diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c')
-rw-r--r-- | kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c | 3078 |
1 files changed, 3078 insertions, 0 deletions
diff --git a/kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c b/kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c new file mode 100644 index 000000000..0d2eddab0 --- /dev/null +++ b/kernel/drivers/net/ethernet/chelsio/cxgb4/sge.c @@ -0,0 +1,3078 @@ +/* + * This file is part of the Chelsio T4 Ethernet driver for Linux. + * + * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/skbuff.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/if_vlan.h> +#include <linux/ip.h> +#include <linux/dma-mapping.h> +#include <linux/jiffies.h> +#include <linux/prefetch.h> +#include <linux/export.h> +#include <net/ipv6.h> +#include <net/tcp.h> +#ifdef CONFIG_NET_RX_BUSY_POLL +#include <net/busy_poll.h> +#endif /* CONFIG_NET_RX_BUSY_POLL */ +#ifdef CONFIG_CHELSIO_T4_FCOE +#include <scsi/fc/fc_fcoe.h> +#endif /* CONFIG_CHELSIO_T4_FCOE */ +#include "cxgb4.h" +#include "t4_regs.h" +#include "t4_values.h" +#include "t4_msg.h" +#include "t4fw_api.h" + +/* + * Rx buffer size. We use largish buffers if possible but settle for single + * pages under memory shortage. + */ +#if PAGE_SHIFT >= 16 +# define FL_PG_ORDER 0 +#else +# define FL_PG_ORDER (16 - PAGE_SHIFT) +#endif + +/* RX_PULL_LEN should be <= RX_COPY_THRES */ +#define RX_COPY_THRES 256 +#define RX_PULL_LEN 128 + +/* + * Main body length for sk_buffs used for Rx Ethernet packets with fragments. + * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. + */ +#define RX_PKT_SKB_LEN 512 + +/* + * Max number of Tx descriptors we clean up at a time. Should be modest as + * freeing skbs isn't cheap and it happens while holding locks. We just need + * to free packets faster than they arrive, we eventually catch up and keep + * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. + */ +#define MAX_TX_RECLAIM 16 + +/* + * Max number of Rx buffers we replenish at a time. Again keep this modest, + * allocating buffers isn't cheap either. + */ +#define MAX_RX_REFILL 16U + +/* + * Period of the Rx queue check timer. This timer is infrequent as it has + * something to do only when the system experiences severe memory shortage. + */ +#define RX_QCHECK_PERIOD (HZ / 2) + +/* + * Period of the Tx queue check timer. + */ +#define TX_QCHECK_PERIOD (HZ / 2) + +/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate + * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA + * State Machines in the same state for this amount of time (in HZ) then we'll + * issue a warning about a potential hang. We'll repeat the warning as the + * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till + * the situation clears. If the situation clears, we'll note that as well. + */ +#define SGE_IDMA_WARN_THRESH (1 * HZ) +#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD) + +/* + * Max number of Tx descriptors to be reclaimed by the Tx timer. + */ +#define MAX_TIMER_TX_RECLAIM 100 + +/* + * Timer index used when backing off due to memory shortage. + */ +#define NOMEM_TMR_IDX (SGE_NTIMERS - 1) + +/* + * Suspend an Ethernet Tx queue with fewer available descriptors than this. + * This is the same as calc_tx_descs() for a TSO packet with + * nr_frags == MAX_SKB_FRAGS. + */ +#define ETHTXQ_STOP_THRES \ + (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) + +/* + * Suspension threshold for non-Ethernet Tx queues. We require enough room + * for a full sized WR. + */ +#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) + +/* + * Max Tx descriptor space we allow for an Ethernet packet to be inlined + * into a WR. + */ +#define MAX_IMM_TX_PKT_LEN 256 + +/* + * Max size of a WR sent through a control Tx queue. + */ +#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN + +struct tx_sw_desc { /* SW state per Tx descriptor */ + struct sk_buff *skb; + struct ulptx_sgl *sgl; +}; + +struct rx_sw_desc { /* SW state per Rx descriptor */ + struct page *page; + dma_addr_t dma_addr; +}; + +/* + * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb + * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. + * We could easily support more but there doesn't seem to be much need for + * that ... + */ +#define FL_MTU_SMALL 1500 +#define FL_MTU_LARGE 9000 + +static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, + unsigned