diff options
author | Yang Zhang <yang.z.zhang@intel.com> | 2015-08-28 09:58:54 +0800 |
---|---|---|
committer | Yang Zhang <yang.z.zhang@intel.com> | 2015-09-01 12:44:00 +0800 |
commit | e44e3482bdb4d0ebde2d8b41830ac2cdb07948fb (patch) | |
tree | 66b09f592c55df2878107a468a91d21506104d3f /qemu/docs/memory.txt | |
parent | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (diff) |
Add qemu 2.4.0
Change-Id: Ic99cbad4b61f8b127b7dc74d04576c0bcbaaf4f5
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Diffstat (limited to 'qemu/docs/memory.txt')
-rw-r--r-- | qemu/docs/memory.txt | 286 |
1 files changed, 286 insertions, 0 deletions
diff --git a/qemu/docs/memory.txt b/qemu/docs/memory.txt new file mode 100644 index 000000000..2ceb34894 --- /dev/null +++ b/qemu/docs/memory.txt @@ -0,0 +1,286 @@ +The memory API +============== + +The memory API models the memory and I/O buses and controllers of a QEMU +machine. It attempts to allow modelling of: + + - ordinary RAM + - memory-mapped I/O (MMIO) + - memory controllers that can dynamically reroute physical memory regions + to different destinations + +The memory model provides support for + + - tracking RAM changes by the guest + - setting up coalesced memory for kvm + - setting up ioeventfd regions for kvm + +Memory is modelled as an acyclic graph of MemoryRegion objects. Sinks +(leaves) are RAM and MMIO regions, while other nodes represent +buses, memory controllers, and memory regions that have been rerouted. + +In addition to MemoryRegion objects, the memory API provides AddressSpace +objects for every root and possibly for intermediate MemoryRegions too. +These represent memory as seen from the CPU or a device's viewpoint. + +Types of regions +---------------- + +There are four types of memory regions (all represented by a single C type +MemoryRegion): + +- RAM: a RAM region is simply a range of host memory that can be made available + to the guest. + +- MMIO: a range of guest memory that is implemented by host callbacks; + each read or write causes a callback to be called on the host. + +- container: a container simply includes other memory regions, each at + a different offset. Containers are useful for grouping several regions + into one unit. For example, a PCI BAR may be composed of a RAM region + and an MMIO region. + + A container's subregions are usually non-overlapping. In some cases it is + useful to have overlapping regions; for example a memory controller that + can overlay a subregion of RAM with MMIO or ROM, or a PCI controller + that does not prevent card from claiming overlapping BARs. + +- alias: a subsection of another region. Aliases allow a region to be + split apart into discontiguous regions. Examples of uses are memory banks + used when the guest address space is smaller than the amount of RAM + addressed, or a memory controller that splits main memory to expose a "PCI + hole". Aliases may point to any type of region, including other aliases, + but an alias may not point back to itself, directly or indirectly. + +It is valid to add subregions to a region which is not a pure container +(that is, to an MMIO, RAM or ROM region). This means that the region +will act like a container, except that any addresses within the container's +region which are not claimed by any subregion are handled by the +container itself (ie by its MMIO callbacks or RAM backing). However +it is generally possible to achieve the same effect with a pure container +one of whose subregions is a low priority "background" region covering +the whole address range; this is often clearer and is preferred. +Subregions cannot be added to an alias region. + +Region names +------------ + +Regions are assigned names by the constructor. For most regions these are +only used for debugging purposes, but RAM regions also use the name to identify +live migration sections. This means that RAM region names need to have ABI +stability. + +Region lifecycle +---------------- + +A region is created by one of the memory_region_init*() functions and +attached to an object, which acts as its owner or parent. QEMU ensures +that the owner object remains alive as long as the region is visible to +the guest, or as long as the region is in use by a virtual CPU or another +device. For example, the owner object will not die between an +address_space_map operation and the corresponding address_space_unmap. + +After creation, a region can be added to an address space or a +container with memory_region_add_subregion(), and removed using +memory_region_del_subregion(). + +Various region attributes (read-only, dirty logging, coalesced mmio, +ioeventfd) can be changed during the region lifecycle. They take