diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/include/asm-generic/pgtable.h | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/include/asm-generic/pgtable.h')
-rw-r--r-- | kernel/include/asm-generic/pgtable.h | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/kernel/include/asm-generic/pgtable.h b/kernel/include/asm-generic/pgtable.h new file mode 100644 index 000000000..39f1d6a2b --- /dev/null +++ b/kernel/include/asm-generic/pgtable.h @@ -0,0 +1,730 @@ +#ifndef _ASM_GENERIC_PGTABLE_H +#define _ASM_GENERIC_PGTABLE_H + +#ifndef __ASSEMBLY__ +#ifdef CONFIG_MMU + +#include <linux/mm_types.h> +#include <linux/bug.h> +#include <linux/errno.h> + +#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \ + CONFIG_PGTABLE_LEVELS +#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED +#endif + +/* + * On almost all architectures and configurations, 0 can be used as the + * upper ceiling to free_pgtables(): on many architectures it has the same + * effect as using TASK_SIZE. However, there is one configuration which + * must impose a more careful limit, to avoid freeing kernel pgtables. + */ +#ifndef USER_PGTABLES_CEILING +#define USER_PGTABLES_CEILING 0UL +#endif + +#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS +extern int ptep_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep, + pte_t entry, int dirty); +#endif + +#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS +extern int pmdp_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, + pmd_t entry, int dirty); +#endif + +#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG +static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pte_t *ptep) +{ + pte_t pte = *ptep; + int r = 1; + if (!pte_young(pte)) + r = 0; + else + set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); + return r; +} +#endif + +#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp) +{ + pmd_t pmd = *pmdp; + int r = 1; + if (!pmd_young(pmd)) + r = 0; + else + set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); + return r; +} +#else /* CONFIG_TRANSPARENT_HUGEPAGE */ +static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp) +{ + BUG(); + return 0; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH +int ptep_clear_flush_young(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep); +#endif + +#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH +int pmdp_clear_flush_young(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR +static inline pte_t ptep_get_and_clear(struct mm_struct *mm, + unsigned long address, + pte_t *ptep) +{ + pte_t pte = *ptep; + pte_clear(mm, address, ptep); + return pte; +} +#endif + +#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, + unsigned long address, + pmd_t *pmdp) +{ + pmd_t pmd = *pmdp; + pmd_clear(pmdp); + return pmd; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm, + unsigned long address, pmd_t *pmdp, + int full) +{ + return pmdp_get_and_clear(mm, address, pmdp); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL +static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, + unsigned long address, pte_t *ptep, + int full) +{ + pte_t pte; + pte = ptep_get_and_clear(mm, address, ptep); + return pte; +} +#endif + +/* + * Some architectures may be able to avoid expensive synchronization + * primitives when modifications are made to PTE's which are already + * not present, or in the process of an address space destruction. + */ +#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL +static inline void pte_clear_not_present_full(struct mm_struct *mm, + unsigned long address, + pte_t *ptep, + int full) +{ + pte_clear(mm, address, ptep); +} +#endif + +#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH +extern pte_t ptep_clear_flush(struct vm_area_struct *vma, + unsigned long address, + pte_t *ptep); +#endif + +#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH +extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT +struct mm_struct; +static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) +{ + pte_t old_pte = *ptep; + set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); +} +#endif + +#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline void pmdp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pmd_t *pmdp) +{ + pmd_t old_pmd = *pmdp; + set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); +} +#else /* CONFIG_TRANSPARENT_HUGEPAGE */ +static inline void pmdp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pmd_t *pmdp) +{ + BUG(); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH +extern void pmdp_splitting_flush(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT +extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, + pgtable_t pgtable); +#endif + +#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW +extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PMDP_INVALIDATE +extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, + pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PTE_SAME +static inline int pte_same(pte_t pte_a, pte_t pte_b) +{ + return pte_val(pte_a) == pte_val(pte_b); +} +#endif + +#ifndef __HAVE_ARCH_PTE_UNUSED +/* + * Some architectures provide facilities to virtualization guests + * so that they can flag allocated pages as unused. This allows the + * host to transparently reclaim unused pages. This function returns + * whether the pte's page is unused. + */ +static inline int pte_unused(pte_t pte) +{ + return 0; +} +#endif + +#ifndef __HAVE_ARCH_PMD_SAME +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) +{ + return pmd_val(pmd_a) == pmd_val(pmd_b); +} +#else /* CONFIG_TRANSPARENT_HUGEPAGE */ +static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) +{ + BUG(); + return 0; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PGD_OFFSET_GATE +#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) +#endif + +#ifndef __HAVE_ARCH_MOVE_PTE +#define move_pte(pte, prot, old_addr, new_addr) (pte) +#endif + +#ifndef pte_accessible +# define pte_accessible(mm, pte) ((void)(pte), 1) +#endif + +#ifndef flush_tlb_fix_spurious_fault +#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) +#endif + +#ifndef pgprot_noncached +#define pgprot_noncached(prot) (prot) +#endif + +#ifndef pgprot_writecombine +#define pgprot_writecombine pgprot_noncached +#endif + +#ifndef pgprot_device +#define pgprot_device pgprot_noncached +#endif + +#ifndef pgprot_modify +#define pgprot_modify pgprot_modify +static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) +{ + if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) + newprot = pgprot_noncached(newprot); + if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) + newprot = pgprot_writecombine(newprot); + if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) + newprot = pgprot_device(newprot); + return newprot; +} +#endif + +/* + * When walking page tables, get the address of the next boundary, + * or the end address of the range if that comes earlier. Although no + * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. + */ + +#define pgd_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) + +#ifndef pud_addr_end +#define pud_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) +#endif + +#ifndef pmd_addr_end +#define pmd_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) +#endif + +/* + * When walking page tables, we usually want to skip any p?d_none entries; + * and any p?d_bad entries - reporting the error before resetting to none. + * Do the tests inline, but report and clear the bad entry in mm/memory.c. + */ +void pgd_clear_bad(pgd_t *); +void pud_clear_bad(pud_t *); +void pmd_clear_bad(pmd_t *); + +static inline int pgd_none_or_clear_bad(pgd_t *pgd) +{ + if (pgd_none(*pgd)) + return 1; + if (unlikely(pgd_bad(*pgd))) { + pgd_clear_bad(pgd); + return 1; + } + return 0; +} + +static inline int pud_none_or_clear_bad(pud_t *pud) +{ + if (pud_none(*pud)) + return 1; + if (unlikely(pud_bad(*pud))) { + pud_clear_bad(pud); + return 1; + } + return 0; +} + +static inline int pmd_none_or_clear_bad(pmd_t *pmd) +{ + if (pmd_none(*pmd)) + return 1; + if (unlikely(pmd_bad(*pmd))) { + pmd_clear_bad(pmd); + return 1; + } + return 0; +} + +static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, + unsigned long addr, + pte_t *ptep) +{ + /* + * Get the current pte state, but zero it out to make it + * non-present, preventing the hardware from asynchronously + * updating it. + */ + return ptep_get_and_clear(mm, addr, ptep); +} + +static inline void __ptep_modify_prot_commit(struct mm_struct *mm, + unsigned long addr, + pte_t *ptep, pte_t pte) +{ + /* + * The pte is non-present, so there's no hardware state to + * preserve. + */ + set_pte_at(mm, addr, ptep, pte); +} + +#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION +/* + * Start a pte protection read-modify-write transaction, which + * protects against asynchronous hardware modifications to the pte. + * The intention is not to prevent the hardware from making pte + * updates, but to prevent any updates it may make from being lost. + * + * This does not protect against other software modifications of the + * pte; the appropriate pte lock must be held over the transation. + * + * Note that this interface is intended to be batchable, meaning that + * ptep_modify_prot_commit may not actually update the pte, but merely + * queue the update to be done at some later time. The update must be + * actually committed before the pte lock is released, however. + */ +static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, + unsigned long addr, + pte_t *ptep) +{ + return __ptep_modify_prot_start(mm, addr, ptep); +} + +/* + * Commit an update to a pte, leaving any hardware-controlled bits in + * the PTE unmodified. + */ +static inline void ptep_modify_prot_commit(struct mm_struct *mm, + unsigned long addr, + pte_t *ptep, pte_t pte) +{ + __ptep_modify_prot_commit(mm, addr, ptep, pte); +} +#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ +#endif /* CONFIG_MMU */ + +/* + * A facility to provide lazy MMU batching. This allows PTE updates and + * page invalidations to be delayed until a call to leave lazy MMU mode + * is issued. Some architectures may benefit from doing this, and it is + * beneficial for both shadow and direct mode hypervisors, which may batch + * the PTE updates which happen during this window. Note that using this + * interface requires that read hazards be removed from the code. A read + * hazard could result in the direct mode hypervisor case, since the actual + * write to the page tables may not yet have taken place, so reads though + * a raw PTE pointer after it has been modified are not guaranteed to be + * up to date. This mode can only be entered and left under the protection of + * the page table locks for all page tables which may be modified. In the UP + * case, this is required so that preemption is disabled, and in the SMP case, + * it must synchronize the delayed page table writes properly on other CPUs. + */ +#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE +#define arch_enter_lazy_mmu_mode() do {} while (0) +#define arch_leave_lazy_mmu_mode() do {} while (0) +#define arch_flush_lazy_mmu_mode() do {} while (0) +#endif + +/* + * A facility to provide batching of the reload of page tables and + * other process state with the actual context switch code for + * paravirtualized guests. By convention, only one of the batched + * update (lazy) modes (CPU, MMU) should be active at any given time, + * entry should never be nested, and entry and exits should always be + * paired. This is for sanity of maintaining and reasoning about the + * kernel code. In this case, the exit (end of the context switch) is + * in architecture-specific code, and so doesn't need a generic + * definition. + */ +#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH +#define arch_start_context_switch(prev) do {} while (0) +#endif + +#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY +static inline int pte_soft_dirty(pte_t pte) +{ + return 0; +} + +static inline int pmd_soft_dirty(pmd_t pmd) +{ + return 0; +} + +static inline pte_t pte_mksoft_dirty(pte_t pte) +{ + return pte; +} + +static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) +{ + return pmd; +} + +static inline pte_t pte_swp_mksoft_dirty(pte_t pte) +{ + return pte; +} + +static inline int pte_swp_soft_dirty(pte_t pte) +{ + return 0; +} + +static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) +{ + return pte; +} +#endif + +#ifndef __HAVE_PFNMAP_TRACKING +/* + * Interfaces that can be used by architecture code to keep track of + * memory type of pfn mappings specified by the remap_pfn_range, + * vm_insert_pfn. + */ + +/* + * track_pfn_remap is called when a _new_ pfn mapping is being established + * by remap_pfn_range() for physical range indicated by pfn and size. + */ +static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn, unsigned long addr, + unsigned long size) +{ + return 0; +} + +/* + * track_pfn_insert is called when a _new_ single pfn is established + * by vm_insert_pfn(). + */ +static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn) +{ + return 0; +} + +/* + * track_pfn_copy is called when vma that is covering the pfnmap gets + * copied through copy_page_range(). + */ +static inline int track_pfn_copy(struct vm_area_struct *vma) +{ + return 0; +} + +/* + * untrack_pfn_vma is called while unmapping a pfnmap for a region. + * untrack can be called for a specific region indicated by pfn and size or + * can be for the entire vma (in which case pfn, size are zero). + */ +static inline void untrack_pfn(struct vm_area_struct *vma, + unsigned long pfn, unsigned long size) +{ +} +#else +extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn, unsigned long addr, + unsigned long size); +extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn); +extern int track_pfn_copy(struct vm_area_struct *vma); +extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, + unsigned long size); +#endif + +#ifdef __HAVE_COLOR_ZERO_PAGE +static inline int is_zero_pfn(unsigned long pfn) +{ + extern unsigned long zero_pfn; + unsigned long offset_from_zero_pfn = pfn - zero_pfn; + return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); +} + +#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) + +#else +static inline int is_zero_pfn(unsigned long pfn) +{ + extern unsigned long zero_pfn; + return pfn == zero_pfn; +} + +static inline unsigned long my_zero_pfn(unsigned long addr) +{ + extern unsigned long zero_pfn; + return zero_pfn; +} +#endif + +#ifdef CONFIG_MMU + +#ifndef CONFIG_TRANSPARENT_HUGEPAGE +static inline int pmd_trans_huge(pmd_t pmd) +{ + return 0; +} +static inline int pmd_trans_splitting(pmd_t pmd) +{ + return 0; +} +#ifndef __HAVE_ARCH_PMD_WRITE +static inline int pmd_write(pmd_t pmd) +{ + BUG(); + return 0; +} +#endif /* __HAVE_ARCH_PMD_WRITE */ +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#ifndef