diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/fs/ntfs/file.c | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/fs/ntfs/file.c')
-rw-r--r-- | kernel/fs/ntfs/file.c | 2043 |
1 files changed, 2043 insertions, 0 deletions
diff --git a/kernel/fs/ntfs/file.c b/kernel/fs/ntfs/file.c new file mode 100644 index 000000000..7bb487e66 --- /dev/null +++ b/kernel/fs/ntfs/file.c @@ -0,0 +1,2043 @@ +/* + * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. + * + * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc. + * + * This program/include file is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as published + * by the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program/include file is distributed in the hope that it will be + * useful, but WITHOUT ANY WARRANTY; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program (in the main directory of the Linux-NTFS + * distribution in the file COPYING); if not, write to the Free Software + * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/backing-dev.h> +#include <linux/buffer_head.h> +#include <linux/gfp.h> +#include <linux/pagemap.h> +#include <linux/pagevec.h> +#include <linux/sched.h> +#include <linux/swap.h> +#include <linux/uio.h> +#include <linux/writeback.h> + +#include <asm/page.h> +#include <asm/uaccess.h> + +#include "attrib.h" +#include "bitmap.h" +#include "inode.h" +#include "debug.h" +#include "lcnalloc.h" +#include "malloc.h" +#include "mft.h" +#include "ntfs.h" + +/** + * ntfs_file_open - called when an inode is about to be opened + * @vi: inode to be opened + * @filp: file structure describing the inode + * + * Limit file size to the page cache limit on architectures where unsigned long + * is 32-bits. This is the most we can do for now without overflowing the page + * cache page index. Doing it this way means we don't run into problems because + * of existing too large files. It would be better to allow the user to read + * the beginning of the file but I doubt very much anyone is going to hit this + * check on a 32-bit architecture, so there is no point in adding the extra + * complexity required to support this. + * + * On 64-bit architectures, the check is hopefully optimized away by the + * compiler. + * + * After the check passes, just call generic_file_open() to do its work. + */ +static int ntfs_file_open(struct inode *vi, struct file *filp) +{ + if (sizeof(unsigned long) < 8) { + if (i_size_read(vi) > MAX_LFS_FILESIZE) + return -EOVERFLOW; + } + return generic_file_open(vi, filp); +} + +#ifdef NTFS_RW + +/** + * ntfs_attr_extend_initialized - extend the initialized size of an attribute + * @ni: ntfs inode of the attribute to extend + * @new_init_size: requested new initialized size in bytes + * + * Extend the initialized size of an attribute described by the ntfs inode @ni + * to @new_init_size bytes. This involves zeroing any non-sparse space between + * the old initialized size and @new_init_size both in the page cache and on + * disk (if relevant complete pages are already uptodate in the page cache then + * these are simply marked dirty). + * + * As a side-effect, the file size (vfs inode->i_size) may be incremented as, + * in the resident attribute case, it is tied to the initialized size and, in + * the non-resident attribute case, it may not fall below the initialized size. + * + * Note that if the attribute is resident, we do not need to touch the page + * cache at all. This is because if the page cache page is not uptodate we + * bring it uptodate later, when doing the write to the mft record since we + * then already have the page mapped. And if the page is uptodate, the + * non-initialized region will already have been zeroed when the page was + * brought uptodate and the region may in fact already have been overwritten + * with new data via mmap() based writes, so we cannot just zero it. And since + * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped + * is unspecified, we choose not to do zeroing and thus we do not need to touch + * the page at all. For a more detailed explanation see ntfs_truncate() in + * fs/ntfs/inode.c. + * + * Return 0 on success and -errno on error. In the case that an error is + * encountered it is possible that the initialized size will already have been + * incremented some way towards @new_init_size but it is guaranteed that if + * this is the case, the necessary zeroing will also have happened and that all + * metadata is self-consistent. + * + * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be + * held by the caller. + */ +static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size) +{ + s64 old_init_size; + loff_t old_i_size; + pgoff_t index, end_index; + unsigned long flags; + struct inode *vi = VFS_I(ni); + ntfs_inode *base_ni; + MFT_RECORD *m = NULL; + ATTR_RECORD *a; + ntfs_attr_search_ctx *ctx = NULL; + struct address_space *mapping; + struct page *page = NULL; + u8 *kattr; + int err; + u32 attr_len; + + read_lock_irqsave(&ni->size_lock, flags); + old_init_size = ni->initialized_size; + old_i_size = i_size_read(vi); + BUG_ON(new_init_size > ni->allocated_size); + read_unlock_irqrestore(&ni->size_lock, flags); + ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " + "old_initialized_size 0x%llx, " + "new_initialized_size 0x%llx, i_size 0x%llx.", + vi->i_ino, (unsigned)le32_to_cpu(ni->type), + (unsigned long long)old_init_size, + (unsigned long long)new_init_size, old_i_size); + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + /* Use goto to reduce indentation and we need the label below anyway. */ + if (NInoNonResident(ni)) + goto do_non_resident_extend; + BUG_ON(old_init_size != old_i_size); + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(a->non_resident); + /* The total length of the attribute value. */ + attr_len = le32_to_cpu(a->data.resident.value_length); + BUG_ON(old_i_size != (loff_t)attr_len); + /* + * Do the zeroing in the mft record and update the attribute size in + * the mft record. + */ + kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); + memset(kattr + attr_len, 0, new_init_size - attr_len); + a->data.resident.value_length = cpu_to_le32((u32)new_init_size); + /* Finally, update the sizes in the vfs and ntfs inodes. */ + write_lock_irqsave(&ni->size_lock, flags); + i_size_write(vi, new_init_size); + ni->initialized_size = new_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); + goto done; +do_non_resident_extend: + /* + * If the new initialized size @new_init_size exceeds the current file + * size (vfs inode->i_size), we need to extend the file size to the + * new initialized size. + */ + if (new_init_size > old_i_size) { + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(!a->non_resident); + BUG_ON(old_i_size != (loff_t) + sle64_to_cpu(a->data.non_resident.data_size)); + a->data.non_resident.data_size = cpu_to_sle64(new_init_size); + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + /* Update the file size in the vfs inode. */ + i_size_write(vi, new_init_size); + ntfs_attr_put_search_ctx(ctx); + ctx = NULL; + unmap_mft_record(base_ni); + m = NULL; + } + mapping = vi->i_mapping; + index = old_init_size >> PAGE_CACHE_SHIFT; + end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; + do { + /* + * Read the page. If the page is not present, this will zero + * the uninitialized regions for us. + */ + page = read_mapping_page(mapping, index, NULL); + if (IS_ERR(page)) { + err = PTR_ERR(page); + goto init_err_out; + } + if (unlikely(PageError(page))) { + page_cache_release(page); + err = -EIO; + goto init_err_out; + } + /* + * Update the initialized size in the ntfs inode. This is + * enough to make ntfs_writepage() work. + */ + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; + if (ni->initialized_size > new_init_size) + ni->initialized_size = new_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); + /* Set the page dirty so it gets written out. */ + set_page_dirty(page); + page_cache_release(page); + /* + * Play nice with the vm and the rest of the system. This is + * very much needed as we can potentially be modifying the + * initialised size from a very small value to a really huge + * value, e.g. + * f = open(somefile, O_TRUNC); + * truncate(f, 10GiB); + * seek(f, 10GiB); + * write(f, 1); + * And this would mean we would be marking dirty hundreds of + * thousands of pages or as in the above example more than + * two and a half million pages! + * + * TODO: For sparse pages could optimize this workload by using + * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This + * would be set in readpage for sparse pages and here we would + * not need to mark dirty any pages which have this bit set. + * The only caveat is that we have to clear the bit everywhere + * where we allocate any clusters that lie in the page or that + * contain the page. + * + * TODO: An even greater optimization would be for us to only + * call readpage() on pages which are not in sparse regions as + * determined from the runlist. This would greatly reduce the + * number of pages we read and make dirty in the case of sparse + * files. + */ + balance_dirty_pages_ratelimited(mapping); + cond_resched(); + } while (++index < end_index); + read_lock_irqsave(&ni->size_lock, flags); + BUG_ON(ni->initialized_size != new_init_size); + read_unlock_irqrestore(&ni->size_lock, flags); + /* Now bring in sync the initialized_size in the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto init_err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto init_err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto init_err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(!a->non_resident); + a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); +done: + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", + (unsigned long long)new_init_size, i_size_read(vi)); + return 0; +init_err_out: + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = old_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); +err_out: + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_debug("Failed. Returning error code %i.", err); + return err; +} + +static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb, + struct iov_iter *from) +{ + loff_t pos; + s64 end, ll; + ssize_t err; + unsigned long flags; + struct file *file = iocb->ki_filp; + struct inode *vi = file_inode(file); + ntfs_inode *base_ni, *ni = NTFS_I(vi); + ntfs_volume *vol = ni->vol; + + ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos " + "0x%llx, count 0x%zx.", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), + (unsigned long long)iocb->ki_pos, + iov_iter_count(from)); + err = generic_write_checks(iocb, from); + if (unlikely(err <= 0)) + goto out; + /* + * All checks have passed. Before we start doing any writing we want + * to abort any totally illegal writes. + */ + BUG_ON(NInoMstProtected(ni)); + BUG_ON(ni->type != AT_DATA); + /* If file is encrypted, deny access, just like NT4. */ + if (NInoEncrypted(ni)) { + /* Only $DATA attributes can be encrypted. */ + /* + * Reminder for later: Encrypted files are _always_ + * non-resident so that the content can always be encrypted. + */ + ntfs_debug("Denying write access to encrypted file."); + err = -EACCES; + goto out; + } + if (NInoCompressed(ni)) { + /* Only unnamed $DATA attribute can be compressed. */ + BUG_ON(ni->name_len); + /* + * Reminder for later: If resident, the data is not actually + * compressed. Only on the switch to non-resident does + * compression kick in. This is in contrast to encrypted files + * (see above). + */ + ntfs_error(vi->i_sb, "Writing to compressed files is not " + "implemented yet. Sorry."); + err = -EOPNOTSUPP; + goto out; + } + base_ni = ni; + if (NInoAttr(ni)) + base_ni = ni->ext.base_ntfs_ino; + err = file_remove_suid(file); + if (unlikely(err)) + goto out; + /* + * Our ->update_time method always succeeds thus file_update_time() + * cannot fail either so there is no need to check the return code. + */ + file_update_time(file); + pos = iocb->ki_pos; + /* The first byte after the last cluster being written to. */ + end = (pos + iov_iter_count(from) + vol->cluster_size_mask) & + ~(u64)vol->cluster_size_mask; + /* + * If the write goes beyond the allocated size, extend the allocation + * to cover the whole of the write, rounded up to the nearest cluster. + */ + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (end > ll) { + /* + * Extend the allocation without changing the data size. + * + * Note we ensure the allocation is big enough to at least + * write some data but we do not require the allocation to be + * complete, i.e. it may be partial. + */ + ll = ntfs_attr_extend_allocation(ni, end, -1, pos); + if (likely(ll >= 0)) { + BUG_ON(pos >= ll); + /* If the extension was partial truncate the write. */ + if (end > ll) { + ntfs_debug("Truncating write to inode 0x%lx, " + "attribute type 0x%x, because " + "the allocation was only " + "partially extended.", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type)); + iov_iter_truncate(from, ll - pos); + } + } else { + err = ll; + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + /* Perform a partial write if possible or fail. */ + if (pos < ll) { + ntfs_debug("Truncating write to inode 0x%lx " + "attribute type 0x%x, because " + "extending the allocation " + "failed (error %d).", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type), + (int)-err); + iov_iter_truncate(from, ll - pos); + } else { + if (err != -ENOSPC) + ntfs_error(vi->i_sb, "Cannot perform " + "write to inode " + "0x%lx, attribute " + "type 0x%x, because " + "extending the " + "allocation failed " + "(error %ld).", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type), + (long)-err); + else + ntfs_debug("Cannot perform write to " + "inode 0x%lx, " + "attribute type 0x%x, " + "because there is not " + "space left.", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type)); + goto out; + } + } + } + /* + * If the write starts beyond the initialized size, extend it up to the + * beginning of the write and initialize all non-sparse space between + * the old initialized size and the new one. This automatically also + * increments the vfs inode->i_size to keep it above or equal to the + * initialized_size. + */ + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (pos > ll) { + /* + * Wait for ongoing direct i/o to