsigned len, MemTxAttrs attrs)
-{
- subpage_t *subpage = opaque;
- uint8_t buf[8];
- MemTxResult res;
-
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
- subpage, len, addr);
-#endif
- res = address_space_read(subpage->as, addr + subpage->base,
- attrs, buf, len);
- if (res) {
- return res;
- }
- switch (len) {
- case 1:
- *data = ldub_p(buf);
- return MEMTX_OK;
- case 2:
- *data = lduw_p(buf);
- return MEMTX_OK;
- case 4:
- *data = ldl_p(buf);
- return MEMTX_OK;
- case 8:
- *data = ldq_p(buf);
- return MEMTX_OK;
- default:
- abort();
- }
-}
-
-static MemTxResult subpage_write(void *opaque, hwaddr addr,
- uint64_t value, unsigned len, MemTxAttrs attrs)
-{
- subpage_t *subpage = opaque;
- uint8_t buf[8];
-
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %u addr " TARGET_FMT_plx
- " value %"PRIx64"\n",
- __func__, subpage, len, addr, value);
-#endif
- switch (len) {
- case 1:
- stb_p(buf, value);
- break;
- case 2:
- stw_p(buf, value);
- break;
- case 4:
- stl_p(buf, value);
- break;
- case 8:
- stq_p(buf, value);
- break;
- default:
- abort();
- }
- return address_space_write(subpage->as, addr + subpage->base,
- attrs, buf, len);
-}
-
-static bool subpage_accepts(void *opaque, hwaddr addr,
- unsigned len, bool is_write)
-{
- subpage_t *subpage = opaque;
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
- __func__, subpage, is_write ? 'w' : 'r', len, addr);
-#endif
-
- return address_space_access_valid(subpage->as, addr + subpage->base,
- len, is_write);
-}
-
-static const MemoryRegionOps subpage_ops = {
- .read_with_attrs = subpage_read,
- .write_with_attrs = subpage_write,
- .impl.min_access_size = 1,
- .impl.max_access_size = 8,
- .valid.min_access_size = 1,
- .valid.max_access_size = 8,
- .valid.accepts = subpage_accepts,
- .endianness = DEVICE_NATIVE_ENDIAN,
-};
-
-static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- uint16_t section)
-{
- int idx, eidx;
-
- if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
- return -1;
- idx = SUBPAGE_IDX(start);
- eidx = SUBPAGE_IDX(end);
-#if defined(DEBUG_SUBPAGE)
- printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
- __func__, mmio, start, end, idx, eidx, section);
-#endif
- for (; idx <= eidx; idx++) {
- mmio->sub_section[idx] = section;
- }
-
- return 0;
-}
-
-static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
-{
- subpage_t *mmio;
-
- mmio = g_malloc0(sizeof(subpage_t));
-
- mmio->as = as;
- mmio->base = base;
- memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
- NULL, TARGET_PAGE_SIZE);
- mmio->iomem.subpage = true;
-#if defined(DEBUG_SUBPAGE)
- printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
- mmio, base, TARGET_PAGE_SIZE);
-#endif
- subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
-
- return mmio;
-}
-
-static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
- MemoryRegion *mr)
-{
- assert(as);
- MemoryRegionSection section = {
- .address_space = as,
- .mr = mr,
- .offset_within_address_space = 0,
- .offset_within_region = 0,
- .size = int128_2_64(),
- };
-
- return phys_section_add(map, &section);
-}
-
-MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
-{
- int asidx = cpu_asidx_from_attrs(cpu, attrs);
- CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
- AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
- MemoryRegionSection *sections = d->map.sections;
-
- return sections[index & ~TARGET_PAGE_MASK].mr;
-}
-
-static void io_mem_init(void)
-{
- memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
- memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
- NULL, UINT64_MAX);
- memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
- NULL, UINT64_MAX);
- memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
- NULL, UINT64_MAX);
-}
-
-static void mem_begin(MemoryListener *listener)
-{
- AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
- AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
- uint16_t n;
-