pmd_read_atomic +static inline pmd_t pmd_read_atomic(pmd_t *pmdp) +{ + /* + * Depend on compiler for an atomic pmd read. NOTE: this is + * only going to work, if the pmdval_t isn't larger than + * an unsigned long. + */ + return *pmdp; +} +#endif + +#ifndef pmd_move_must_withdraw +static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, + spinlock_t *old_pmd_ptl) +{ + /* + * With split pmd lock we also need to move preallocated + * PTE page table if new_pmd is on different PMD page table. + */ + return new_pmd_ptl != old_pmd_ptl; +} +#endif + +/* + * This function is meant to be used by sites walking pagetables with + * the mmap_sem hold in read mode to protect against MADV_DONTNEED and + * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd + * into a null pmd and the transhuge page fault can convert a null pmd + * into an hugepmd or into a regular pmd (if the hugepage allocation + * fails). While holding the mmap_sem in read mode the pmd becomes + * stable and stops changing under us only if it's not null and not a + * transhuge pmd. When those races occurs and this function makes a + * difference vs the standard pmd_none_or_clear_bad, the result is + * undefined so behaving like if the pmd was none is safe (because it + * can return none anyway). The compiler level barrier() is critically + * important to compute the two checks atomically on the same pmdval. + * + * For 32bit kernels with a 64bit large pmd_t this automatically takes + * care of reading the pmd atomically to avoid SMP race conditions + * against pmd_populate() when the mmap_sem is hold for reading by the + * caller (a special atomic read not done by "gcc" as in the generic + * version above, is also needed when THP is disabled because the page + * fault can populate the pmd from under us). + */ +static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) +{ + pmd_t pmdval = pmd_read_atomic(pmd); + /* + * The barrier will stabilize the pmdval in a register or on + * the stack so that it will stop changing under the code. + * + * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, + * pmd_read_atomic is allowed to return a not atomic pmdval + * (for example pointing to an hugepage that has never been + * mapped in the pmd). The below checks will only care about + * the low part of the pmd with 32bit PAE x86 anyway, with the + * exception of pmd_none(). So the important thing is that if + * the low part of the pmd is found null, the high part will + * be also null or the pmd_none() check below would be + * confused. + */ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + barrier(); +#endif + if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) + return 1; + if (unlikely(pmd_bad(pmdval))) { + pmd_clear_bad(pmd); + return 1; + } + return 0; +} + +/* + * This is a noop if Transparent Hugepage Support is not built into + * the kernel. Otherwise it is equivalent to + * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in + * places that already verified the pmd is not none and they want to + * walk ptes while holding the mmap sem in read mode (write mode don't + * need this). If THP is not enabled, the pmd can't go away under the + * code even if MADV_DONTNEED runs, but if THP is enabled we need to + * run a pmd_trans_unstable before walking the ptes after + * split_huge_page_pmd returns (because it may have run when the pmd + * become null, but then a page fault can map in a THP and not a + * regular page). + */ +static inline int pmd_trans_unstable(pmd_t *pmd) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + return pmd_none_or_trans_huge_or_clear_bad(pmd); +#else + return 0; +#endif +} + +#ifndef CONFIG_NUMA_BALANCING +/* + * Technically a PTE can be PROTNONE even when not doing NUMA balancing but + * the only case the kernel cares is for NUMA balancing and is only ever set + * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked + * _PAGE_PROTNONE so by by default, implement the helper as "always no". It + * is the responsibility of the caller to distinguish between PROT_NONE + * protections and NUMA hinting fault protections. + */ +static inline int pte_protnone(pte_t pte) +{ + return 0; +} + +static inline int pmd_protnone(pmd_t pmd) +{ + return 0; +} +#endif /* CONFIG_NUMA_BALANCING */ + +#endif /* CONFIG_MMU */ + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP +int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); +int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); +int pud_clear_huge(pud_t *pud); +int pmd_clear_huge(pmd_t *pmd); +#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ +static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int pud_clear_huge(pud_t *pud) +{ + return 0; +} +static inline int pmd_clear_huge(pmd_t *pmd) +{ + return 0; +} +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +#endif /* !__ASSEMBLY__ */ + +#ifndef io_remap_pfn_range +#define io_remap_pfn_range remap_pfn_range +#endif + +#endif /* _ASM_GENERIC_PGTABLE_H */ |