effect +as soon as the region is made visible. This can be immediately, later, +or never. + +Destruction of a memory region happens automatically when the owner +object dies. + +If however the memory region is part of a dynamically allocated data +structure, you should call object_unparent() to destroy the memory region +before the data structure is freed. For an example see VFIOMSIXInfo +and VFIOQuirk in hw/vfio/pci.c. + +You must not destroy a memory region as long as it may be in use by a +device or CPU. In order to do this, as a general rule do not create or +destroy memory regions dynamically during a device's lifetime, and only +call object_unparent() in the memory region owner's instance_finalize +callback. The dynamically allocated data structure that contains the +memory region then should obviously be freed in the instance_finalize +callback as well. + +If you break this rule, the following situation can happen: + +- the memory region's owner had a reference taken via memory_region_ref + (for example by address_space_map) + +- the region is unparented, and has no owner anymore + +- when address_space_unmap is called, the reference to the memory region's + owner is leaked. + + +There is an exception to the above rule: it is okay to call +object_unparent at any time for an alias or a container region. It is +therefore also okay to create or destroy alias and container regions +dynamically during a device's lifetime. + +This exceptional usage is valid because aliases and containers only help +QEMU building the guest's memory map; they are never accessed directly. +memory_region_ref and memory_region_unref are never called on aliases +or containers, and the above situation then cannot happen. Exploiting +this exception is rarely necessary, and therefore it is discouraged, +but nevertheless it is used in a few places. + +For regions that "have no owner" (NULL is passed at creation time), the +machine object is actually used as the owner. Since instance_finalize is +never called for the machine object, you must never call object_unparent +on regions that have no owner, unless they are aliases or containers. + + +Overlapping regions and priority +-------------------------------- +Usually, regions may not overlap each other; a memory address decodes into +exactly one target. In some cases it is useful to allow regions to overlap, +and sometimes to control which of an overlapping regions is visible to the +guest. This is done with memory_region_add_subregion_overlap(), which +allows the region to overlap any other region in the same container, and +specifies a priority that allows the core to decide which of two regions at +the same address are visible (highest wins). +Priority values are signed, and the default value is zero. This means that +you can use memory_region_add_subregion_overlap() both to specify a region +that must sit 'above' any others (with a positive priority) and also a +background region that sits 'below' others (with a negative priority). + +If the higher priority region in an overlap is a container or alias, then +the lower priority region will appear in any "holes" that the higher priority +region has left by not mapping subregions to that area of its address range. +(This applies recursively -- if the subregions are themselves containers or +aliases that leave holes then the lower priority region will appear in these +holes too.) + +For example, suppose we have a container A of size 0x8000 with two subregions +B and C. B is a container mapped at 0x2000, size 0x4000, priority 1; C is +an MMIO region mapped at 0x0, size 0x6000, priority 2. B currently has two +of its own subregions: D of size 0x1000 at offset 0 and E of size 0x1000 at +offset 0x2000. As a diagram: + + 0 1000 2000 3000 4000 5000 6000 7000 8000 + |------|------|------|------|------|------|------|-------| + A: [ ] + C: [CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC] + B: [ ] + D: [DDDDD] + E: [EEEEE] + +The regions that will be seen within this address range then are: + [CCCCCCCCCCCC][DDDDD][CCCCC][EEEEE][CCCCC] + +Since B has higher priority than C, its subregions appear in the flat map +even where they overlap with C. In ranges where B has not mapped anything +C's region appears. + +If B had provided its own MMIO operations (ie it was not a pure container) +then these would be used for any addresses in its range not handled by +D or E, and the result would be: + [CCCCCCCCCCCC][DDDDD][BBBBB][EEEEE][BBBBB] + +Priority values are local to a container, because the priorities of two +regions are only compared when they are both children of the same container. +This means that the device in charge of the container (typically modelling +a bus or a memory controller) can use them to manage the interaction of +its child regions without any side effects on other parts of the system. +In the example above, the priorities of D and E are unimportant because +they do not overlap each other. It is the relative priority of B and C +that causes D and E to appear on top of C: D and E's priorities are never +compared against the priority of C. + +Visibility +---------- +The memory core uses the following rules to select a memory region when the +guest accesses an address: + +- all direct subregions of the root region are matched against the address, in + descending priority order + - if the address lies outside the region offset/size, the subregion is + discarded + - if the subregion is a leaf (RAM or MMIO), the search terminates, returning + this leaf region + - if the subregion is a container, the same algorithm is used within the + subregion (after the address is adjusted by the subregion offset) + - if the subregion is an alias, the search is continued at the alias target + (after the address is adjusted by the subregion offset and alias offset) + - if a recursive search within a container or alias subregion does not + find a match (because of a "hole" in the container's coverage of its + address range), then if this is a container with its own MMIO or RAM + backing the search terminates, returning the container itself. Otherwise + we continue with the next subregion in priority order +- if none of the subregions match the address then the search terminates + with no match found + +Example memory map +------------------ + +system_memory: container@0-2^48-1 + | + +---- lomem: alias@0-0xdfffffff ---> #ram (0-0xdfffffff) + | + +---- himem: alias@0x100000000-0x11fffffff ---> #ram (0xe0000000-0xffffffff) + | + +---- vga-window: alias@0xa0000-0xbfffff ---> #pci (0xa0000-0xbffff) + | (prio 1) + | + +---- pci-hole: alias@0xe0000000-0xffffffff ---> #pci (0xe0000000-0xffffffff) + +pci (0-2^32-1) + | + +--- vga-area: container@0xa0000-0xbffff + | | + | +--- alias@0x00000-0x7fff ---> #vram (0x010000-0x017fff) + | | + | +--- alias@0x08000-0xffff ---> #vram (0x020000-0x027fff) + | + +---- vram: ram@0xe1000000-0xe1ffffff + | + +---- vga-mmio: mmio@0xe2000000-0xe200ffff + +ram: ram@0x00000000-0xffffffff + +This is a (simplified) PC memory map. The 4GB RAM block is mapped into the +system address space via two aliases: "lomem" is a 1:1 mapping of the first +3.5GB; "himem" maps the last 0.5GB at address 4GB. This leaves 0.5GB for the +so-called PCI hole, that allows a 32-bit PCI bus to exist in a system with +4GB of memory. + +The memory controller diverts addresses in the range 640K-768K to the PCI +address space. This is modelled using the "vga-window" alias, mapped at a +higher priority so it obscures the RAM at the same addresses. The vga window +can be removed by programming the memory controller; this is modelled by +removing the alias and exposing the RAM underneath. + +The pci address space is not a direct child of the system address space, since +we only want parts of it to be visible (we accomplish this using aliases). +It has two subregions: vga-area models the legacy vga window and is occupied +by two 32K memory banks pointing at two sections of the framebuffer. +In addition the vram is mapped as a BAR at address e1000000, and an additional +BAR containing MMIO registers is mapped after it. + +Note that if the guest maps a BAR outside the PCI hole, it would not be +visible as the pci-hole alias clips it to a 0.5GB range. + +MMIO Operations +--------------- + +MMIO regions are provided with ->read() and ->write() callbacks; in addition +various constraints can be supplied to control how these callbacks are called: + + - .valid.min_access_size, .valid.max_access_size define the access sizes + (in bytes) which the device accepts; accesses outside this range will + have device and bus specific behaviour (ignored, or machine check) + - .valid.aligned specifies that the device only accepts naturally aligned + accesses. Unaligned accesses invoke device and bus specific behaviour. + - .impl.min_access_size, .impl.max_access_size define the access sizes + (in bytes) supported by the *implementation*; other access sizes will be + emulated using the ones available. For example a 4-byte write will be + emulated using four 1-byte writes, if .impl.max_access_size = 1. + - .impl.unaligned specifies that the *implementation* supports unaligned + accesses; if false, unaligned accesses will be emulated by two aligned + accesses. + - .old_mmio can be used to ease porting from code using + cpu_register_io_memory(). It should not be used in new code. |