- n = dummy_section(&d->map, as, &io_mem_unassigned);
- assert(n == PHYS_SECTION_UNASSIGNED);
- n = dummy_section(&d->map, as, &io_mem_notdirty);
- assert(n == PHYS_SECTION_NOTDIRTY);
- n = dummy_section(&d->map, as, &io_mem_rom);
- assert(n == PHYS_SECTION_ROM);
- n = dummy_section(&d->map, as, &io_mem_watch);
- assert(n == PHYS_SECTION_WATCH);
-
- d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
- d->as = as;
- as->next_dispatch = d;
-}
-
-static void address_space_dispatch_free(AddressSpaceDispatch *d)
-{
- phys_sections_free(&d->map);
- g_free(d);
-}
-
-static void mem_commit(MemoryListener *listener)
-{
- AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
- AddressSpaceDispatch *cur = as->dispatch;
- AddressSpaceDispatch *next = as->next_dispatch;
-
- phys_page_compact_all(next, next->map.nodes_nb);
-
- atomic_rcu_set(&as->dispatch, next);
- if (cur) {
- call_rcu(cur, address_space_dispatch_free, rcu);
- }
-}
-
-static void tcg_commit(MemoryListener *listener)
-{
- CPUAddressSpace *cpuas;
- AddressSpaceDispatch *d;
-
- /* since each CPU stores ram addresses in its TLB cache, we must
- reset the modified entries */
- cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
- cpu_reloading_memory_map();
- /* The CPU and TLB are protected by the iothread lock.
- * We reload the dispatch pointer now because cpu_reloading_memory_map()
- * may have split the RCU critical section.
- */
- d = atomic_rcu_read(&cpuas->as->dispatch);
- cpuas->memory_dispatch = d;
- tlb_flush(cpuas->cpu, 1);
-}
-
-void address_space_init_dispatch(AddressSpace *as)
-{
- as->dispatch = NULL;
- as->dispatch_listener = (MemoryListener) {
- .begin = mem_begin,
- .commit = mem_commit,
- .region_add = mem_add,
- .region_nop = mem_add,
- .priority = 0,
- };
- memory_listener_register(&as->dispatch_listener, as);
-}
-
-void address_space_unregister(AddressSpace *as)
-{
- memory_listener_unregister(&as->dispatch_listener);
-}
-
-void address_space_destroy_dispatch(AddressSpace *as)
-{
- AddressSpaceDispatch *d = as->dispatch;
-
- atomic_rcu_set(&as->dispatch, NULL);
- if (d) {
- call_rcu(d, address_space_dispatch_free, rcu);
- }
-}
-
-static void memory_map_init(void)
-{
- system_memory = g_malloc(sizeof(*system_memory));
-
- memory_region_init(system_memory, NULL, "system", UINT64_MAX);
- address_space_init(&address_space_memory, system_memory, "memory");
-
- system_io = g_malloc(sizeof(*system_io));
- memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
- 65536);
- address_space_init(&address_space_io, system_io, "I/O");
-}
-
-MemoryRegion *get_system_memory(void)
-{
- return system_memory;
-}
-
-MemoryRegion *get_system_io(void)
-{
- return system_io;
-}
-
-#endif /* !defined(CONFIG_USER_ONLY) */
-
-/* physical memory access (slow version, mainly for debug) */
-#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
- uint8_t *buf, int len, int is_write)
-{
- int l, flags;
- target_ulong page;
- void * p;
-
- while (len > 0) {
- page = addr & TARGET_PAGE_MASK;
- l = (page + TARGET_PAGE_SIZE) - addr;
- if (l > len)
- l = len;
- flags = page_get_flags(page);
- if (!(flags & PAGE_VALID))
- return -1;
- if (is_write) {
- if (!(flags & PAGE_WRITE))
- return -1;
- /* XXX: this code should not depend on lock_user */
- if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
- return -1;
- memcpy(p, buf, l);
- unlock_user(p, addr, l);
- } else {
- if (!(flags & PAGE_READ))
- return -1;
- /* XXX: this code should not depend on lock_user */
- if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
- return -1;
- memcpy(buf, p, l);
- unlock_user(p, addr, 0);
- }
- len -= l;
- buf += l;
- addr += l;
- }
- return 0;
-}
-
-#else
-
-static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
- hwaddr length)
-{
- uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
- /* No early return if dirty_log_mask is or becomes 0, because
- * cpu_physical_memory_set_dirty_range will still call
- * xen_modified_memory.
