diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/drivers/net/ethernet/sfc/tx.c | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/drivers/net/ethernet/sfc/tx.c')
-rw-r--r-- | kernel/drivers/net/ethernet/sfc/tx.c | 1332 |
1 files changed, 1332 insertions, 0 deletions
diff --git a/kernel/drivers/net/ethernet/sfc/tx.c b/kernel/drivers/net/ethernet/sfc/tx.c new file mode 100644 index 000000000..aaf298751 --- /dev/null +++ b/kernel/drivers/net/ethernet/sfc/tx.c @@ -0,0 +1,1332 @@ +/**************************************************************************** + * Driver for Solarflare network controllers and boards + * Copyright 2005-2006 Fen Systems Ltd. + * Copyright 2005-2013 Solarflare Communications Inc. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation, incorporated herein by reference. + */ + +#include <linux/pci.h> +#include <linux/tcp.h> +#include <linux/ip.h> +#include <linux/in.h> +#include <linux/ipv6.h> +#include <linux/slab.h> +#include <net/ipv6.h> +#include <linux/if_ether.h> +#include <linux/highmem.h> +#include <linux/cache.h> +#include "net_driver.h" +#include "efx.h" +#include "io.h" +#include "nic.h" +#include "workarounds.h" +#include "ef10_regs.h" + +#ifdef EFX_USE_PIO + +#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE +#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) +unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; + +#endif /* EFX_USE_PIO */ + +static inline unsigned int +efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) +{ + return tx_queue->insert_count & tx_queue->ptr_mask; +} + +static inline struct efx_tx_buffer * +__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) +{ + return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; +} + +static inline struct efx_tx_buffer * +efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) +{ + struct efx_tx_buffer *buffer = + __efx_tx_queue_get_insert_buffer(tx_queue); + + EFX_BUG_ON_PARANOID(buffer->len); + EFX_BUG_ON_PARANOID(buffer->flags); + EFX_BUG_ON_PARANOID(buffer->unmap_len); + + return buffer; +} + +static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer, + unsigned int *pkts_compl, + unsigned int *bytes_compl) +{ + if (buffer->unmap_len) { + struct device *dma_dev = &tx_queue->efx->pci_dev->dev; + dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; + if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) + dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, + DMA_TO_DEVICE); + else + dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, + DMA_TO_DEVICE); + buffer->unmap_len = 0; + } + + if (buffer->flags & EFX_TX_BUF_SKB) { + (*pkts_compl)++; + (*bytes_compl) += buffer->skb->len; + dev_consume_skb_any((struct sk_buff *)buffer->skb); + netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, + "TX queue %d transmission id %x complete\n", + tx_queue->queue, tx_queue->read_count); + } else if (buffer->flags & EFX_TX_BUF_HEAP) { + kfree(buffer->heap_buf); + } + + buffer->len = 0; + buffer->flags = 0; +} + +static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, + struct sk_buff *skb); + +static inline unsigned +efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) +{ + /* Depending on the NIC revision, we can use descriptor + * lengths up to 8K or 8K-1. However, since PCI Express + * devices must split read requests at 4K boundaries, there is + * little benefit from using descriptors that cross those + * boundaries and we keep things simple by not doing so. + */ + unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1; + + /* Work around hardware bug for unaligned buffers. */ + if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) + len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); + + return len; +} + +unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) +{ + /* Header and payload descriptor for each output segment, plus + * one for every input fragment boundary within a segment + */ + unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; + + /* Possibly one more per segment for the alignment workaround, + * or for option descriptors + */ + if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0) + max_descs += EFX_TSO_MAX_SEGS; + + /* Possibly more for PCIe page boundaries within input fragments */ + if (PAGE_SIZE > EFX_PAGE_SIZE) + max_descs += max_t(unsigned int, MAX_SKB_FRAGS, + DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE)); + + return max_descs; +} + +static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) +{ + /* We need to consider both queues that the net core sees as one */ + struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1); + struct efx_nic *efx = txq1->efx; + unsigned int fill_level; + + fill_level = max(txq1->insert_count - txq1->old_read_count, + txq2->insert_count - txq2->old_read_count); + if (likely(fill_level < efx->txq_stop_thresh)) + return; + + /* We used the stale old_read_count above, which gives us a + * pessimistic estimate of the fill level (which may even + * validly be >= efx->txq_entries). Now try again using + * read_count (more likely to be a cache miss). + * + * If we read read_count and then conditionally stop the + * queue, it is possible for the completion path to race with + * us and complete all outstanding descriptors in the middle, + * after which there will be no more completions to wake it. + * Therefore we stop the queue first, then read read_count + * (with a memory barrier to ensure the ordering), then + * restart the queue if the fill level turns out to be low + * enough. + */ + netif_tx_stop_queue(txq1->core_txq); + smp_mb(); + txq1->old_read_count = ACCESS_ONCE(txq1->read_count); + txq2->old_read_count = ACCESS_ONCE(txq2->read_count); + + fill_level = max(txq1->insert_count - txq1->old_read_count, + txq2->insert_count - txq2->old_read_count); + EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries); + if (likely(fill_level < efx->txq_stop_thresh)) { + smp_mb(); + if (likely(!efx->loopback_selftest)) + netif_tx_start_queue(txq1->core_txq); + } +} + +#ifdef EFX_USE_PIO + +struct efx_short_copy_buffer { + int used; + u8 buf[L1_CACHE_BYTES]; +}; + +/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. + * Advances piobuf pointer. Leaves additional data in the copy buffer. + */ +static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, + u8 *data, int len, + struct efx_short_copy_buffer *copy_buf) +{ + int block_len = len & ~(sizeof(copy_buf->buf) - 1); + + __iowrite64_copy(*piobuf, data, block_len >> 3); + *piobuf += block_len; + len -= block_len; + + if (len) { + data += block_len; + BUG_ON(copy_buf->used); + BUG_ON(len > sizeof(copy_buf->buf)); + memcpy(copy_buf->buf, data, len); + copy_buf->used = len; + } +} + +/* Copy to PIO, respecting dword alignment, popping data from copy buffer first. + * Advances piobuf pointer. Leaves additional data in the copy buffer. + */ +static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, + u8 *data, int len, + struct efx_short_copy_buffer *copy_buf) +{ + if (copy_buf->used) { + /* if the copy buffer is partially full, fill it up and write */ + int copy_to_buf = + min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); + + memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); + copy_buf->used += copy_to_buf; + + /* if we didn't fill it up then we're done for now */ + if (copy_buf->used < sizeof(copy_buf->buf)) + return; + + __iowrite64_copy(*piobuf, copy_buf->buf, + sizeof(copy_buf->buf) >> 3); + *piobuf += sizeof(copy_buf->buf); + data += copy_to_buf; + len -= copy_to_buf; + copy_buf->used = 0; + } + + efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); +} + +static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, + struct efx_short_copy_buffer *copy_buf) +{ + /* if there's anything in it, write the whole buffer, including junk */ + if (copy_buf->used) + __iowrite64_copy(piobuf, copy_buf->buf, + sizeof(copy_buf->buf) >> 3); +} + +/* Traverse skb structure and copy fragments in to PIO buffer. + * Advances piobuf pointer. + */ +static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, + u8 __iomem **piobuf, + struct efx_short_copy_buffer *copy_buf) +{ + int i; + + efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), + copy_buf); + + for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { + skb_frag_t *f = &skb_shinfo(skb)->frags[i]; + u8 *vaddr; + + vaddr = kmap_atomic(skb_frag_page(f)); + + efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset, + skb_frag_size(f), copy_buf); + kunmap_atomic(vaddr); + } + + EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list); +} + +static struct efx_tx_buffer * +efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb) +{ + struct efx_tx_buffer *buffer = + efx_tx_queue_get_insert_buffer(tx_queue); + u8 __iomem *piobuf = tx_queue->piobuf; + + /* Copy to PIO buffer. Ensure the writes are padded to the end + * of a cache line, as this is required for write-combining to be + * effective on at least x86. + */ + + if (skb_shinfo(skb)->nr_frags) { + /* The size of the copy buffer will ensure all writes + * are the size of a cache line. + */ + struct efx_short_copy_buffer copy_buf; + + copy_buf.used = 0; + + efx_skb_copy_bits_to_pio(tx_queue->efx, skb, + &piobuf, ©_buf); + efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); + } else { + /* Pad the write to the size of a cache line. + * We can do this because we know the skb_shared_info sruct is + * after the source, and the destination