complete before proceeding. + * New direct i/o cannot start as we hold i_mutex. + */ + inode_dio_wait(vi); + err = ntfs_attr_extend_initialized(ni, pos); + if (unlikely(err < 0)) + ntfs_error(vi->i_sb, "Cannot perform write to inode " + "0x%lx, attribute type 0x%x, because " + "extending the initialized size " + "failed (error %d).", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), + (int)-err); + } +out: + return err; +} + +/** + * __ntfs_grab_cache_pages - obtain a number of locked pages + * @mapping: address space mapping from which to obtain page cache pages + * @index: starting index in @mapping at which to begin obtaining pages + * @nr_pages: number of page cache pages to obtain + * @pages: array of pages in which to return the obtained page cache pages + * @cached_page: allocated but as yet unused page + * + * Obtain @nr_pages locked page cache pages from the mapping @mapping and + * starting at index @index. + * + * If a page is newly created, add it to lru list + * + * Note, the page locks are obtained in ascending page index order. + */ +static inline int __ntfs_grab_cache_pages(struct address_space *mapping, + pgoff_t index, const unsigned nr_pages, struct page **pages, + struct page **cached_page) +{ + int err, nr; + + BUG_ON(!nr_pages); + err = nr = 0; + do { + pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK | + FGP_ACCESSED); + if (!pages[nr]) { + if (!*cached_page) { + *cached_page = page_cache_alloc(mapping); + if (unlikely(!*cached_page)) { + err = -ENOMEM; + goto err_out; + } + } + err = add_to_page_cache_lru(*cached_page, mapping, + index, GFP_KERNEL); + if (unlikely(err)) { + if (err == -EEXIST) + continue; + goto err_out; + } + pages[nr] = *cached_page; + *cached_page = NULL; + } + index++; + nr++; + } while (nr < nr_pages); +out: + return err; +err_out: + while (nr > 0) { + unlock_page(pages[--nr]); + page_cache_release(pages[nr]); + } + goto out; +} + +static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) +{ + lock_buffer(bh); + get_bh(bh); + bh->b_end_io = end_buffer_read_sync; + return submit_bh(READ, bh); +} + +/** + * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * This is called for non-resident attributes from ntfs_file_buffered_write() + * with i_mutex held on the inode (@pages[0]->mapping->host). There are + * @nr_pages pages in @pages which are locked but not kmap()ped. The source + * data has not yet been copied into the @pages. + * + * Need to fill any holes with actual clusters, allocate buffers if necessary, + * ensure all the buffers are mapped, and bring uptodate any buffers that are + * only partially being written to. + * + * If @nr_pages is greater than one, we are guaranteed that the cluster size is + * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside + * the same cluster and that they are the entirety of that cluster, and that + * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. + * + * i_size is not to be modified yet. + * + * Return 0 on success or -errno on error. + */ +static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, + unsigned nr_pages, s64 pos, size_t bytes) +{ + VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; + LCN lcn; + s64 bh_pos, vcn_len, end, initialized_size; + sector_t lcn_block; + struct page *page; + struct inode *vi; + ntfs_inode *ni, *base_ni = NULL; + ntfs_volume *vol; + runlist_element *rl, *rl2; + struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; + ntfs_attr_search_ctx *ctx = NULL; + MFT_RECORD *m = NULL; + ATTR_RECORD *a = NULL; + unsigned long flags; + u32 attr_rec_len = 0; + unsigned blocksize, u; + int err, mp_size; + bool rl_write_locked, was_hole, is_retry; + unsigned char blocksize_bits; + struct { + u8 runlist_merged:1; + u8 mft_attr_mapped:1; + u8 mp_rebuilt:1; + u8 attr_switched:1; + } status = { 0, 0, 0, 0 }; + + BUG_ON(!nr_pages); + BUG_ON(!pages); + BUG_ON(!*pages); + vi = pages[0]->mapping->host; + ni = NTFS_I(vi); + vol = ni->vol; + ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " + "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", + vi->i_ino, ni->type, pages[0]->index, nr_pages, + (long long)pos, bytes); + blocksize = vol->sb->s_blocksize; + blocksize_bits = vol->sb->s_blocksize_bits; + u = 0; + do { + page = pages[u]; + BUG_ON(!page); + /* + * create_empty_buffers() will create uptodate/dirty buffers if + * the page is uptodate/dirty. + */ + if (!page_has_buffers(page)) { + create_empty_buffers(page, blocksize, 0); + if (unlikely(!page_has_buffers(page))) + return -ENOMEM; + } + } while (++u < nr_pages); + rl_write_locked = false; + rl = NULL; + err = 0; + vcn = lcn = -1; + vcn_len = 0; + lcn_block = -1; + was_hole = false; + cpos = pos >> vol->cluster_size_bits; + end = pos + bytes; + cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; + /* + * Loop over each page and for each page over each buffer. Use goto to + * reduce indentation. + */ + u = 0; +do_next_page: + page = pages[u]; + bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; + bh = head = page_buffers(page); + do { + VCN cdelta; + s64 bh_end; + unsigned bh_cofs; + + /* Clear buffer_new on all buffers to reinitialise state. */ + if (buffer_new(bh)) + clear_buffer_new(bh); + bh_end = bh_pos + blocksize; + bh_cpos = bh_pos >> vol->cluster_size_bits; + bh_cofs = bh_pos & vol->cluster_size_mask; + if (buffer_mapped(bh)) { + /* + * The buffer is already mapped. If it is uptodate, + * ignore it. + */ + if (buffer_uptodate(bh)) + continue; + /* + * The buffer is not uptodate. If the page is uptodate + * set the buffer uptodate and otherwise ignore it. + */ + if (PageUptodate(page)) { + set_buffer_uptodate(bh); + continue; + } + /* + * Neither the page nor the buffer are uptodate. If + * the buffer is only partially being written to, we + * need to read it in before the write, i.e. now. + */ + if ((bh_pos < pos && bh_end > pos) || + (bh_pos < end && bh_end > end)) { + /* + * If the buffer is fully or partially within + * the initialized size, do an actual read. + * Otherwise, simply zero the buffer. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (bh_pos < initialized_size) { + ntfs_submit_bh_for_read(bh); + *wait_bh++ = bh; + } else { + zero_user(page, bh_offset(bh), + blocksize); + set_buffer_uptodate(bh); + } + } + continue; + } + /* Unmapped buffer. Need to map it. */ + bh->b_bdev = vol->sb->s_bdev; + /* + * If the current buffer is in the same clusters as the map + * cache, there is no need to check the runlist again. The + * map cache is made up of @vcn, which is the first cached file + * cluster, @vcn_len which is the number of cached file + * clusters, @lcn is the device cluster corresponding to @vcn, + * and @lcn_block is the block number corresponding to @lcn. + */ + cdelta = bh_cpos - vcn; + if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { +map_buffer_cached: + BUG_ON(lcn < 0); + bh->b_blocknr = lcn_block + + (cdelta << (vol->cluster_size_bits - + blocksize_bits)) + + (bh_cofs >> blocksize_bits); + set_buffer_mapped(bh); + /* + * If the page is uptodate so is the buffer. If the + * buffer is fully outside the write, we ignore it if + * it was already allocated and we mark it dirty so it + * gets