- */
- if (dirty_log_mask) {
- dirty_log_mask =
- cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
- }
- if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
- tb_invalidate_phys_range(addr, addr + length);
- dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
- }
- cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
-}
-
-static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
-{
- unsigned access_size_max = mr->ops->valid.max_access_size;
-
- /* Regions are assumed to support 1-4 byte accesses unless
- otherwise specified. */
- if (access_size_max == 0) {
- access_size_max = 4;
- }
-
- /* Bound the maximum access by the alignment of the address. */
- if (!mr->ops->impl.unaligned) {
- unsigned align_size_max = addr & -addr;
- if (align_size_max != 0 && align_size_max < access_size_max) {
- access_size_max = align_size_max;
- }
- }
-
- /* Don't attempt accesses larger than the maximum. */
- if (l > access_size_max) {
- l = access_size_max;
- }
- l = pow2floor(l);
-
- return l;
-}
-
-static bool prepare_mmio_access(MemoryRegion *mr)
-{
- bool unlocked = !qemu_mutex_iothread_locked();
- bool release_lock = false;
-
- if (unlocked && mr->global_locking) {
- qemu_mutex_lock_iothread();
- unlocked = false;
- release_lock = true;
- }
- if (mr->flush_coalesced_mmio) {
- if (unlocked) {
- qemu_mutex_lock_iothread();
- }
- qemu_flush_coalesced_mmio_buffer();
- if (unlocked) {
- qemu_mutex_unlock_iothread();
- }
- }
-
- return release_lock;
-}
-
-/* Called within RCU critical section. */
-static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs,
- const uint8_t *buf,
- int len, hwaddr addr1,
- hwaddr l, MemoryRegion *mr)
-{
- uint8_t *ptr;
- uint64_t val;
- MemTxResult result = MEMTX_OK;
- bool release_lock = false;
-
- for (;;) {
- if (!memory_access_is_direct(mr, true)) {
- release_lock |= prepare_mmio_access(mr);
- l = memory_access_size(mr, l, addr1);
- /* XXX: could force current_cpu to NULL to avoid
- potential bugs */
- switch (l) {
- case 8:
- /* 64 bit write access */
- val = ldq_p(buf);
- result |= memory_region_dispatch_write(mr, addr1, val, 8,
- attrs);
- break;
- case 4:
- /* 32 bit write access */
- val = ldl_p(buf);
- result |= memory_region_dispatch_write(mr, addr1, val, 4,
- attrs);
- break;
- case 2:
- /* 16 bit write access */
- val = lduw_p(buf);
- result |= memory_region_dispatch_write(mr, addr1, val, 2,
- attrs);
- break;
- case 1:
- /* 8 bit write access */
- val = ldub_p(buf);
- result |= memory_region_dispatch_write(mr, addr1, val, 1,
- attrs);
- break;
- default:
- abort();
- }
- } else {
- addr1 += memory_region_get_ram_addr(mr);
- /* RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
- memcpy(ptr, buf, l);
- invalidate_and_set_dirty(mr, addr1, l);
- }
-
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- release_lock = false;
- }
-
- len -= l;
- buf += l;
- addr += l;
-
- if (!len) {
- break;
- }
-
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, true);
- }
-
- return result;
-}
-
-MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
- const uint8_t *buf, int len)
-{
- hwaddr l;
- hwaddr addr1;
- MemoryRegion *mr;
- MemTxResult result = MEMTX_OK;
-
- if (len > 0) {
- rcu_read_lock();
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, true);
- result = address_space_write_continue(as, addr, attrs, buf, len,
- addr1, l, mr);
- rcu_read_unlock();
- }
-
- return result;
-}
-
-/* Called within RCU critical section. */
-MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, uint8_t *buf,