buffer is big enough. + */ + BUILD_BUG_ON(L1_CACHE_BYTES > + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); + __iowrite64_copy(tx_queue->piobuf, skb->data, + ALIGN(skb->len, L1_CACHE_BYTES) >> 3); + } + + EFX_POPULATE_QWORD_5(buffer->option, + ESF_DZ_TX_DESC_IS_OPT, 1, + ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, + ESF_DZ_TX_PIO_CONT, 0, + ESF_DZ_TX_PIO_BYTE_CNT, skb->len, + ESF_DZ_TX_PIO_BUF_ADDR, + tx_queue->piobuf_offset); + ++tx_queue->pio_packets; + ++tx_queue->insert_count; + return buffer; +} +#endif /* EFX_USE_PIO */ + +/* + * Add a socket buffer to a TX queue + * + * This maps all fragments of a socket buffer for DMA and adds them to + * the TX queue. The queue's insert pointer will be incremented by + * the number of fragments in the socket buffer. + * + * If any DMA mapping fails, any mapped fragments will be unmapped, + * the queue's insert pointer will be restored to its original value. + * + * This function is split out from efx_hard_start_xmit to allow the + * loopback test to direct packets via specific TX queues. + * + * Returns NETDEV_TX_OK. + * You must hold netif_tx_lock() to call this function. + */ +netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) +{ + struct efx_nic *efx = tx_queue->efx; + struct device *dma_dev = &efx->pci_dev->dev; + struct efx_tx_buffer *buffer; + unsigned int old_insert_count = tx_queue->insert_count; + skb_frag_t *fragment; + unsigned int len, unmap_len = 0; + dma_addr_t dma_addr, unmap_addr = 0; + unsigned int dma_len; + unsigned short dma_flags; + int i = 0; + + if (skb_shinfo(skb)->gso_size) + return efx_enqueue_skb_tso(tx_queue, skb); + + /* Get size of the initial fragment */ + len = skb_headlen(skb); + + /* Pad if necessary */ + if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { + EFX_BUG_ON_PARANOID(skb->data_len); + len = 32 + 1; + if (skb_pad(skb, len - skb->len)) + return NETDEV_TX_OK; + } + + /* Consider using PIO for short packets */ +#ifdef EFX_USE_PIO + if (skb->len <= efx_piobuf_size && !skb->xmit_more && + efx_nic_may_tx_pio(tx_queue)) { + buffer = efx_enqueue_skb_pio(tx_queue, skb); + dma_flags = EFX_TX_BUF_OPTION; + goto finish_packet; + } +#endif + + /* Map for DMA. Use dma_map_single rather than dma_map_page + * since this is more efficient on machines with sparse + * memory. + */ + dma_flags = EFX_TX_BUF_MAP_SINGLE; + dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE); + + /* Process all fragments */ + while (1) { + if (unlikely(dma_mapping_error(dma_dev, dma_addr))) + goto dma_err; + + /* Store fields for marking in the per-fragment final + * descriptor */ + unmap_len = len; + unmap_addr = dma_addr; + + /* Add to TX queue, splitting across DMA boundaries */ + do { + buffer = efx_tx_queue_get_insert_buffer(tx_queue); + + dma_len = efx_max_tx_len(efx, dma_addr); + if (likely(dma_len >= len)) + dma_len = len; + + /* Fill out per descriptor fields */ + buffer->len = dma_len; + buffer->dma_addr = dma_addr; + buffer->flags = EFX_TX_BUF_CONT; + len -= dma_len; + dma_addr += dma_len; + ++tx_queue->insert_count; + } while (len); + + /* Transfer ownership of the unmapping to the final buffer */ + buffer->flags = EFX_TX_BUF_CONT | dma_flags; + buffer->unmap_len = unmap_len; + buffer->dma_offset = buffer->dma_addr - unmap_addr; + unmap_len = 0; + + /* Get address and size of next fragment */ + if (i >= skb_shinfo(skb)->nr_frags) + break; + fragment = &skb_shinfo(skb)->frags[i]; + len = skb_frag_size(fragment); + i++; + /* Map for DMA */ + dma_flags = 0; + dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, + DMA_TO_DEVICE); + } + + /* Transfer ownership of the skb to the final buffer */ +#ifdef EFX_USE_PIO +finish_packet: +#endif + buffer->skb = skb; + buffer->flags = EFX_TX_BUF_SKB | dma_flags; + + netdev_tx_sent_queue(tx_queue->core_txq, skb->len); + + efx_tx_maybe_stop_queue(tx_queue); + + /* Pass off to hardware */ + if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) + efx_nic_push_buffers(tx_queue); + + tx_queue->tx_packets++; + + return NETDEV_TX_OK; + + dma_err: + netif_err(efx, tx_err, efx->net_dev, + " TX queue %d could not map skb with %d bytes %d " + "fragments for DMA\n", tx_queue->queue, skb->len, + skb_shinfo(skb)->nr_frags + 1); + + /* Mark the packet as transmitted, and free the SKB ourselves */ + dev_kfree_skb_any(skb); + + /* Work backwards until we hit the original insert pointer value */ + while (tx_queue->insert_count != old_insert_count) { + unsigned int pkts_compl = 0, bytes_compl = 0; + --tx_queue->insert_count; + buffer = __efx_tx_queue_get_insert_buffer(tx_queue); + efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); + } + + /* Free the fragment we were mid-way through pushing */ + if (unmap_len) { + if (dma_flags & EFX_TX_BUF_MAP_SINGLE) + dma_unmap_single(dma_dev, unmap_addr, unmap_len, + DMA_TO_DEVICE); + else + dma_unmap_page(dma_dev, unmap_addr, unmap_len, + DMA_TO_DEVICE); + } + + return NETDEV_TX_OK; +} + +/* Remove packets from the TX queue + * + * This removes packets from the TX queue, up to and including the + * specified index. + */ +static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, + unsigned int index, + unsigned int *pkts_compl, + unsigned int *bytes_compl) +{ + struct efx_nic *efx = tx_queue->efx; + unsigned int stop_index, read_ptr; + + stop_index = (index + 1) & tx_queue->ptr_mask; + read_ptr = tx_queue->read_count & tx_queue->ptr_mask; + + while (read_ptr != stop_index) { + struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; + + if (!(buffer->flags & EFX_TX_BUF_OPTION) && + unlikely(buffer->len == 0)) { + netif_err(efx, tx_err, efx->net_dev, + "TX queue %d spurious TX completion id %x\n", + tx_queue->queue, read_ptr); + efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); + return; + } + + efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); + + ++tx_queue->read_count; + read_ptr = tx_queue->read_count & tx_queue->ptr_mask; + } +} + +/* Initiate a packet transmission. We use one channel per CPU + * (sharing when we have more CPUs than channels). On Falcon, the TX + * completion events will be directed back to the CPU that transmitted + * the packet, which should be cache-efficient. + * + * Context: non-blocking. + * Note that returning anything other than NETDEV_TX_OK will cause the + * OS to free the skb. + */ +netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, + struct net_device *net_dev) +{ + struct efx_nic *efx = netdev_priv(net_dev); + struct efx_tx_queue *tx_queue; + unsigned index, type; + + EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); + + /* PTP "event" packet */ + if (unlikely(efx_xmit_with_hwtstamp(skb)) && + unlikely(efx_ptp_is_ptp_tx(efx, skb))) { + return efx_ptp_tx(efx, skb); + } + + index = skb_get_queue_mapping(skb); + type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; + if (index >= efx->n_tx_channels) { + index -= efx->n_tx_channels; + type |= EFX_TXQ_TYPE_HIGHPRI; + } + tx_queue = efx_get_tx_queue(efx, index, type); + + return efx_enqueue_skb(tx_queue, skb); +} + +void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) +{ + struct efx_nic *efx = tx_queue->efx; + + /* Must be inverse of queue lookup in efx_hard_start_xmit() */ + tx_queue->core_txq = + netdev_get_tx_queue(efx->net_dev, + tx_queue->queue / EFX_TXQ_TYPES + + ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? + efx->n_tx_channels : 0)); +} + +int efx_setup_tc(struct net_device *net_dev, u8 num_tc) +{ + struct efx_nic *efx = netdev_priv(net_dev); + struct efx_channel *channel; + struct efx_tx_queue *tx_queue; + unsigned tc; + int rc; + + if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) + return -EINVAL; + + if (num_tc == net_dev->num_tc) + return 0; + + for (tc = 0; tc < num_tc; tc++) { + net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; + net_dev->tc_to_txq[tc].count = efx->n_tx_channels; + } + + if (num_tc > net_dev->num_tc) { + /* Initialise high-priority queues as necessary */ + efx_for_each_channel(channel, efx) { + efx_for_each_possible_channel_tx_queue(tx_queue, + channel) { + if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) + continue; + if (!tx_queue->buffer) { + rc = efx_probe_tx_queue(tx_queue); + if (rc) + return rc; + } + if (!tx_queue->initialised) + efx_init_tx_queue(tx_queue); + efx_init_tx_queue_core_txq(tx_queue); + } + } + } else { + /* Reduce number of classes before number of queues */ + net_dev->num_tc = num_tc; + } + + rc = netif_set_real_num_tx_queues(net_dev, + max_t(int, num_tc, 1) * + efx->n_tx_channels); + if (rc) + return rc; + + /* Do not destroy high-priority queues when they become + * unused. We would have to flush them first, and it is + * fairly difficult to flush a subset of TX queues. Leave + * it to efx_fini_channels(). + */ + + net_dev->num_tc = num_tc; + return 0; +} + +void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) +{ + unsigned fill_level; + struct efx_nic *efx = tx_queue->efx; + struct efx_tx_queue *txq2; + unsigned int pkts_compl = 0, bytes_compl = 0; + + EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); + + efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); + netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl); + + if (pkts_compl > 1) + ++tx_queue->merge_events; + + /* See if we need to restart the netif queue. This memory + * barrier ensures that we write read_count (inside + * efx_dequeue_buffers()) before reading the queue status. + */ + smp_mb(); + if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && + likely(efx->port_enabled) && + likely(netif_device_present(efx->net_dev))) { + txq2 = efx_tx_queue_partner(tx_queue); + fill_level = max(tx_queue->insert_count - tx_queue->read_count, + txq2->insert_count - txq2->read_count); + if (fill_level <= efx->txq_wake_thresh) + netif_tx_wake_queue(tx_queue->core_txq); + } + + /* Check whether the hardware queue is now empty */ + if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { + tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); + if (tx_queue->read_count == tx_queue->old_write_count) { + smp_mb(); + tx_queue->empty_read_count = + tx_queue->read_count | EFX_EMPTY_COUNT_VALID; + } + } +} + +/* Size of page-based TSO header buffers. Larger blocks must be + * allocated from the heap. + */ +#define TSOH_STD_SIZE 128 +#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) + +/* At most half the descriptors in the queue at any time will refer to + * a TSO header buffer, since they must always be followed by a + * payload descriptor referring to an skb. + */ +static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue) +{ + return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE); +} + +int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) +{ + struct efx_nic *efx = tx_queue->efx; + unsigned int entries; + int rc; + + /* Create the smallest power-of-two aligned ring */ + entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); + EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); + tx_queue->ptr_mask = entries - 1; + + netif_dbg(efx, probe, efx->net_dev, + "creating TX queue %d size %#x mask %#x\n", + tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); + + /* Allocate software ring */ + tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), + GFP_KERNEL); + if (!tx_queue->buffer) + return -ENOMEM; + + if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) { + tx_queue->tsoh_page = + kcalloc(efx_tsoh_page_count(tx_queue), + sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL); + if (!tx_queue->tsoh_page) { + rc = -ENOMEM; + goto fail1; + } + } + + /* Allocate hardware ring */ + rc = efx_nic_probe_tx(tx_queue); + if (rc) + goto fail2; + + return 0; + +fail2: + kfree(tx_queue->tsoh_page); + tx_queue->tsoh_page = NULL; +fail1: + kfree(tx_queue->buffer); + tx_queue->buffer = NULL; + return rc; +} + +void efx_init_tx_queue(struct efx_tx_queue *tx_queue) +{ + netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, + "initialising TX queue %d\n", tx_queue->queue); + + tx_queue->insert_count = 0; + tx_queue->write_count = 0; + tx_queue->old_write_count = 0; + tx_queue->read_count = 0; + tx_queue->old_read_count = 0; + tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; + + /* Set up TX descriptor ring */ + efx_nic_init_tx(tx_queue); + + tx_queue->initialised = true; +} + +void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) +{ + struct efx_tx_buffer *buffer; + + netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, + "shutting down TX queue %d\n", tx_queue->queue); + + if (!tx_queue->buffer) + return; + + /* Free any buffers left in the ring */ + while (tx_queue->read_count != tx_queue->write_count) { + unsigned int pkts_compl = 0, bytes_compl = 0; + buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; + efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); + + ++tx_queue->read_count; + } + netdev_tx_reset_queue(tx_queue->core_txq); +} + +void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) +{ + int i; + + if (!tx_queue->buffer) + return; + + netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, + "destroying TX queue %d\n", tx_queue->queue); + efx_nic_remove_tx(tx_queue); + + if (tx_queue->tsoh_page) { + for (i = 0; i < efx_tsoh_page_count(tx_queue); i++) + efx_nic_free_buffer(tx_queue->efx, + &tx_queue->tsoh_page[i]); + kfree(tx_queue->tsoh_page); + tx_queue->tsoh_page = NULL; + } + + kfree(tx_queue->buffer); + tx_queue->buffer = NULL; +} + + +/* Efx TCP segmentation acceleration. + * + * Why? Because by doing it here in the driver we can go significantly + * faster than the GSO. + * + * Requires TX checksum offload support. + */ + +#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) + +/** + * struct tso_state - TSO state for an SKB + * @out_len: Remaining length in current segment + * @seqnum: Current sequence number + * @ipv4_id: Current IPv4 ID, host endian + * @packet_space: Remaining space in current packet + * @dma_addr: DMA address of current position + * @in_len: Remaining length in current SKB fragment + * @unmap_len: Length of SKB fragment + * @unmap_addr: DMA address of SKB fragment + * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0 + * @protocol: Network protocol (after any VLAN header) + * @ip_off: Offset of IP header + * @tcp_off: Offset of TCP header + * @header_len: Number of bytes of header + * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload + * @header_dma_addr: Header DMA address, when using option descriptors + * @header_unmap_len: Header DMA mapped length, or 0 if not using option + * descriptors + * + * The state used during segmentation. It is put into this data structure + * just to make it easy to pass into inline functions. + */ +struct tso_state { + /* Output position */ + unsigned out_len; + unsigned seqnum; + u16 ipv4_id; + unsigned packet_space; + + /* Input position */ + dma_addr_t dma_addr; + unsigned in_len; + unsigned unmap_len; + dma_addr_t unmap_addr; + unsigned short dma_flags; + + __be16 protocol; + unsigned int ip_off; + unsigned int tcp_off; + unsigned header_len; + unsigned int ip_base_len; + dma_addr_t header_dma_addr; + unsigned int header_unmap_len; +}; + + +/* + * Verify that our various assumptions about sk_buffs and the conditions + * under which TSO will be attempted hold true. Return the protocol number. + */ +static __be16 efx_tso_check_protocol(struct sk_buff *skb) +{ + __be16 protocol = skb->protocol; + + EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != + protocol); + if (protocol == htons(ETH_P_8021Q)) { + struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; + protocol = veh->h_vlan_encapsulated_proto; + } + + if (protocol == htons(ETH_P_IP)) { + EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); + } else { + EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); + EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); + } + EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + + (tcp_hdr(skb)->doff << 2u)) > + skb_headlen(skb)); + + return protocol; +} + +static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer, unsigned int len) +{ + u8 *result; + + EFX_BUG_ON_PARANOID(buffer->len); + EFX_BUG_ON_PARANOID(buffer->flags); + EFX_BUG_ON_PARANOID(buffer->unmap_len); + + if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) { + unsigned index = + (tx_queue->insert_count & tx_queue->ptr_mask) / 2; + struct efx_buffer *page_buf = + &tx_queue->tsoh_page[index / TSOH_PER_PAGE]; + unsigned offset = + TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN; + + if (unlikely(!page_buf->addr) && + efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, + GFP_ATOMIC)) + return NULL; + + result = (u8 *)page_buf->addr + offset; + buffer->dma_addr = page_buf->dma_addr + offset; + buffer->flags = EFX_TX_BUF_CONT; + } else { + tx_queue->tso_long_headers++; + + buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC); + if (unlikely(!buffer->heap_buf)) + return NULL; + result = (u8 *)buffer->heap_buf + NET_IP_ALIGN; + buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP; + } + + buffer->len = len; + + return result; +} + +/** + * efx_tx_queue_insert - push descriptors onto the TX queue + * @tx_queue: Efx TX queue + * @dma_addr: DMA address of fragment + * @len: Length of fragment + * @final_buffer: The final buffer inserted into the queue + * + * Push descriptors onto the TX queue. + */ +static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue, + dma_addr_t dma_addr, unsigned len, + struct efx_tx_buffer **final_buffer) +{ + struct efx_tx_buffer *buffer; + struct efx_nic *efx = tx_queue->efx; + unsigned dma_len; + + EFX_BUG_ON_PARANOID(len <= 0); + + while (1) { + buffer = efx_tx_queue_get_insert_buffer(tx_queue); + ++tx_queue->insert_count; + + EFX_BUG_ON_PARANOID(tx_queue->insert_count - + tx_queue->read_count >= + efx->txq_entries); + + buffer->dma_addr = dma_addr; + + dma_len = efx_max_tx_len(efx, dma_addr); + + /* If there is enough space to send then do so */ + if (dma_len >= len) + break; + + buffer->len = dma_len; + buffer->flags = EFX_TX_BUF_CONT; + dma_addr += dma_len; + len -= dma_len; + } + + EFX_BUG_ON_PARANOID(!len); + buffer->len = len; + *final_buffer = buffer; +} + + +/* + * Put a TSO header into the TX queue. + * + * This is special-cased because we know that it is small enough to fit in + * a single fragment, and we know it doesn't cross a page boundary. It + * also allows us to not worry about end-of-packet etc. + */ +static int efx_tso_put_header(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer, u8 *header) +{ + if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) { + buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev, + header, buffer->len, + DMA_TO_DEVICE); + if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev, + buffer->dma_addr))) { + kfree(buffer->heap_buf); + buffer->len = 0; + buffer->flags = 0; + return -ENOMEM; + } + buffer->unmap_len = buffer->len; + buffer->dma_offset = 0; + buffer->flags |= EFX_TX_BUF_MAP_SINGLE; + } + + ++tx_queue->insert_count; + return 0; +} + + +/* Remove buffers put into a tx_queue. None of the buffers must have + * an skb attached. + */ +static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue, + unsigned int insert_count) +{ + struct efx_tx_buffer *buffer; + + /* Work backwards until we hit the original insert pointer value */ + while (tx_queue->insert_count != insert_count) { + --tx_queue->insert_count; + buffer = __efx_tx_queue_get_insert_buffer(tx_queue); + efx_dequeue_buffer(tx_queue, buffer, NULL, NULL); + } +} + + +/* Parse the SKB header and initialise state. */ +static int tso_start(struct tso_state *st, struct efx_nic *efx, + const struct sk_buff *skb) +{ + bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; + struct device *dma_dev = &efx->pci_dev->dev; + unsigned int header_len, in_len; + dma_addr_t dma_addr; + + st->ip_off = skb_network_header(skb) - skb->data; + st->tcp_off = skb_transport_header(skb) - skb->data; + header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u); + in_len = skb_headlen(skb) - header_len; + st->header_len = header_len; + st->in_len = in_len; + if (st->protocol == htons(ETH_P_IP)) { + st->ip_base_len = st->header_len - st->ip_off; + st->ipv4_id = ntohs(ip_hdr(skb)->id); + } else { + st->ip_base_len = st->header_len - st->tcp_off; + st->ipv4_id = 0; + } + st->seqnum = ntohl(tcp_hdr(skb)->seq); + + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); + + st->out_len = skb->len - header_len; + + if (!use_opt_desc) { + st->header_unmap_len = 0; + + if (likely(in_len == 0)) { + st->dma_flags = 0; + st->unmap_len = 0; + return 0; + } + + dma_addr = dma_map_single(dma_dev, skb->data + header_len, + in_len, DMA_TO_DEVICE); + st->dma_flags = EFX_TX_BUF_MAP_SINGLE; + st->dma_addr = dma_addr; + st->unmap_addr = dma_addr; + st->unmap_len = in_len; + } else { + dma_addr = dma_map_single(dma_dev, skb->data, + skb_headlen(skb), DMA_TO_DEVICE); + st->header_dma_addr = dma_addr; + st->header_unmap_len = skb_headlen(skb); + st->dma_flags = 0; + st->dma_addr = dma_addr + header_len; + st->unmap_len = 0; + } + + return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0; +} + +static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, + skb_frag_t *frag) +{ + st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, + skb_frag_size(frag), DMA_TO_DEVICE); + if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { + st->dma_flags = 0; + st->unmap_len = skb_frag_size(frag); + st->in_len = skb_frag_size(frag); + st->dma_addr = st->unmap_addr; + return 0; + } + return -ENOMEM; +} + + +/** + * tso_fill_packet_with_fragment - form descriptors for the current fragment + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * @st: TSO state + * + * Form descriptors for the current fragment, until we reach the end + * of fragment or end-of-packet. + */ +static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) +{ + struct efx_tx_buffer *buffer; + int n; + + if (st->in_len == 0) + return; + if (st->packet_space == 0) + return; + + EFX_BUG_ON_PARANOID(st->in_len <= 0); + EFX_BUG_ON_PARANOID(st->packet_space <= 0); + + n = min(st->in_len, st->packet_space); + + st->packet_space -= n; + st->out_len -= n; + st->in_len -= n; + + efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); + + if (st->out_len == 0) { + /* Transfer ownership of the skb */ + buffer->skb = skb; + buffer->flags = EFX_TX_BUF_SKB; + } else if (st->packet_space != 0) { + buffer->flags = EFX_TX_BUF_CONT; + } + + if (st->in_len == 0) { + /* Transfer ownership of the DMA mapping */ + buffer->unmap_len = st->unmap_len; + buffer->dma_offset = buffer->unmap_len - buffer->len; + buffer->flags |= st->dma_flags; + st->unmap_len = 0; + } + + st->dma_addr += n; +} + + +/** + * tso_start_new_packet - generate a new header and prepare for the new packet + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * @st: TSO state + * + * Generate a new header and prepare for the new packet. Return 0 on + * success, or -%ENOMEM if failed to alloc header. + */ +static int tso_start_new_packet(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) +{ + struct efx_tx_buffer *buffer = + efx_tx_queue_get_insert_buffer(tx_queue); + bool is_last = st->out_len <= skb_shinfo(skb)->gso_size; + u8 tcp_flags_clear; + + if (!is_last) { + st->packet_space = skb_shinfo(skb)->gso_size; + tcp_flags_clear = 0x09; /* mask out FIN and PSH */ + } else { + st->packet_space = st->out_len; + tcp_flags_clear = 0x00; + } + + if (!st->header_unmap_len) { + /* Allocate and insert a DMA-mapped header buffer. */ + struct tcphdr *tsoh_th; + unsigned ip_length; + u8 *header; + int