written out if we allocated it. On the other + * hand, if we allocated the buffer but we are not + * marking it dirty we set buffer_new so we can do + * error recovery. + */ + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + if (unlikely(was_hole)) { + /* We allocated the buffer. */ + unmap_underlying_metadata(bh->b_bdev, + bh->b_blocknr); + if (bh_end <= pos || bh_pos >= end) + mark_buffer_dirty(bh); + else + set_buffer_new(bh); + } + continue; + } + /* Page is _not_ uptodate. */ + if (likely(!was_hole)) { + /* + * Buffer was already allocated. If it is not + * uptodate and is only partially being written + * to, we need to read it in before the write, + * i.e. now. + */ + if (!buffer_uptodate(bh) && bh_pos < end && + bh_end > pos && + (bh_pos < pos || + bh_end > end)) { + /* + * If the buffer is fully or partially + * within the initialized size, do an + * actual read. Otherwise, simply zero + * the buffer. + */ + read_lock_irqsave(&ni->size_lock, + flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, + flags); + if (bh_pos < initialized_size) { + ntfs_submit_bh_for_read(bh); + *wait_bh++ = bh; + } else { + zero_user(page, bh_offset(bh), + blocksize); + set_buffer_uptodate(bh); + } + } + continue; + } + /* We allocated the buffer. */ + unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); + /* + * If the buffer is fully outside the write, zero it, + * set it uptodate, and mark it dirty so it gets + * written out. If it is partially being written to, + * zero region surrounding the write but leave it to + * commit write to do anything else. Finally, if the + * buffer is fully being overwritten, do nothing. + */ + if (bh_end <= pos || bh_pos >= end) { + if (!buffer_uptodate(bh)) { + zero_user(page, bh_offset(bh), + blocksize); + set_buffer_uptodate(bh); + } + mark_buffer_dirty(bh); + continue; + } + set_buffer_new(bh); + if (!buffer_uptodate(bh) && + (bh_pos < pos || bh_end > end)) { + u8 *kaddr; + unsigned pofs; + + kaddr = kmap_atomic(page); + if (bh_pos < pos) { + pofs = bh_pos & ~PAGE_CACHE_MASK; + memset(kaddr + pofs, 0, pos - bh_pos); + } + if (bh_end > end) { + pofs = end & ~PAGE_CACHE_MASK; + memset(kaddr + pofs, 0, bh_end - end); + } + kunmap_atomic(kaddr); + flush_dcache_page(page); + } + continue; + } + /* + * Slow path: this is the first buffer in the cluster. If it + * is outside allocated size and is not uptodate, zero it and + * set it uptodate. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (bh_pos > initialized_size) { + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + } else if (!buffer_uptodate(bh)) { + zero_user(page, bh_offset(bh), blocksize); + set_buffer_uptodate(bh); + } + continue; + } + is_retry = false; + if (!rl) { + down_read(&ni->runlist.lock); +retry_remap: + rl = ni->runlist.rl; + } + if (likely(rl != NULL)) { + /* Seek to element containing target cluster. */ + while (rl->length && rl[1].vcn <= bh_cpos) + rl++; + lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); + if (likely(lcn >= 0)) { + /* + * Successful remap, setup the map cache and + * use that to deal with the buffer. + */ + was_hole = false; + vcn = bh_cpos; + vcn_len = rl[1].vcn - vcn; + lcn_block = lcn << (vol->cluster_size_bits - + blocksize_bits); + cdelta = 0; + /* + * If the number of remaining clusters touched + * by the write is smaller or equal to the + * number of cached clusters, unlock the + * runlist as the map cache will be used from + * now on. + */ + if (likely(vcn + vcn_len >= cend)) { + if (rl_write_locked) { + up_write(&ni->runlist.lock); + rl_write_locked = false; + } else + up_read(&ni->runlist.lock); + rl = NULL; + } + goto map_buffer_cached; + } + } else + lcn = LCN_RL_NOT_MAPPED; + /* + * If it is not a hole and not out of bounds, the runlist is + * probably unmapped so try to map it now. + */ + if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { + if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { + /* Attempt to map runlist. */ + if (!rl_write_locked) { + /* + * We need the runlist locked for + * writing, so if it is locked for + * reading relock it now and retry in + * case it changed whilst we dropped + * the lock. + */ + up_read(&ni->runlist.lock); + down_write(&ni->runlist.lock); + rl_write_locked = true; + goto retry_remap; + } + err = ntfs_map_runlist_nolock(ni, bh_cpos, + NULL); + if (likely(!err)) { + is_retry = true; + goto retry_remap; + } + /* + * If @vcn is out of bounds, pretend @lcn is + * LCN_ENOENT. As long as the buffer is out + * of bounds this will work fine. + */ + if (err == -ENOENT) { + lcn = LCN_ENOENT; + err = 0; + goto rl_not_mapped_enoent; + } + } else + err = -EIO; + /* Failed to map the buffer, even after retrying. */ + bh->b_blocknr = -1; + ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " + "attribute type 0x%x, vcn 0x%llx, " + "vcn offset 0x%x, because its " + "location on disk could not be " + "determined%s (error code %i).", + ni->mft_no, ni->type, + (unsigned long long)bh_cpos, + (unsigned)bh_pos & + vol->cluster_size_mask, + is_retry ? " even after retrying" : "", + err); + break; + } +rl_not_mapped_enoent: + /* + * The buffer is in a hole or out of bounds. We need to fill + * the hole, unless the buffer is in a cluster which is not + * touched by the write, in which case we just leave the buffer + * unmapped. This can only happen when the cluster size is + * less than the page cache size. + */ + if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { + bh_cend = (bh_end + vol->cluster_size - 1) >> + vol->cluster_size_bits; + if ((bh_cend <= cpos || bh_cpos >= cend)) { + bh->b_blocknr = -1; + /* + * If the buffer is uptodate we skip it. If it + * is not but the page is uptodate, we can set + * the buffer uptodate. If the page is not + * uptodate, we can clear the buffer and set it + * uptodate. Whether this is worthwhile is + * debatable and this could be removed. + */ + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + } else if (!buffer_uptodate(bh)) { + zero_user(page, bh_offset(bh), + blocksize); + set_buffer_uptodate(bh); + } + continue; + } + } + /* + * Out of bounds buffer is invalid if it was not really out of + * bounds. + */ + BUG_ON(lcn != LCN_HOLE); + /* + * We need the runlist locked for writing, so if it is locked + * for reading relock it now and retry in case it changed + * whilst we dropped the lock. + */ + BUG_ON(!rl); + if (!rl_write_locked) { + up_read(&ni->runlist.lock); + down_write(&ni->runlist.lock); + rl_write_locked = true; + goto retry_remap; + } + /* Find the previous last allocated cluster. */ + BUG_ON(rl->lcn != LCN_HOLE); + lcn = -1; + rl2 = rl; + while (--rl2 >= ni->runlist.rl) { + if (rl2->lcn >= 0) { + lcn = rl2->lcn + rl2->length; + break; + } + } + rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, + false); + if (IS_ERR(rl2)) { + err = PTR_ERR(rl2); + ntfs_debug("Failed to allocate cluster, error code %i.", + err); + break; + } + lcn = rl2->lcn; + rl = ntfs_runlists_merge(ni->runlist.rl, rl2); + if (IS_ERR(rl)) { + err = PTR_ERR(rl); + if (err != -ENOMEM) + err = -EIO; + if (ntfs_cluster_free_from_rl(vol, rl2)) { + ntfs_error(vol->sb, "Failed to release " + "allocated cluster in error " + "code