int mtu) +{ + struct sge *s = &adapter->sge; + + return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); +} + +#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) +#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) + +/* + * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses + * these to specify the buffer size as an index into the SGE Free List Buffer + * Size register array. We also use bit 4, when the buffer has been unmapped + * for DMA, but this is of course never sent to the hardware and is only used + * to prevent double unmappings. All of the above requires that the Free List + * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are + * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal + * Free List Buffer alignment is 32 bytes, this works out for us ... + */ +enum { + RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ + RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ + RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ + + /* + * XXX We shouldn't depend on being able to use these indices. + * XXX Especially when some other Master PF has initialized the + * XXX adapter or we use the Firmware Configuration File. We + * XXX should really search through the Host Buffer Size register + * XXX array for the appropriately sized buffer indices. + */ + RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ + RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ + + RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ + RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ +}; + +static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; +#define MIN_NAPI_WORK 1 + +static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) +{ + return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; +} + +static inline bool is_buf_mapped(const struct rx_sw_desc *d) +{ + return !(d->dma_addr & RX_UNMAPPED_BUF); +} + +/** + * txq_avail - return the number of available slots in a Tx queue + * @q: the Tx queue + * + * Returns the number of descriptors in a Tx queue available to write new + * packets. + */ +static inline unsigned int txq_avail(const struct sge_txq *q) +{ + return q->size - 1 - q->in_use; +} + +/** + * fl_cap - return the capacity of a free-buffer list + * @fl: the FL + * + * Returns the capacity of a free-buffer list. The capacity is less than + * the size because one descriptor needs to be left unpopulated, otherwise + * HW will think the FL is empty. + */ +static inline unsigned int fl_cap(const struct sge_fl *fl) +{ + return fl->size - 8; /* 1 descriptor = 8 buffers */ +} + +/** + * fl_starving - return whether a Free List is starving. + * @adapter: pointer to the adapter + * @fl: the Free List + * + * Tests specified Free List to see whether the number of buffers + * available to the hardware has falled below our "starvation" + * threshold. + */ +static inline bool fl_starving(const struct adapter *adapter, + const struct sge_fl *fl) +{ + const struct sge *s = &adapter->sge; + + return fl->avail - fl->pend_cred <= s->fl_starve_thres; +} + +static int map_skb(struct device *dev, const struct sk_buff *skb, + dma_addr_t *addr) +{ + const skb_frag_t *fp, *end; + const struct skb_shared_info *si; + + *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); + if (dma_mapping_error(dev, *addr)) + goto out_err; + + si = skb_shinfo(skb); + end = &si->frags[si->nr_frags]; + + for (fp = si->frags; fp < end; fp++) { + *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), + DMA_TO_DEVICE); + if (dma_mapping_error(dev, *addr)) + goto unwind; + } + return 0; + +unwind: + while (fp-- > si->frags) + dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); + + dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); +out_err: + return -ENOMEM; +} + +#ifdef CONFIG_NEED_DMA_MAP_STATE +static void unmap_skb(struct device *dev, const struct sk_buff *skb, + const dma_addr_t *addr) +{ + const skb_frag_t *fp, *end; + const struct skb_shared_info *si; + + dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); + + si = skb_shinfo(skb); + end = &si->frags[si->nr_frags]; + for (fp = si->frags; fp < end; fp++) + dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); +} + +/** + * deferred_unmap_destructor - unmap a packet when it is freed + * @skb: the packet + * + * This is the packet destructor used for Tx packets