- int len, hwaddr addr1, hwaddr l,
- MemoryRegion *mr)
-{
- uint8_t *ptr;
- uint64_t val;
- MemTxResult result = MEMTX_OK;
- bool release_lock = false;
-
- for (;;) {
- if (!memory_access_is_direct(mr, false)) {
- /* I/O case */
- release_lock |= prepare_mmio_access(mr);
- l = memory_access_size(mr, l, addr1);
- switch (l) {
- case 8:
- /* 64 bit read access */
- result |= memory_region_dispatch_read(mr, addr1, &val, 8,
- attrs);
- stq_p(buf, val);
- break;
- case 4:
- /* 32 bit read access */
- result |= memory_region_dispatch_read(mr, addr1, &val, 4,
- attrs);
- stl_p(buf, val);
- break;
- case 2:
- /* 16 bit read access */
- result |= memory_region_dispatch_read(mr, addr1, &val, 2,
- attrs);
- stw_p(buf, val);
- break;
- case 1:
- /* 8 bit read access */
- result |= memory_region_dispatch_read(mr, addr1, &val, 1,
- attrs);
- stb_p(buf, val);
- break;
- default:
- abort();
- }
- } else {
- /* RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block,
- memory_region_get_ram_addr(mr) + addr1);
- memcpy(buf, ptr, l);
- }
-
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- release_lock = false;
- }
-
- len -= l;
- buf += l;
- addr += l;
-
- if (!len) {
- break;
- }
-
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, false);
- }
-
- return result;
-}
-
-MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, uint8_t *buf, int len)
-{
- hwaddr l;
- hwaddr addr1;
- MemoryRegion *mr;
- MemTxResult result = MEMTX_OK;
-
- if (len > 0) {
- rcu_read_lock();
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, false);
- result = address_space_read_continue(as, addr, attrs, buf, len,
- addr1, l, mr);
- rcu_read_unlock();
- }
-
- return result;
-}
-
-MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
- uint8_t *buf, int len, bool is_write)
-{
- if (is_write) {
- return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
- } else {
- return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
- }
-}
-
-void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
- int len, int is_write)
-{
- address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
- buf, len, is_write);
-}
-
-enum write_rom_type {
- WRITE_DATA,
- FLUSH_CACHE,
-};
-
-static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
- hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
-{
- hwaddr l;
- uint8_t *ptr;
- hwaddr addr1;
- MemoryRegion *mr;
-
- rcu_read_lock();
- while (len > 0) {
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, true);
-
- if (!(memory_region_is_ram(mr) ||
- memory_region_is_romd(mr))) {
- l = memory_access_size(mr, l, addr1);
- } else {
- addr1 += memory_region_get_ram_addr(mr);
- /* ROM/RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
- switch (type) {
- case WRITE_DATA:
- memcpy(ptr, buf, l);
- invalidate_and_set_dirty(mr, addr1, l);
- break;
- case FLUSH_CACHE:
- flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
- break;
- }
- }
- len -= l;
- buf += l;
- addr += l;
- }
- rcu_read_unlock();
-}
-
-/* used for ROM loading : can write in RAM and ROM */
-void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
- const uint8_t *buf, int len)
-{
- cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
-}
-
-void cpu_flush_icache_range(hwaddr start, int len)
-{
- /*
- * This function should do the same thing as an icache flush that was
- * triggered from within the guest. For TCG we are always cache coherent,
- * so there is no need to flush anything. For KVM / Xen we need to flush
- * the host's instruction cache at least.