path. Run chkdsk to " + "recover the lost cluster."); + NVolSetErrors(vol); + } + ntfs_free(rl2); + break; + } + ni->runlist.rl = rl; + status.runlist_merged = 1; + ntfs_debug("Allocated cluster, lcn 0x%llx.", + (unsigned long long)lcn); + /* Map and lock the mft record and get the attribute record. */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + break; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + unmap_mft_record(base_ni); + break; + } + status.mft_attr_mapped = 1; + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + break; + } + m = ctx->mrec; + a = ctx->attr; + /* + * Find the runlist element with which the attribute extent + * starts. Note, we cannot use the _attr_ version because we + * have mapped the mft record. That is ok because we know the + * runlist fragment must be mapped already to have ever gotten + * here, so we can just use the _rl_ version. + */ + vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); + rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); + BUG_ON(!rl2); + BUG_ON(!rl2->length); + BUG_ON(rl2->lcn < LCN_HOLE); + highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); + /* + * If @highest_vcn is zero, calculate the real highest_vcn + * (which can really be zero). + */ + if (!highest_vcn) + highest_vcn = (sle64_to_cpu( + a->data.non_resident.allocated_size) >> + vol->cluster_size_bits) - 1; + /* + * Determine the size of the mapping pairs array for the new + * extent, i.e. the old extent with the hole filled. + */ + mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, + highest_vcn); + if (unlikely(mp_size <= 0)) { + if (!(err = mp_size)) + err = -EIO; + ntfs_debug("Failed to get size for mapping pairs " + "array, error code %i.", err); + break; + } + /* + * Resize the attribute record to fit the new mapping pairs + * array. + */ + attr_rec_len = le32_to_cpu(a->length); + err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( + a->data.non_resident.mapping_pairs_offset)); + if (unlikely(err)) { + BUG_ON(err != -ENOSPC); + // TODO: Deal with this by using the current attribute + // and fill it with as much of the mapping pairs + // array as possible. Then loop over each attribute + // extent rewriting the mapping pairs arrays as we go + // along and if when we reach the end we have not + // enough space, try to resize the last attribute + // extent and if even that fails, add a new attribute + // extent. + // We could also try to resize at each step in the hope + // that we will not need to rewrite every single extent. + // Note, we may need to decompress some extents to fill + // the runlist as we are walking the extents... + ntfs_error(vol->sb, "Not enough space in the mft " + "record for the extended attribute " + "record. This case is not " + "implemented yet."); + err = -EOPNOTSUPP; + break ; + } + status.mp_rebuilt = 1; + /* + * Generate the mapping pairs array directly into the attribute + * record. + */ + err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( + a->data.non_resident.mapping_pairs_offset), + mp_size, rl2, vcn, highest_vcn, NULL); + if (unlikely(err)) { + ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " + "attribute type 0x%x, because building " + "the mapping pairs failed with error " + "code %i.", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), err); + err = -EIO; + break; + } + /* Update the highest_vcn but only if it was not set. */ + if (unlikely(!a->data.non_resident.highest_vcn)) + a->data.non_resident.highest_vcn = + cpu_to_sle64(highest_vcn); + /* + * If the attribute is sparse/compressed, update the compressed + * size in the ntfs_inode structure and the attribute record. + */ + if (likely(NInoSparse(ni) || NInoCompressed(ni))) { + /* + * If we are not in the first attribute extent, switch + * to it, but first ensure the changes will make it to + * disk later. + */ + if (a->data.non_resident.lowest_vcn) { + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_reinit_search_ctx(ctx); + err = ntfs_attr_lookup(ni->type, ni->name, + ni->name_len, CASE_SENSITIVE, + 0, NULL, 0, ctx); + if (unlikely(err)) { + status.attr_switched = 1; + break; + } + /* @m is not used any more so do not set it. */ + a = ctx->attr; + } + write_lock_irqsave(&ni->size_lock, flags); + ni->itype.compressed.size += vol->cluster_size; + a->data.non_resident.compressed_size = + cpu_to_sle64(ni->itype.compressed.size); + write_unlock_irqrestore(&ni->size_lock, flags); + } + /* Ensure the changes make it to disk. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + /* Successfully filled the hole. */ + status.runlist_merged = 0; + status.mft_attr_mapped = 0; + status.mp_rebuilt = 0; + /* Setup the map cache and use that to deal with the buffer. */ + was_hole = true; + vcn = bh_cpos; + vcn_len = 1; + lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); + cdelta = 0; + /* + * If the number of remaining clusters in the @pages is smaller + * or equal to the number of cached clusters, unlock the + * runlist as the map cache will be used from now on. + */ + if (likely(vcn + vcn_len >= cend)) { + up_write(&ni->runlist.lock); + rl_write_locked = false; + rl = NULL; + } + goto map_buffer_cached; + } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); + /* If there are no errors, do the next page. */ + if (likely(!err && ++u < nr_pages)) + goto do_next_page; + /* If there are no errors, release the runlist lock if we took it. */ + if (likely(!err)) { + if (unlikely(rl_write_locked)) { + up_write(&ni->runlist.lock); + rl_write_locked = false; + } else if (unlikely(rl)) + up_read(&ni->runlist.lock); + rl = NULL; + } + /* If we issued read requests, let them complete. */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + while (wait_bh > wait) { + bh = *--wait_bh; + wait_on_buffer(bh); + if (likely(buffer_uptodate(bh))) { + page = bh->b_page; + bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + + bh_offset(bh); + /* + * If the buffer overflows the initialized size, need + * to zero the overflowing region. + */ + if (unlikely(bh_pos + blocksize > initialized_size)) { + int ofs = 0; + + if (likely(bh_pos < initialized_size)) + ofs = initialized_size - bh_pos; + zero_user_segment(page, bh_offset(bh) + ofs, + blocksize); + } + } else /* if (unlikely(!buffer_uptodate(bh))) */ + err = -EIO; + } + if (likely(!err)) { + /* Clear buffer_new on all buffers. */ + u = 0; + do { + bh = head = page_buffers(pages[u]); + do { + if (buffer_new(bh)) + clear_buffer_new(bh); + } while ((bh = bh->b_this_page) != head); + } while (++u < nr_pages); + ntfs_debug("Done."); + return err; + } + if (status.attr_switched) { + /* Get back to the attribute extent we modified. */ + ntfs_attr_reinit_search_ctx(ctx); + if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { + ntfs_error(vol->sb, "Failed to find required " + "attribute extent of attribute in " + "error code path. Run chkdsk to " + "recover."); + write_lock_irqsave(&ni->size_lock, flags); + ni->itype.compressed.size += vol->cluster_size; + write_unlock_irqrestore(&ni->size_lock, flags); + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + /* + * The only thing that is now wrong is the compressed + * size of the