that need to remain + * mapped until they are freed rather than until their Tx descriptors are + * freed. + */ +static void deferred_unmap_destructor(struct sk_buff *skb) +{ + unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); +} +#endif + +static void unmap_sgl(struct device *dev, const struct sk_buff *skb, + const struct ulptx_sgl *sgl, const struct sge_txq *q) +{ + const struct ulptx_sge_pair *p; + unsigned int nfrags = skb_shinfo(skb)->nr_frags; + + if (likely(skb_headlen(skb))) + dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), + DMA_TO_DEVICE); + else { + dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), + DMA_TO_DEVICE); + nfrags--; + } + + /* + * the complexity below is because of the possibility of a wrap-around + * in the middle of an SGL + */ + for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { + if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { +unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), + ntohl(p->len[0]), DMA_TO_DEVICE); + dma_unmap_page(dev, be64_to_cpu(p->addr[1]), + ntohl(p->len[1]), DMA_TO_DEVICE); + p++; + } else if ((u8 *)p == (u8 *)q->stat) { + p = (const struct ulptx_sge_pair *)q->desc; + goto unmap; + } else if ((u8 *)p + 8 == (u8 *)q->stat) { + const __be64 *addr = (const __be64 *)q->desc; + + dma_unmap_page(dev, be64_to_cpu(addr[0]), + ntohl(p->len[0]), DMA_TO_DEVICE); + dma_unmap_page(dev, be64_to_cpu(addr[1]), + ntohl(p->len[1]), DMA_TO_DEVICE); + p = (const struct ulptx_sge_pair *)&addr[2]; + } else { + const __be64 *addr = (const __be64 *)q->desc; + + dma_unmap_page(dev, be64_to_cpu(p->addr[0]), + ntohl(p->len[0]), DMA_TO_DEVICE); + dma_unmap_page(dev, be64_to_cpu(addr[0]), + ntohl(p->len[1]), DMA_TO_DEVICE); + p = (const struct ulptx_sge_pair *)&addr[1]; + } + } + if (nfrags) { + __be64 addr; + + if ((u8 *)p == (u8 *)q->stat) + p = (const struct ulptx_sge_pair *)q->desc; + addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : + *(const __be64 *)q->desc; + dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), + DMA_TO_DEVICE); + } +} + +/** + * free_tx_desc - reclaims Tx descriptors and their buffers + * @adapter: the adapter + * @q: the Tx queue to reclaim descriptors from + * @n: the number of descriptors to reclaim + * @unmap: whether the buffers should be unmapped for DMA + * + * Reclaims Tx descriptors from an SGE Tx queue and frees the associated + * Tx buffers. Called with the Tx queue lock held. + */ +static void free_tx_desc(struct adapter *adap, struct sge_txq *q, + unsigned int n, bool unmap) +{ + struct tx_sw_desc *d; + unsigned int cidx = q->cidx; + struct device *dev = adap->pdev_dev; + + d = &q->sdesc[cidx]; + while (n--) { + if (d->skb) { /* an SGL is present */ + if (unmap) + unmap_sgl(dev, d->skb, d->sgl, q); + dev_consume_skb_any(d->skb); + d->skb = NULL; + } + ++d; + if (++cidx == q->size) { + cidx = 0; + d = q->sdesc; + } + } + q->cidx = cidx; +} + +/* + * Return the number of reclaimable descriptors in a Tx queue. + */ +static inline int reclaimable(const struct sge_txq *q) +{ + int hw_cidx = ntohs(q->stat->cidx); + hw_cidx -= q->cidx; + return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; +} + +/** + * reclaim_completed_tx - reclaims completed Tx descriptors + * @adap: the adapter + * @q: the Tx queue to reclaim completed descriptors from + * @unmap: whether the buffers should be unmapped for DMA + * + * Reclaims Tx descriptors that the SGE has indicated it has processed, + * and frees the associated buffers if possible. Called with the Tx + * queue locked. + */ +static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, + bool unmap) +{ + int avail = reclaimable(q); + + if (avail) { + /* + * Limit the amount of clean up work we do at a time to keep + * the Tx lock hold time O(1). + */ + if (avail > MAX_TX_RECLAIM) + avail = MAX_TX_RECLAIM; + + free_tx_desc(adap, q, avail, unmap); + q->in_use -= avail; + } +} + +static inline int get_buf_size(struct adapter *adapter, + const struct rx_sw_desc *d) +{ + struct sge *s = &adapter->sge; + unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; + int buf_size; + + switch (rx_buf_size_idx) { + case RX_SMALL_PG_BUF: + buf_size = PAGE_SIZE; + break; + + case RX_LARGE_PG_BUF: + buf_size = PAGE_SIZE << s->fl_pg_order; + break; + + case RX_SMALL_MTU_BUF: + buf_size = FL_MTU_SMALL_BUFSIZE(adapter); + break; + + case