diff options
author | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-11 10:41:07 +0300 |
---|---|---|
committer | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-13 08:17:18 +0300 |
commit | e09b41010ba33a20a87472ee821fa407a5b8da36 (patch) | |
tree | d10dc367189862e7ca5c592f033dc3726e1df4e3 /kernel/virt/kvm/arm/arch_timer.c | |
parent | f93b97fd65072de626c074dbe099a1fff05ce060 (diff) |
These changes are the raw update to linux-4.4.6-rt14. Kernel sources
are taken from kernel.org, and rt patch from the rt wiki download page.
During the rebasing, the following patch collided:
Force tick interrupt and get rid of softirq magic(I70131fb85).
Collisions have been removed because its logic was found on the
source already.
Change-Id: I7f57a4081d9deaa0d9ccfc41a6c8daccdee3b769
Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
Diffstat (limited to 'kernel/virt/kvm/arm/arch_timer.c')
-rw-r--r-- | kernel/virt/kvm/arm/arch_timer.c | 210 |
1 files changed, 161 insertions, 49 deletions
diff --git a/kernel/virt/kvm/arm/arch_timer.c b/kernel/virt/kvm/arm/arch_timer.c index 98c95f2fc..ea6064696 100644 --- a/kernel/virt/kvm/arm/arch_timer.c +++ b/kernel/virt/kvm/arm/arch_timer.c @@ -28,6 +28,8 @@ #include <kvm/arm_vgic.h> #include <kvm/arm_arch_timer.h> +#include "trace.h" + static struct timecounter *timecounter; static struct workqueue_struct *wqueue; static unsigned int host_vtimer_irq; @@ -59,18 +61,6 @@ static void timer_disarm(struct arch_timer_cpu *timer) } } -static void kvm_timer_inject_irq(struct kvm_vcpu *vcpu) -{ - int ret; - struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; - - timer->cntv_ctl |= ARCH_TIMER_CTRL_IT_MASK; - ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, - timer->irq->irq, - timer->irq->level); - WARN_ON(ret); -} - static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) { struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; @@ -111,13 +101,20 @@ static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt) return HRTIMER_NORESTART; } +static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + + return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) && + (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE); +} + bool kvm_timer_should_fire(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; cycle_t cval, now; - if ((timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) || - !(timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE)) + if (!kvm_timer_irq_can_fire(vcpu)) return false; cval = timer->cntv_cval; @@ -126,68 +123,159 @@ bool kvm_timer_should_fire(struct kvm_vcpu *vcpu) return cval <= now; } +static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level) +{ + int ret; + struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + + BUG_ON(!vgic_initialized(vcpu->kvm)); + + timer->irq.level = new_level; + trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->map->virt_irq, + timer->irq.level); + ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id, + timer->map, + timer->irq.level); + WARN_ON(ret); +} + +/* + * Check if there was a change in the timer state (should we raise or lower + * the line level to the GIC). + */ +static int kvm_timer_update_state(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + + /* + * If userspace modified the timer registers via SET_ONE_REG before + * the vgic was initialized, we mustn't set the timer->irq.level value + * because the guest would never see the interrupt. Instead wait + * until we call this function from kvm_timer_flush_hwstate. + */ + if (!vgic_initialized(vcpu->kvm)) + return -ENODEV; + + if (kvm_timer_should_fire(vcpu) != timer->irq.level) + kvm_timer_update_irq(vcpu, !timer->irq.level); + + return 0; +} + +/* + * Schedule the background timer before calling kvm_vcpu_block, so that this + * thread is removed from its waitqueue and made runnable when there's a timer + * interrupt to handle. + */ +void kvm_timer_schedule(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + u64 ns; + cycle_t cval, now; + + BUG_ON(timer_is_armed(timer)); + + /* + * No need to schedule a background timer if the guest timer has + * already expired, because kvm_vcpu_block will return before putting + * the thread to sleep. + */ + if (kvm_timer_should_fire(vcpu)) + return; + + /* + * If the timer is not capable of raising interrupts (disabled or + * masked), then there's no more work for us to do. + */ + if (!kvm_timer_irq_can_fire(vcpu)) + return; + + /* The timer has not yet expired, schedule a background timer */ + cval = timer->cntv_cval; + now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff; + + ns = cyclecounter_cyc2ns(timecounter->cc, + cval - now, + timecounter->mask, + &timecounter->frac); + timer_arm(timer, ns); +} + +void kvm_timer_unschedule(struct kvm_vcpu *vcpu) +{ + struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + timer_disarm(timer); +} + /** * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu * @vcpu: The vcpu pointer * - * Disarm any pending soft timers, since the world-switch code will write the - * virtual timer state back to the physical CPU. + * Check if the virtual timer has expired while we were running in the host, + * and inject an interrupt if that was the case. */ void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + bool phys_active; + int ret; - /* - * We're about to run this vcpu again, so there is no need to - * keep the background timer running, as we're about to - * populate the CPU timer again. - */ - timer_disarm(timer); + if (kvm_timer_update_state(vcpu)) + return; /* - * If the timer expired while we were not scheduled, now is the time - * to inject it. - */ - if (kvm_timer_should_fire(vcpu)) - kvm_timer_inject_irq(vcpu); + * If we enter the guest with the virtual input level to the VGIC + * asserted, then we have already told the VGIC what we need to, and + * we don't need to exit from the guest until the guest deactivates + * the already injected interrupt, so therefore we should set the + * hardware active state to prevent unnecessary exits from the guest. + * + * Also, if we enter the guest with the virtual timer interrupt active, + * then it must be active on the physical distributor, because we set + * the HW bit and the guest must be able to deactivate the virtual and + * physical interrupt at the same time. + * + * Conversely, if the virtual input level is deasserted and the virtual + * interrupt is not active, then always clear the hardware active state + * to ensure that hardware interrupts from the timer triggers a guest + * exit. + */ + if (timer->irq.level || kvm_vgic_map_is_active(vcpu, timer->map)) + phys_active = true; + else + phys_active = false; + + ret = irq_set_irqchip_state(timer->map->irq, + IRQCHIP_STATE_ACTIVE, + phys_active); + WARN_ON(ret); } /** * kvm_timer_sync_hwstate - sync timer state from cpu * @vcpu: The vcpu pointer * - * Check if the virtual timer was armed and either schedule a corresponding - * soft timer or inject directly if already expired. + * Check if the virtual timer has expired while we were running in the guest, + * and inject an interrupt if that was the case. */ void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; - cycle_t cval, now; - u64 ns; BUG_ON(timer_is_armed(timer)); - if (kvm_timer_should_fire(vcpu)) { - /* - * Timer has already expired while we were not - * looking. Inject the interrupt and carry on. - */ - kvm_timer_inject_irq(vcpu); - return; - } - - cval = timer->cntv_cval; - now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff; - - ns = cyclecounter_cyc2ns(timecounter->cc, cval - now, timecounter->mask, - &timecounter->frac); - timer_arm(timer, ns); + /* + * The guest could have modified the timer registers or the timer + * could have expired, update the timer state. + */ + kvm_timer_update_state(vcpu); } -void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu, - const struct kvm_irq_level *irq) +int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu, + const struct kvm_irq_level *irq) { struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; + struct irq_phys_map *map; /* * The vcpu timer irq number cannot be determined in @@ -195,7 +283,27 @@ void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu, * kvm_vcpu_set_target(). To handle this, we determine * vcpu timer irq number when the vcpu is reset. */ - timer->irq = irq; + timer->irq.irq = irq->irq; + + /* + * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 + * and to 0 for ARMv7. We provide an implementation that always + * resets the timer to be disabled and unmasked and is compliant with + * the ARMv7 architecture. + */ + timer->cntv_ctl = 0; + kvm_timer_update_state(vcpu); + + /* + * Tell the VGIC that the virtual interrupt is tied to a + * physical interrupt. We do that once per VCPU. + */ + map = kvm_vgic_map_phys_irq(vcpu, irq->irq, host_vtimer_irq); + if (WARN_ON(IS_ERR(map))) + return PTR_ERR(map); + + timer->map = map; + return 0; } void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) @@ -229,6 +337,8 @@ int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) default: return -1; } + + kvm_timer_update_state(vcpu); return 0; } @@ -335,6 +445,8 @@ void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; timer_disarm(timer); + if (timer->map) + kvm_vgic_unmap_phys_irq(vcpu, timer->map); } void kvm_timer_enable(struct kvm *kvm) |