- */
- if (tcg_enabled()) {
- return;
- }
-
- cpu_physical_memory_write_rom_internal(&address_space_memory,
- start, NULL, len, FLUSH_CACHE);
-}
-
-typedef struct {
- MemoryRegion *mr;
- void *buffer;
- hwaddr addr;
- hwaddr len;
- bool in_use;
-} BounceBuffer;
-
-static BounceBuffer bounce;
-
-typedef struct MapClient {
- QEMUBH *bh;
- QLIST_ENTRY(MapClient) link;
-} MapClient;
-
-QemuMutex map_client_list_lock;
-static QLIST_HEAD(map_client_list, MapClient) map_client_list
- = QLIST_HEAD_INITIALIZER(map_client_list);
-
-static void cpu_unregister_map_client_do(MapClient *client)
-{
- QLIST_REMOVE(client, link);
- g_free(client);
-}
-
-static void cpu_notify_map_clients_locked(void)
-{
- MapClient *client;
-
- while (!QLIST_EMPTY(&map_client_list)) {
- client = QLIST_FIRST(&map_client_list);
- qemu_bh_schedule(client->bh);
- cpu_unregister_map_client_do(client);
- }
-}
-
-void cpu_register_map_client(QEMUBH *bh)
-{
- MapClient *client = g_malloc(sizeof(*client));
-
- qemu_mutex_lock(&map_client_list_lock);
- client->bh = bh;
- QLIST_INSERT_HEAD(&map_client_list, client, link);
- if (!atomic_read(&bounce.in_use)) {
- cpu_notify_map_clients_locked();
- }
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-void cpu_exec_init_all(void)
-{
- qemu_mutex_init(&ram_list.mutex);
- io_mem_init();
- memory_map_init();
- qemu_mutex_init(&map_client_list_lock);
-}
-
-void cpu_unregister_map_client(QEMUBH *bh)
-{
- MapClient *client;
-
- qemu_mutex_lock(&map_client_list_lock);
- QLIST_FOREACH(client, &map_client_list, link) {
- if (client->bh == bh) {
- cpu_unregister_map_client_do(client);
- break;
- }
- }
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-static void cpu_notify_map_clients(void)
-{
- qemu_mutex_lock(&map_client_list_lock);
- cpu_notify_map_clients_locked();
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
-{
- MemoryRegion *mr;
- hwaddr l, xlat;
-
- rcu_read_lock();
- while (len > 0) {
- l = len;
- mr = address_space_translate(as, addr, &xlat, &l, is_write);
- if (!memory_access_is_direct(mr, is_write)) {
- l = memory_access_size(mr, l, addr);
- if (!memory_region_access_valid(mr, xlat, l, is_write)) {
- return false;
- }
- }
-
- len -= l;
- addr += l;
- }
- rcu_read_unlock();
- return true;
-}
-
-/* Map a physical memory region into a host virtual address.
- * May map a subset of the requested range, given by and returned in *plen.
- * May return NULL if resources needed to perform the mapping are exhausted.
- * Use only for reads OR writes - not for read-modify-write operations.
- * Use cpu_register_map_client() to know when retrying the map operation is
- * likely to succeed.
- */
-void *address_space_map(AddressSpace *as,
- hwaddr addr,
- hwaddr *plen,
- bool is_write)
-{
- hwaddr len = *plen;
- hwaddr done = 0;
- hwaddr l, xlat, base;
- MemoryRegion *mr, *this_mr;
- ram_addr_t raddr;
- void *ptr;
-
- if (len == 0) {
- return NULL;
- }
-
- l = len;
- rcu_read_lock();
- mr = address_space_translate(as, addr, &xlat, &l, is_write);
-
- if (!memory_access_is_direct(mr, is_write)) {
- if (atomic_xchg(&bounce.in_use, true)) {
- rcu_read_unlock();
- return NULL;
- }
- /* Avoid unbounded allocations */
- l = MIN(l, TARGET_PAGE_SIZE);
- bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
- bounce.addr = addr;
- bounce.len = l;
-
- memory_region_ref(mr);
- bounce.mr = mr;
- if (!is_write) {
- address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
- bounce.buffer, l);
- }
-
- rcu_read_unlock();
- *plen = l;
- return bounce.buffer;
- }
-
- base = xlat;
- raddr = memory_region_get_ram_addr(mr);
-
- for (;;) {
- len -= l;
- addr += l;
- done += l;
- if (len == 0) {
- break;
- }
-
- l = len;
- this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
- if (this_mr != mr || xlat != base + done) {
- break;
- }
- }
-
- memory_region_ref(mr);
- *plen = done;
- ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
- rcu_read_unlock();
-
- return ptr;
-}
-
-/* Unmaps a memory region previously mapped by address_space_map().
- * Will also mark the memory as dirty if is_write == 1. access_len gives
- * the amount of memory that was actually read or written by the caller.