rc; + + header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len); + if (!header) + return -ENOMEM; + + tsoh_th = (struct tcphdr *)(header + st->tcp_off); + + /* Copy and update the headers. */ + memcpy(header, skb->data, st->header_len); + + tsoh_th->seq = htonl(st->seqnum); + ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear; + + ip_length = st->ip_base_len + st->packet_space; + + if (st->protocol == htons(ETH_P_IP)) { + struct iphdr *tsoh_iph = + (struct iphdr *)(header + st->ip_off); + + tsoh_iph->tot_len = htons(ip_length); + tsoh_iph->id = htons(st->ipv4_id); + } else { + struct ipv6hdr *tsoh_iph = + (struct ipv6hdr *)(header + st->ip_off); + + tsoh_iph->payload_len = htons(ip_length); + } + + rc = efx_tso_put_header(tx_queue, buffer, header); + if (unlikely(rc)) + return rc; + } else { + /* Send the original headers with a TSO option descriptor + * in front + */ + u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear; + + buffer->flags = EFX_TX_BUF_OPTION; + buffer->len = 0; + buffer->unmap_len = 0; + EFX_POPULATE_QWORD_5(buffer->option, + ESF_DZ_TX_DESC_IS_OPT, 1, + ESF_DZ_TX_OPTION_TYPE, + ESE_DZ_TX_OPTION_DESC_TSO, + ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, + ESF_DZ_TX_TSO_IP_ID, st->ipv4_id, + ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum); + ++tx_queue->insert_count; + + /* We mapped the headers in tso_start(). Unmap them + * when the last segment is completed. + */ + buffer = efx_tx_queue_get_insert_buffer(tx_queue); + buffer->dma_addr = st->header_dma_addr; + buffer->len = st->header_len; + if (is_last) { + buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE; + buffer->unmap_len = st->header_unmap_len; + buffer->dma_offset = 0; + /* Ensure we only unmap them once in case of a + * later DMA mapping error and rollback + */ + st->header_unmap_len = 0; + } else { + buffer->flags = EFX_TX_BUF_CONT; + buffer->unmap_len = 0; + } + ++tx_queue->insert_count; + } + + st->seqnum += skb_shinfo(skb)->gso_size; + + /* Linux leaves suitable gaps in the IP ID space for us to fill. */ + ++st->ipv4_id; + + ++tx_queue->tso_packets; + + ++tx_queue->tx_packets; + + return 0; +} + + +/** + * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * + * Context: You must hold netif_tx_lock() to call this function. + * + * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if + * @skb was not enqueued. In all cases @skb is consumed. Return + * %NETDEV_TX_OK. + */ +static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, + struct sk_buff *skb) +{ + struct efx_nic *efx = tx_queue->efx; + unsigned int old_insert_count = tx_queue->insert_count; + int frag_i, rc; + struct tso_state state; + + /* Find the packet protocol and sanity-check it */ + state.protocol = efx_tso_check_protocol(skb); + + rc = tso_start(&state, efx, skb); + if (rc) + goto mem_err; + + if (likely(state.in_len == 0)) { + /* Grab the first payload fragment. */ + EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); + frag_i = 0; + rc = tso_get_fragment(&state, efx, + skb_shinfo(skb)->frags + frag_i); + if (rc) + goto mem_err; + } else { + /* Payload starts in the header area. */ + frag_i = -1; + } + + if (tso_start_new_packet(tx_queue, skb, &state) < 0) + goto mem_err; + + while (1) { + tso_fill_packet_with_fragment(tx_queue, skb, &state); + + /* Move onto the next fragment? */ + if (state.in_len == 0) { + if (++frag_i >= skb_shinfo(skb)->nr_frags) + /* End of payload reached. */ + break; + rc = tso_get_fragment(&state, efx, + skb_shinfo(skb)->frags + frag_i); + if (rc) + goto mem_err; + } + + /* Start at new packet? */ + if (state.packet_space == 0 && + tso_start_new_packet(tx_queue, skb, &state) < 0) + goto mem_err; + } + + netdev_tx_sent_queue(tx_queue->core_txq, skb->len); + + efx_tx_maybe_stop_queue(tx_queue); + + /* Pass off to hardware */ + if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) + efx_nic_push_buffers(tx_queue); + + tx_queue->tso_bursts++; + return NETDEV_TX_OK; + + mem_err: + netif_err(efx, tx_err, efx->net_dev, + "Out of memory for TSO headers, or DMA mapping error\n"); + dev_kfree_skb_any(skb); + + /* Free the DMA mapping we were in the process of writing out */ + if (state.unmap_len) { + if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE) + dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr, + state.unmap_len, DMA_TO_DEVICE); + else + dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr, + state.unmap_len, DMA_TO_DEVICE); + } + + /* Free the header DMA mapping, if using option descriptors */ + if (state.header_unmap_len) + dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr, + state.header_unmap_len, DMA_TO_DEVICE); + + efx_enqueue_unwind(tx_queue, old_insert_count); + return NETDEV_TX_OK; +} |