RX_LARGE_MTU_BUF: + buf_size = FL_MTU_LARGE_BUFSIZE(adapter); + break; + + default: + BUG_ON(1); + } + + return buf_size; +} + +/** + * free_rx_bufs - free the Rx buffers on an SGE free list + * @adap: the adapter + * @q: the SGE free list to free buffers from + * @n: how many buffers to free + * + * Release the next @n buffers on an SGE free-buffer Rx queue. The + * buffers must be made inaccessible to HW before calling this function. + */ +static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) +{ + while (n--) { + struct rx_sw_desc *d = &q->sdesc[q->cidx]; + + if (is_buf_mapped(d)) + dma_unmap_page(adap->pdev_dev, get_buf_addr(d), + get_buf_size(adap, d), + PCI_DMA_FROMDEVICE); + put_page(d->page); + d->page = NULL; + if (++q->cidx == q->size) + q->cidx = 0; + q->avail--; + } +} + +/** + * unmap_rx_buf - unmap the current Rx buffer on an SGE free list + * @adap: the adapter + * @q: the SGE free list + * + * Unmap the current buffer on an SGE free-buffer Rx queue. The + * buffer must be made inaccessible to HW before calling this function. + * + * This is similar to @free_rx_bufs above but does not free the buffer. + * Do note that the FL still loses any further access to the buffer. + */ +static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) +{ + struct rx_sw_desc *d = &q->sdesc[q->cidx]; + + if (is_buf_mapped(d)) + dma_unmap_page(adap->pdev_dev, get_buf_addr(d), + get_buf_size(adap, d), PCI_DMA_FROMDEVICE); + d->page = NULL; + if (++q->cidx == q->size) + q->cidx = 0; + q->avail--; +} + +static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) +{ + u32 val; + if (q->pend_cred >= 8) { + if (is_t4(adap->params.chip)) + val = PIDX_V(q->pend_cred / 8); + else + val = PIDX_T5_V(q->pend_cred / 8) | + DBTYPE_F; + val |= DBPRIO_F; + wmb(); + + /* If we don't have access to the new User Doorbell (T5+), use + * the old doorbell mechanism; otherwise use the new BAR2 + * mechanism. + */ + if (unlikely(q->bar2_addr == NULL)) { + t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), + val | QID_V(q->cntxt_id)); + } else { + writel(val | QID_V(q->bar2_qid), + q->bar2_addr + SGE_UDB_KDOORBELL); + + /* This Write memory Barrier will force the write to + * the User Doorbell area to be flushed. + */ + wmb(); + } + q->pend_cred &= 7; + } +} + +static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, + dma_addr_t mapping) +{ + sd->page = pg; + sd->dma_addr = mapping; /* includes size low bits */ +} + +/** + * refill_fl - refill an SGE Rx buffer ring + * @adap: the adapter + * @q: the ring to refill + * @n: the number of new buffers to allocate + * @gfp: the gfp flags for the allocations + * + * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, + * allocated with the supplied gfp flags. The caller must assure that + * @n does not exceed the queue's capacity. If afterwards the queue is + * found critically low mark it as starving in the bitmap of starving FLs. + * + * Returns the number of buffers allocated. + */ +static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, + gfp_t gfp) +{ + struct sge *s = &adap->sge; + struct page *pg; + dma_addr_t mapping; + unsigned int cred = q->avail; + __be64 *d = &q->desc[q->pidx]; + struct rx_sw_desc *sd = &q->sdesc[q->pidx]; + int node; + + gfp |= __GFP_NOWARN; + node = dev_to_node(adap->pdev_dev); + + if (s->fl_pg_order == 0) + goto alloc_small_pages; + + /* + * Prefer large buffers + */ + while (n) { + pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); + if (unlikely(!pg)) { + q->large_alloc_failed++; + break; /* fall back to single pages */ + } + + mapping = dma_map_page(adap->pdev_dev, pg, 0, + PAGE_SIZE << s->fl_pg_order, + PCI_DMA_FROMDEVICE); + if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { + __free_pages(pg, s->fl_pg_order); + goto out; /* do not try small pages for this error */ + } + mapping |= RX_LARGE_PG_BUF; + *d++ = cpu_to_be64(mapping); + + set_rx_sw_desc(sd, pg, mapping); + sd++; + + q->avail++; + if (++q->pidx == q->size) { + q->pidx = 0; + sd = q->sdesc; + d = q->desc; + } + n--; + } + +alloc_small_pages: + while (n--) { + pg = alloc_pages_node(node, gfp, 0); + if (unlikely(!pg)) { + q->alloc_failed++; + break; + } + + mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, + PCI_DMA_FROMDEVICE); + if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { + put_page(pg); + goto out; + } + *d++ = cpu_to_be64(mapping); + + set_rx_sw_desc(sd, pg, mapping); + sd++; + + q->avail++; + if (++q->pidx == q->size) { + q->pidx = 0; + sd = q->sdesc; + d = q->desc; + } + } + +out: cred = q->avail - cred; + q->pend_cred += cred; + ring_fl_db(adap, q); + + if (unlikely(fl_starving(adap, q))) { + smp_wmb(); + set_bit(q->cntxt_id - adap->sge.egr_start, + adap->sge.starving_fl); + } + + return cred; +} + +static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) +{ + refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), + GFP_ATOMIC); +} + +/** + * alloc_ring - allocate resources for an SGE descriptor ring + * @dev: the PCI device's core device + * @nelem: the number of descriptors + * @elem_size: the size of each descriptor + * @sw_size: the size of the SW state associated with each ring element + * @phys: the physical address of the allocated ring + * @metadata: address of the array holding the SW state for the ring + * @stat_size: extra space in HW ring for status information + * @node: preferred node for memory allocations + * + * Allocates resources for an SGE descriptor ring, such as Tx queues, + * free buffer lists, or response queues. Each SGE ring requires + * space for its HW descriptors plus, optionally, space for the SW state + * associated with each HW entry (the metadata). The function returns + * three values: the virtual address for the HW ring (the return value + * of the function), the bus address of the HW ring, and the address + * of the SW ring. + */ +static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, + size_t sw_size, dma_addr_t *phys, void *metadata, + size_t stat_size, int node) +{ + size_t len = nelem * elem_size + stat_size; + void *s = NULL; + void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); + + if (!p) + return NULL; + if (sw_size) { + s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); + + if (!s) { + dma_free_coherent(dev, len, p, *phys); + return NULL; + } + } + if (metadata) + *(void **)metadata = s; + memset(p, 0, len); + return p; +} + +/** + * sgl_len - calculates the size of an SGL of the given capacity + * @n: the number of SGL entries + * + * Calculates the number of flits needed for a scatter/gather list that + * can hold the given number of entries. + */ +static inline unsigned int sgl_len(unsigned int n) +{ + /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA + * addresses. The DSGL Work Request starts off with a 32-bit DSGL + * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, + * repeated sequences of { Length[i], Length[i+1], Address[i], + * Address[i+1] } (this ensures that all addresses are on 64-bit + * boundaries). If N is even, then Length[N+1] should be set to 0 and + * Address[N+1] is omitted. + * + * The following calculation incorporates all of the above. It's + * somewhat hard to follow but, briefly: the "+2" accounts for the + * first two flits which include the DSGL header, Length0 and + * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 + * flits for every pair of the remaining N) +1 if (n-1) is odd; and + * finally the "+((n-1)&1)" adds the one remaining flit needed if + * (n-1) is odd ... + */ + n--; + return (3 * n) / 2 + (n & 1) + 2; +} + +/** + * flits_to_desc - returns the num of Tx descriptors for the given flits + * @n: the number of flits + * + * Returns the number of Tx descriptors needed for the supplied number + * of flits. + */ +static inline unsigned int flits_to_desc(unsigned int n) +{ + BUG_ON(n > SGE_MAX_WR_LEN / 8); + return DIV_ROUND_UP(n, 8); +} + +/** + * is_eth_imm - can an Ethernet packet be sent as immediate data? + * @skb: the packet + * + * Returns whether an Ethernet packet is small enough to fit as + * immediate data. Return value corresponds to headroom required. + */ +static inline int is_eth_imm(const struct sk_buff *skb) +{ + int hdrlen = skb_shinfo(skb)->gso_size ? + sizeof(struct cpl_tx_pkt_lso_core) : 0; + + hdrlen += sizeof(struct cpl_tx_pkt); + if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) + return hdrlen; + return 0; +} + +/** + * calc_tx_flits - calculate the number of flits for a packet Tx WR + * @skb: the packet + * + * Returns the number of flits needed for a Tx WR for the given Ethernet + * packet, including the needed WR and CPL headers. + */ +static inline unsigned int calc_tx_flits(const struct sk_buff *skb) +{ + unsigned int flits; + int