- */
-void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
- int is_write, hwaddr access_len)
-{
- if (buffer != bounce.buffer) {
- MemoryRegion *mr;
- ram_addr_t addr1;
-
- mr = qemu_ram_addr_from_host(buffer, &addr1);
- assert(mr != NULL);
- if (is_write) {
- invalidate_and_set_dirty(mr, addr1, access_len);
- }
- if (xen_enabled()) {
- xen_invalidate_map_cache_entry(buffer);
- }
- memory_region_unref(mr);
- return;
- }
- if (is_write) {
- address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
- bounce.buffer, access_len);
- }
- qemu_vfree(bounce.buffer);
- bounce.buffer = NULL;
- memory_region_unref(bounce.mr);
- atomic_mb_set(&bounce.in_use, false);
- cpu_notify_map_clients();
-}
-
-void *cpu_physical_memory_map(hwaddr addr,
- hwaddr *plen,
- int is_write)
-{
- return address_space_map(&address_space_memory, addr, plen, is_write);
-}
-
-void cpu_physical_memory_unmap(void *buffer, hwaddr len,
- int is_write, hwaddr access_len)
-{
- return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
-}
-
-/* warning: addr must be aligned */
-static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs,
- MemTxResult *result,
- enum device_endian endian)
-{
- uint8_t *ptr;
- uint64_t val;
- MemoryRegion *mr;
- hwaddr l = 4;
- hwaddr addr1;
- MemTxResult r;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l, false);
- if (l < 4 || !memory_access_is_direct(mr, false)) {
- release_lock |= prepare_mmio_access(mr);
-
- /* I/O case */
- r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
- if (endian == DEVICE_LITTLE_ENDIAN) {
- val = bswap32(val);
- }
-#else
- if (endian == DEVICE_BIG_ENDIAN) {
- val = bswap32(val);
- }
-#endif
- } else {
- /* RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block,
- (memory_region_get_ram_addr(mr)
- & TARGET_PAGE_MASK)
- + addr1);
- switch (endian) {
- case DEVICE_LITTLE_ENDIAN:
- val = ldl_le_p(ptr);
- break;
- case DEVICE_BIG_ENDIAN:
- val = ldl_be_p(ptr);
- break;
- default:
- val = ldl_p(ptr);
- break;
- }
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
- return val;
-}
-
-uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldl_internal(as, addr, attrs, result,
- DEVICE_NATIVE_ENDIAN);
-}
-
-uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldl_internal(as, addr, attrs, result,
- DEVICE_LITTLE_ENDIAN);
-}
-
-uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldl_internal(as, addr, attrs, result,
- DEVICE_BIG_ENDIAN);
-}
-
-uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs,
- MemTxResult *result,
- enum device_endian endian)
-{
- uint8_t *ptr;
- uint64_t val;
- MemoryRegion *mr;
- hwaddr l = 8;
- hwaddr addr1;
- MemTxResult r;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l,
- false);
- if (l < 8 || !memory_access_is_direct(mr, false)) {
- release_lock |= prepare_mmio_access(mr);
-
- /* I/O case */
- r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
- if (endian == DEVICE_LITTLE_ENDIAN) {
- val = bswap64(val);
- }
-#else
- if (endian == DEVICE_BIG_ENDIAN) {
- val = bswap64(val);
- }
-#endif
- } else {
- /* RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block,
- (memory_region_get_ram_addr(mr)
- & TARGET_PAGE_MASK)
- + addr1);
- switch (endian) {
- case DEVICE_LITTLE_ENDIAN:
- val = ldq_le_p(ptr);
- break;
- case DEVICE_BIG_ENDIAN:
- val = ldq_be_p(ptr);
- break;
- default:
- val = ldq_p(ptr);
- break;
- }
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
- return val;
-}
-
-uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldq_internal(as, addr, attrs, result,
- DEVICE_NATIVE_ENDIAN);
-}
-
-uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldq_internal(as, addr, attrs, result,
- DEVICE_LITTLE_ENDIAN);
-}
-
-uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_ldq_internal(as, addr, attrs, result,
- DEVICE_BIG_ENDIAN);
-}
-
-uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- uint8_t val;
- MemTxResult r;
-
- r = address_space_rw(as, addr, attrs, &val, 1, 0);
- if (result) {
- *result = r;
- }
- return val;
-}
-
-uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline uint32_t address_space_lduw_internal(AddressSpace *as,
- hwaddr addr,
- MemTxAttrs attrs,
- MemTxResult *result,
- enum device_endian endian)
-{
- uint8_t *ptr;
- uint64_t val;
- MemoryRegion *mr;