base attribute extent which chkdsk + * should be able to fix. + */ + NVolSetErrors(vol); + } else { + m = ctx->mrec; + a = ctx->attr; + status.attr_switched = 0; + } + } + /* + * If the runlist has been modified, need to restore it by punching a + * hole into it and we then need to deallocate the on-disk cluster as + * well. Note, we only modify the runlist if we are able to generate a + * new mapping pairs array, i.e. only when the mapped attribute extent + * is not switched. + */ + if (status.runlist_merged && !status.attr_switched) { + BUG_ON(!rl_write_locked); + /* Make the file cluster we allocated sparse in the runlist. */ + if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { + ntfs_error(vol->sb, "Failed to punch hole into " + "attribute runlist in error code " + "path. Run chkdsk to recover the " + "lost cluster."); + NVolSetErrors(vol); + } else /* if (success) */ { + status.runlist_merged = 0; + /* + * Deallocate the on-disk cluster we allocated but only + * if we succeeded in punching its vcn out of the + * runlist. + */ + down_write(&vol->lcnbmp_lock); + if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { + ntfs_error(vol->sb, "Failed to release " + "allocated cluster in error " + "code path. Run chkdsk to " + "recover the lost cluster."); + NVolSetErrors(vol); + } + up_write(&vol->lcnbmp_lock); + } + } + /* + * Resize the attribute record to its old size and rebuild the mapping + * pairs array. Note, we only can do this if the runlist has been + * restored to its old state which also implies that the mapped + * attribute extent is not switched. + */ + if (status.mp_rebuilt && !status.runlist_merged) { + if (ntfs_attr_record_resize(m, a, attr_rec_len)) { + ntfs_error(vol->sb, "Failed to restore attribute " + "record in error code path. Run " + "chkdsk to recover."); + NVolSetErrors(vol); + } else /* if (success) */ { + if (ntfs_mapping_pairs_build(vol, (u8*)a + + le16_to_cpu(a->data.non_resident. + mapping_pairs_offset), attr_rec_len - + le16_to_cpu(a->data.non_resident. + mapping_pairs_offset), ni->runlist.rl, + vcn, highest_vcn, NULL)) { + ntfs_error(vol->sb, "Failed to restore " + "mapping pairs array in error " + "code path. Run chkdsk to " + "recover."); + NVolSetErrors(vol); + } + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + } + } + /* Release the mft record and the attribute. */ + if (status.mft_attr_mapped) { + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + } + /* Release the runlist lock. */ + if (rl_write_locked) + up_write(&ni->runlist.lock); + else if (rl) + up_read(&ni->runlist.lock); + /* + * Zero out any newly allocated blocks to avoid exposing stale data. + * If BH_New is set, we know that the block was newly allocated above + * and that it has not been fully zeroed and marked dirty yet. + */ + nr_pages = u; + u = 0; + end = bh_cpos << vol->cluster_size_bits; + do { + page = pages[u]; + bh = head = page_buffers(page); + do { + if (u == nr_pages && + ((s64)page->index << PAGE_CACHE_SHIFT) + + bh_offset(bh) >= end) + break; + if (!buffer_new(bh)) + continue; + clear_buffer_new(bh); + if (!buffer_uptodate(bh)) { + if (PageUptodate(page)) + set_buffer_uptodate(bh); + else { + zero_user(page, bh_offset(bh), + blocksize); + set_buffer_uptodate(bh); + } + } + mark_buffer_dirty(bh); + } while ((bh = bh->b_this_page) != head); + } while (++u <= nr_pages); + ntfs_error(vol->sb, "Failed. Returning error code %i.", err); + return err; +} + +static inline void ntfs_flush_dcache_pages(struct page **pages, + unsigned nr_pages) +{ + BUG_ON(!nr_pages); + /* + * Warning: Do not do the decrement at the same time as the call to + * flush_dcache_page() because it is a NULL macro on i386 and hence the + * decrement never happens so the loop never terminates. + */ + do { + --nr_pages; + flush_dcache_page(pages[nr_pages]); + } while (nr_pages > 0); +} + +/** + * ntfs_commit_pages_after_non_resident_write - commit the received data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * See description of ntfs_commit_pages_after_write(), below. + */ +static inline int ntfs_commit_pages_after_non_resident_write( + struct page **pages, const unsigned nr_pages, + s64 pos, size_t bytes) +{ + s64 end, initialized_size; + struct inode *vi; + ntfs_inode *ni, *base_ni; + struct buffer_head *bh, *head; + ntfs_attr_search_ctx *ctx; + MFT_RECORD *m; + ATTR_RECORD *a; + unsigned long flags; + unsigned blocksize, u; + int err; + + vi = pages[0]->mapping->host; + ni = NTFS_I(vi); + blocksize = vi->i_sb->s_blocksize; + end = pos + bytes; + u = 0; + do { + s64 bh_pos; + struct page *page; + bool partial; + + page = pages[u]; + bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; + bh = head = page_buffers(page); + partial = false; + do { + s64 bh_end; + + bh_end = bh_pos + blocksize; + if (bh_end <= pos || bh_pos >= end) { + if (!buffer_uptodate(bh)) + partial = true; + } else { + set_buffer_uptodate(bh); + mark_buffer_dirty(bh); + } + } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); + /* + * If all buffers are now uptodate but the page is not, set the + * page uptodate. + */ + if (!partial && !PageUptodate(page)) + SetPageUptodate(page); + } while (++u < nr_pages); + /* + * Finally, if we do not need to update initialized_size or i_size we + * are finished. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (end <= initialized_size) { + ntfs_debug("Done."); + return 0; + } + /* + * Update initialized_size/i_size as appropriate, both in the inode and + * the mft record. + */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + /* Map, pin, and lock the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + ctx = NULL; + goto err_out; + } + BUG_ON(!NInoNonResident(ni)); + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + a = ctx->attr; + BUG_ON(!a->non_resident); + write_lock_irqsave(&ni->size_lock, flags); + BUG_ON(end > ni->allocated_size); + ni->initialized_size = end; + a->data.non_resident.initialized_size = cpu_to_sle64(end); + if (end > i_size_read(vi)) { + i_size_write(vi, end); + a->data.non_resident.data_size = + a->data.non_resident.initialized_size; + } + write_unlock_irqrestore(&ni->size_lock, flags); + /* Mark the mft record dirty, so it gets written back. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + ntfs_debug("Done."); + return 0; +err_out: + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " + "code %i).", err); + if (err != -ENOMEM) + NVolSetErrors(ni->vol); + return err; +} + +/** + * ntfs_commit_pages_after_write - commit the received data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * This is called from ntfs_file_buffered_write() with i_mutex held on the inode + * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are + * locked but not kmap()ped. The source data has already been copied into the + * @page. ntfs_prepare_pages_for_non_resident_write() has been called before + * the data was copied (for non-resident attributes only) and it returned + * success. + * + * Need to set uptodate and mark dirty all buffers within the boundary of the + * write. If all buffers in a page are uptodate we set the page uptodate, too. + * + * Setting the buffers dirty ensures that they get written out later when + * ntfs_writepage() is invoked by the VM. + * + * Finally, we need to update i_size and initialized_size as appropriate both + * in the inode and the mft record. + * + * This is modelled after fs/buffer.c::generic_commit_write(), which marks + * buffers uptodate and dirty, sets the page uptodate if all buffers in the + * page are uptodate, and updates i_size if the end of io is beyond i_size. In + * that case, it also marks the inode dirty. + * + * If things have gone as outlined in + * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page + * content modifications here for non-resident attributes. For resident + * attributes we need to do the uptodate bringing here which we combine with + * the copying into the mft record which means we save one atomic kmap. + * + * Return 0 on success or -errno on error. + */ +static int ntfs_commit_pages_after_write(struct page **pages, + const unsigned nr_pages, s64 pos, size_t bytes) +{ + s64 end, initialized_size; + loff_t i_size; + struct inode *vi; + ntfs_inode *ni, *base_ni; + struct page *page; + ntfs_attr_search_ctx *ctx; + MFT_RECORD *m; + ATTR_RECORD *a; + char *kattr, *kaddr; + unsigned long flags; + u32 attr_len; + int err; + + BUG_ON(!nr_pages); + BUG_ON(!pages); + page = pages[0]; + BUG_ON(!page); + vi = page->mapping->host; + ni = NTFS_I(vi); + ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " + "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", + vi->i_ino, ni->type, page->index, nr_pages, + (long long)pos, bytes); + if (NInoNonResident(ni)) + return ntfs_commit_pages_after_non_resident_write(pages, + nr_pages, pos, bytes); + BUG_ON(nr_pages > 1); + /* + * Attribute is resident, implying it is not compressed, encrypted, or + * sparse. + */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + BUG_ON(NInoNonResident(ni)); + /* Map, pin, and lock the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + ctx = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + a = ctx->attr; + BUG_ON(a->non_resident); + /* The total length of the attribute value. */ + attr_len = le32_to_cpu(a->data.resident.value_length); + i_size = i_size_read(vi); + BUG_ON(attr_len != i_size); + BUG_ON(pos > attr_len); + end = pos + bytes; + BUG_ON(end > le32_to_cpu(a->length) - + le16_to_cpu(a->data.resident.value_offset)); + kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); + kaddr = kmap_atomic(page); + /* Copy the received data from the page to the mft record. */ + memcpy(kattr + pos, kaddr + pos, bytes); + /* Update the attribute length if necessary. */ + if (end > attr_len) { + attr_len = end; + a->data.resident.value_length = cpu_to_le32(attr_len); + } + /* + * If the page is not uptodate, bring the out of bounds area(s) + * uptodate by copying data from the mft record to the page. + */ + if (!PageUptodate(page)) { + if (pos > 0) + memcpy(kaddr, kattr, pos); + if (end < attr_len) + memcpy(kaddr + end, kattr + end, attr_len - end); + /* Zero the region outside the end of the attribute value. */ + memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); + flush_dcache_page(page); + SetPageUptodate(page); + } + kunmap_atomic(kaddr); + /* Update initialized_size/i_size if necessary. */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + BUG_ON(end > ni->allocated_size); + read_unlock_irqrestore(&ni->size_lock, flags); + BUG_ON(initialized_size != i_size); + if (end > initialized_size) { + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = end; + i_size_write(vi, end); + write_unlock_irqrestore(&ni->size_lock, flags); + } + /* Mark the mft record dirty, so it gets written back. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + ntfs_debug("Done."); + return 0; +err_out: + if (err == -ENOMEM) { + ntfs_warning(vi->i_sb, "Error allocating memory required to " + "commit the write."); + if (PageUptodate(page)) { + ntfs_warning(vi->i_sb, "Page is uptodate, setting " + "dirty so the write will be retried " + "later on by the VM."); + /* + * Put the page on mapping->dirty_pages, but leave its + * buffers' dirty state as-is. + */ + __set_page_dirty_nobuffers(page); + err = 0; + } else + ntfs_error(vi->i_sb, "Page is not uptodate. Written " + "data has been lost."); + } else { + ntfs_error(vi->i_sb, "Resident attribute commit write failed " + "with error %i.", err); + NVolSetErrors(ni->vol); + } + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + return err; +} + +/* + * Copy as much as we can into the pages and return the number of bytes which + * were successfully copied. If a fault is encountered then clear the pages + * out to (ofs + bytes) and return the number of bytes which were copied. + */ +static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages, + unsigned ofs, struct iov_iter *i, size_t bytes) +{ + struct page **last_page = pages + nr_pages; + size_t total = 0; + struct iov_iter data = *i; + unsigned len, copied; + + do { + len = PAGE_CACHE_SIZE - ofs; + if (len > bytes) + len = bytes; + copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs, + len); + total += copied; + bytes -= copied; + if (!bytes) + break; + iov_iter_advance(&data, copied); + if (copied < len) + goto err; + ofs = 0; + } while (++pages < last_page); +out: + return total; +err: + /* Zero the rest of the target like __copy_from_user(). */ + len = PAGE_CACHE_SIZE - copied; + do { + if (len > bytes) + len = bytes; + zero_user(*pages, copied, len); + bytes -= len; + copied = 0; + len = PAGE_CACHE_SIZE; + } while (++pages < last_page); + goto out; +} + +/** + * ntfs_perform_write - perform buffered write to a file + * @file: file to write to + * @i: iov_iter with data to write + * @pos: byte offset in file at which to begin writing to + */ +static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i, + loff_t pos) +{ + struct address_space *mapping = file->f_mapping; + struct inode *vi = mapping->host; + ntfs_inode *ni = NTFS_I(vi); + ntfs_volume *vol = ni->vol; + struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; + struct page *cached_page = NULL; + VCN last_vcn; + LCN lcn; + size_t bytes; + ssize_t status, written = 0; + unsigned nr_pages; + + ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos " + "0x%llx, count 0x%lx.", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), + (unsigned long long)pos, + (unsigned long)iov_iter_count(i)); + /* + * If a previous ntfs_truncate() failed, repeat it and abort if it + * fails again. + */ + if (unlikely(NInoTruncateFailed(ni))) { + int err; + + inode_dio_wait(vi); + err = ntfs_truncate(vi); + if (err || NInoTruncateFailed(ni)) { + if (!err) + err = -EIO; + ntfs_error(vol->sb, "Cannot perform write to inode " + "0x%lx, attribute type 0x%x, because " + "ntfs_truncate() failed (error code " + "%i).", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), err); + return err; + } + } + /* + * Determine the number of pages per cluster for non-resident + * attributes. + */ + nr_pages = 1; + if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) + nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; + last_vcn = -1; + do { + VCN vcn; + pgoff_t idx, start_idx; + unsigned ofs, do_pages, u; + size_t copied; + + start_idx = idx = pos >> PAGE_CACHE_SHIFT; + ofs = pos & ~PAGE_CACHE_MASK; + bytes = PAGE_CACHE_SIZE - ofs; + do_pages = 1; + if (nr_pages > 1) { + vcn = pos >> vol->cluster_size_bits; + if (vcn != last_vcn) { + last_vcn = vcn; + /* + * Get the lcn of the vcn the write is in. If + * it is a hole, need to lock down all pages in + * the cluster. + */ + down_read(&ni->runlist.lock); + lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> + vol->cluster_size_bits, false); + up_read(&ni->runlist.lock); + if (unlikely(lcn < LCN_HOLE)) { + if (lcn == LCN_ENOMEM) + status = -ENOMEM; + else { + status = -EIO; + ntfs_error(vol->sb, "Cannot " + "perform write to " + "inode 0x%lx, " + "attribute type 0x%x, " + "because the attribute " + "is corrupt.", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type)); + } + break; + } + if (lcn == LCN_HOLE) { + start_idx = (pos & ~(s64) + vol->cluster_size_mask) + >> PAGE_CACHE_SHIFT; + bytes = vol->cluster_size - (pos & + vol->cluster_size_mask); + do_pages = nr_pages; + } + } + } + if (bytes > iov_iter_count(i)) + bytes = iov_iter_count(i); +again: + /* + * Bring in the user page(s) that we will copy from _first_. + * Otherwise there is a nasty deadlock on copying from the same + * page(s) as we are writing to, without it/them being marked + * up-to-date. Note, at present there is nothing to stop the + * pages being swapped out between us bringing them into memory + * and doing the actual copying. + */ + if (unlikely(iov_iter_fault_in_multipages_readable(i, bytes))) { + status = -EFAULT; + break; + } + /* Get and lock @do_pages starting at index @start_idx. */ + status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, + pages, &cached_page); + if (unlikely(status)) + break; + /* + * For non-resident attributes, we need to fill any holes with + * actual clusters and ensure all bufferes are mapped. We also + * need to bring uptodate any buffers that are only partially + * being written to. + */ + if (NInoNonResident(ni)) { + status = ntfs_prepare_pages_for_non_resident_write( + pages, do_pages, pos, bytes); + if (unlikely(status)) { + do { + unlock_page(pages[--do_pages]); + page_cache_release(pages[do_pages]); + } while (do_pages); + break; + } + } + u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; + copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs, + i, bytes); + ntfs_flush_dcache_pages(pages + u, do_pages - u); + status = 0; + if (likely(copied == bytes)) { + status = ntfs_commit_pages_after_write(pages, do_pages, + pos, bytes); + if (!status) + status = bytes; + } + do { + unlock_page(pages[--do_pages]); + page_cache_release(pages[do_pages]); + } while (do_pages); + if (unlikely(status < 0)) + break; + copied = status; + cond_resched(); + if (unlikely(!copied)) { + size_t sc; + + /* + * We failed to copy anything. Fall back to single + * segment length write. + * + * This is needed to avoid possible livelock in the + * case that all segments in the iov cannot be copied + * at once without a pagefault. + */ + sc = iov_iter_single_seg_count(i); + if (bytes > sc) + bytes = sc; + goto again; + } + iov_iter_advance(i, copied); + pos += copied; + written += copied; + balance_dirty_pages_ratelimited(mapping); + if (fatal_signal_pending(current)) { + status = -EINTR; + break; + } + } while (iov_iter_count(i)); + if (cached_page) + page_cache_release(cached_page); + ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", + written ? "written" : "status", (unsigned long)written, + (long)status); + return written ? written : status; +} + +/** + * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock() + * @iocb: IO state structure + * @from: iov_iter with data to write + * + * Basically the same as generic_file_write_iter() except that it ends up + * up calling ntfs_perform_write() instead of generic_perform_write() and that + * O_DIRECT is not implemented. + */ +static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) +{ + struct file *file = iocb->ki_filp; + struct inode *vi = file_inode(file); + ssize_t written = 0; + ssize_t err; + + mutex_lock(&vi->i_mutex); + /* We can write back this queue in page reclaim. */ + current->backing_dev_info = inode_to_bdi(vi); + err = ntfs_prepare_file_for_write(iocb, from); + if (iov_iter_count(from) && !err) + written = ntfs_perform_write(file, from, iocb->ki_pos); + current->backing_dev_info = NULL; + mutex_unlock(&vi->i_mutex); + if (likely(written > 0)) { + err = generic_write_sync(file, iocb->ki_pos, written); + if (err < 0) + written = 0; + } + iocb->ki_pos += written; + return written ? written : err; +} + +/** + * ntfs_file_fsync - sync a file to disk + * @filp: file to be synced + * @datasync: if non-zero only flush user data and not metadata + * + * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync + * system calls. This function is inspired by fs/buffer.c::file_fsync(). + * + * If @datasync is false, write the mft record and all associated extent mft + * records as well as the $DATA attribute and then sync the block device. + * + * If @datasync is true and the attribute is non-resident, we skip the writing + * of the mft record and all associated extent mft records (this might still + * happen due to the write_inode_now() call). + * + * Also, if @datasync is true, we do not wait on the inode to be written out + * but we always wait on the page cache pages to be written out. + * + * Locking: Caller must hold i_mutex on the inode. + * + * TODO: We should probably also write all attribute/index inodes associated + * with this inode but since we have no simple way of getting to them we ignore + * this problem for now. + */ +static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end, + int datasync) +{ + struct inode *vi = filp->f_mapping->host; + int err, ret = 0; + + ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); + + err = filemap_write_and_wait_range(vi->i_mapping, start, end); + if (err) + return err; + mutex_lock(&vi->i_mutex); + + BUG_ON(S_ISDIR(vi->i_mode)); + if (!datasync || !NInoNonResident(NTFS_I(vi))) + ret = __ntfs_write_inode(vi, 1); + write_inode_now(vi, !datasync); + /* + * NOTE: If we were to use mapping->private_list (see ext2 and + * fs/buffer.c) for dirty blocks then we could optimize the below to be + * sync_mapping_buffers(vi->i_mapping). + */ + err = sync_blockdev(vi->i_sb->s_bdev); + if (unlikely(err && !ret)) + ret = err; + if (likely(!ret)) + ntfs_debug("Done."); + else + ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " + "%u.", datasync ? "data" : "", vi->i_ino, -ret); + mutex_unlock(&vi->i_mutex); + return ret; +} + +#endif /* NTFS_RW */ + +const struct file_operations ntfs_file_ops = { + .llseek = generic_file_llseek, + .read_iter = generic_file_read_iter, +#ifdef NTFS_RW + .write_iter = ntfs_file_write_iter, + .fsync = ntfs_file_fsync, +#endif /* NTFS_RW */ + .mmap = generic_file_mmap, + .open = ntfs_file_open, + .splice_read = generic_file_splice_read, +}; + +const struct inode_operations ntfs_file_inode_ops = { +#ifdef NTFS_RW + .setattr = ntfs_setattr, +#endif /* NTFS_RW */ +}; + +const struct file_operations ntfs_empty_file_ops = {}; + +const struct inode_operations ntfs_empty_inode_ops = {}; |