- hwaddr l = 2;
- hwaddr addr1;
- MemTxResult r;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l,
- false);
- if (l < 2 || !memory_access_is_direct(mr, false)) {
- release_lock |= prepare_mmio_access(mr);
-
- /* I/O case */
- r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
- if (endian == DEVICE_LITTLE_ENDIAN) {
- val = bswap16(val);
- }
-#else
- if (endian == DEVICE_BIG_ENDIAN) {
- val = bswap16(val);
- }
-#endif
- } else {
- /* RAM case */
- ptr = qemu_get_ram_ptr(mr->ram_block,
- (memory_region_get_ram_addr(mr)
- & TARGET_PAGE_MASK)
- + addr1);
- switch (endian) {
- case DEVICE_LITTLE_ENDIAN:
- val = lduw_le_p(ptr);
- break;
- case DEVICE_BIG_ENDIAN:
- val = lduw_be_p(ptr);
- break;
- default:
- val = lduw_p(ptr);
- break;
- }
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
- return val;
-}
-
-uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_lduw_internal(as, addr, attrs, result,
- DEVICE_NATIVE_ENDIAN);
-}
-
-uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_lduw_internal(as, addr, attrs, result,
- DEVICE_LITTLE_ENDIAN);
-}
-
-uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, MemTxResult *result)
-{
- return address_space_lduw_internal(as, addr, attrs, result,
- DEVICE_BIG_ENDIAN);
-}
-
-uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
-{
- return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned. The ram page is not masked as dirty
- and the code inside is not invalidated. It is useful if the dirty
- bits are used to track modified PTEs */
-void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- uint8_t *ptr;
- MemoryRegion *mr;
- hwaddr l = 4;
- hwaddr addr1;
- MemTxResult r;
- uint8_t dirty_log_mask;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l,
- true);
- if (l < 4 || !memory_access_is_direct(mr, true)) {
- release_lock |= prepare_mmio_access(mr);
-
- r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
- } else {
- addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
- ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
- stl_p(ptr, val);
-
- dirty_log_mask = memory_region_get_dirty_log_mask(mr);
- dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
- cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
-}
-
-void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline void address_space_stl_internal(AddressSpace *as,
- hwaddr addr, uint32_t val,
- MemTxAttrs attrs,
- MemTxResult *result,
- enum device_endian endian)
-{
- uint8_t *ptr;
- MemoryRegion *mr;
- hwaddr l = 4;
- hwaddr addr1;
- MemTxResult r;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l,
- true);
- if (l < 4 || !memory_access_is_direct(mr, true)) {
- release_lock |= prepare_mmio_access(mr);
-
-#if defined(TARGET_WORDS_BIGENDIAN)
- if (endian == DEVICE_LITTLE_ENDIAN) {
- val = bswap32(val);
- }
-#else
- if (endian == DEVICE_BIG_ENDIAN) {
- val = bswap32(val);
- }
-#endif
- r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
- } else {
- /* RAM case */
- addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
- ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
- switch (endian) {
- case DEVICE_LITTLE_ENDIAN:
- stl_le_p(ptr, val);
- break;
- case DEVICE_BIG_ENDIAN:
- stl_be_p(ptr, val);
- break;
- default:
- stl_p(ptr, val);
- break;
- }
- invalidate_and_set_dirty(mr, addr1, 4);
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
-}
-
-void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stl_internal(as, addr, val, attrs, result,
- DEVICE_NATIVE_ENDIAN);
-}
-
-void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stl_internal(as, addr, val, attrs, result,
- DEVICE_LITTLE_ENDIAN);
-}
-
-void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stl_internal(as, addr, val, attrs, result,
- DEVICE_BIG_ENDIAN);
-}
-
-void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- uint8_t v = val;
- MemTxResult r;
-
- r = address_space_rw(as, addr, attrs, &v, 1, 1);
- if (result) {
- *result = r;
- }
-}
-
-void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline void address_space_stw_internal(AddressSpace *as,
- hwaddr addr, uint32_t val,
- MemTxAttrs attrs,
- MemTxResult *result,
- enum device_endian endian)
-{
- uint8_t *ptr;
- MemoryRegion *mr;
- hwaddr l = 2;
- hwaddr addr1;
- MemTxResult r;
- bool release_lock = false;
-
- rcu_read_lock();
- mr = address_space_translate(as, addr, &addr1, &l, true);
- if (l < 2 || !memory_access_is_direct(mr, true)) {
- release_lock |= prepare_mmio_access(mr);
-
-#if defined(TARGET_WORDS_BIGENDIAN)
- if (endian == DEVICE_LITTLE_ENDIAN) {
- val = bswap16(val);
- }
-#else
- if (endian == DEVICE_BIG_ENDIAN) {
- val = bswap16(val);
- }
-#endif
- r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
- } else {
- /* RAM case */
- addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
- ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
- switch (endian) {
- case DEVICE_LITTLE_ENDIAN:
- stw_le_p(ptr, val);
- break;
- case DEVICE_BIG_ENDIAN:
- stw_be_p(ptr, val);
- break;
- default:
- stw_p(ptr, val);
- break;
- }
- invalidate_and_set_dirty(mr, addr1, 2);
- r = MEMTX_OK;
- }
- if (result) {
- *result = r;
- }
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- }
- rcu_read_unlock();
-}
-
-void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stw_internal(as, addr, val, attrs, result,
- DEVICE_NATIVE_ENDIAN);
-}
-
-void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stw_internal(as, addr, val, attrs, result,
- DEVICE_LITTLE_ENDIAN);
-}
-
-void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- address_space_stw_internal(as, addr, val, attrs, result,
- DEVICE_BIG_ENDIAN);
-}
-
-void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
- address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- MemTxResult r;
- val = tswap64(val);
- r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
- if (result) {
- *result = r;
- }
-}
-
-void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- MemTxResult r;
- val = cpu_to_le64(val);
- r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
- if (result) {
- *result = r;
- }
-}
-void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
- MemTxAttrs attrs, MemTxResult *result)
-{
- MemTxResult r;
- val = cpu_to_be64(val);
- r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
- if (result) {
- *result = r;
- }
-}
-
-void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
- address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
- address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
- address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
- uint8_t *buf, int len, int is_write)
-{
- int l;
- hwaddr phys_addr;
- target_ulong page;
-
- while (len > 0) {
- int asidx;
- MemTxAttrs attrs;
-
- page = addr & TARGET_PAGE_MASK;
- phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
- asidx = cpu_asidx_from_attrs(cpu, attrs);
- /* if no physical page mapped, return an error */
- if (phys_addr == -1)
- return -1;
- l = (page + TARGET_PAGE_SIZE) - addr;
- if (l > len)
- l = len;
- phys_addr += (addr & ~TARGET_PAGE_MASK);
- if (is_write) {
- cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
- phys_addr, buf, l);
- } else {
- address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
- MEMTXATTRS_UNSPECIFIED,
- buf, l, 0);
- }
- len -= l;
- buf += l;
- addr += l;
- }
- return 0;
-}
-
-/*
- * Allows code that needs to deal with migration bitmaps etc to still be built
- * target independent.
- */
-size_t qemu_target_page_bits(void)
-{
- return TARGET_PAGE_BITS;
-}
-
-#endif
-
-/*
- * A helper function for the _utterly broken_ virtio device model to find out if
- * it's running on a big endian machine. Don't do this at home kids!
- */
-bool target_words_bigendian(void);
-bool target_words_bigendian(void)
-{
-#if defined(TARGET_WORDS_BIGENDIAN)
- return true;
-#else
- return false;
-#endif
-}
-
-#ifndef CONFIG_USER_ONLY
-bool cpu_physical_memory_is_io(hwaddr phys_addr)
-{
- MemoryRegion*mr;
- hwaddr l = 1;
- bool res;
-
- rcu_read_lock();
- mr = address_space_translate(&address_space_memory,
- phys_addr, &phys_addr, &l, false);
-
- res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
- rcu_read_unlock();
- return res;
-}
-
-int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
-{
- RAMBlock *block;
- int ret = 0;
-
- rcu_read_lock();
- QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
- ret = func(block->idstr, block->host, block->offset,
- block->used_length, opaque);
- if (ret) {
- break;
- }
- }
- rcu_read_unlock();
- return ret;
-}
-#endif