hdrlen = is_eth_imm(skb); + + /* If the skb is small enough, we can pump it out as a work request + * with only immediate data. In that case we just have to have the + * TX Packet header plus the skb data in the Work Request. + */ + + if (hdrlen) + return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); + + /* Otherwise, we're going to have to construct a Scatter gather list + * of the skb body and fragments. We also include the flits necessary + * for the TX Packet Work Request and CPL. We always have a firmware + * Write Header (incorporated as part of the cpl_tx_pkt_lso and + * cpl_tx_pkt structures), followed by either a TX Packet Write CPL + * message or, if we're doing a Large Send Offload, an LSO CPL message + * with an embedded TX Packet Write CPL message. + */ + flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; + if (skb_shinfo(skb)->gso_size) + flits += (sizeof(struct fw_eth_tx_pkt_wr) + + sizeof(struct cpl_tx_pkt_lso_core) + + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); + else + flits += (sizeof(struct fw_eth_tx_pkt_wr) + + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); + return flits; +} + +/** + * calc_tx_descs - calculate the number of Tx descriptors for a packet + * @skb: the packet + * + * Returns the number of Tx descriptors needed for the given Ethernet + * packet, including the needed WR and CPL headers. + */ +static inline unsigned int calc_tx_descs(const struct sk_buff *skb) +{ + return flits_to_desc(calc_tx_flits(skb)); +} + +/** + * write_sgl - populate a scatter/gather list for a packet + * @skb: the packet + * @q: the Tx queue we are writing into + * @sgl: starting location for writing the SGL + * @end: points right after the end of the SGL + * @start: start offset into skb main-body data to include in the SGL + * @addr: the list of bus addresses for the SGL elements + * + * Generates a gather list for the buffers that make up a packet. + * The caller must provide adequate space for the SGL that will be written. + * The SGL includes all of the packet's page fragments and the data in its + * main body except for the first @start bytes. @sgl must be 16-byte + * aligned and within a Tx descriptor with available space. @end points + * right after the end of the SGL but does not account for any potential + * wrap around, i.e., @end > @sgl. + */ +static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, + struct ulptx_sgl *sgl, u64 *end, unsigned int start, + const dma_addr_t *addr) +{ + unsigned int i, len; + struct ulptx_sge_pair *to; + const struct skb_shared_info *si = skb_shinfo(skb); + unsigned int nfrags = si->nr_frags; + struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; + + len = skb_headlen(skb) - start; + if (likely(len)) { + sgl->len0 = htonl(len); + sgl->addr0 = cpu_to_be64(addr[0] + start); + nfrags++; + } else { + sgl->len0 = htonl(skb_frag_size(&si->frags[0])); + sgl->addr0 = cpu_to_be64(addr[1]); + } + + sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | + ULPTX_NSGE_V(nfrags)); + if (likely(--nfrags == 0)) + return; + /* + * Most of the complexity below deals with the possibility we hit the + * end of the queue in the middle of writing the SGL. For this case + * only we create the SGL in a temporary buffer and then copy it. + */ + to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; + + for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { + to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); + to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); + to->addr[0] = cpu_to_be64(addr[i]); + to->addr[1] = cpu_to_be64(addr[++i]); + } + if (nfrags) { + to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); + to->len[1] = cpu_to_be32(0); + to->addr[0] = cpu_to_be64(addr[i + 1]); + } + if (unlikely((u8 *)end > (u8 *)q->stat)) { + unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; + + if (likely(part0)) + memcpy(sgl->sge, buf, part0); + part1 = (u8 *)end - (u8 *)q->stat; + memcpy(q->desc, (u8 *)buf + part0, part1); + end = (void *)q->desc + part1; + } + if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ + *end = 0; +} + +/* This function copies 64 byte coalesced work request to + * memory mapped BAR2 space. For coalesced WR SGE fetches + * data from the FIFO instead of from Host. + */ +static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) +{ + int count = 8; + + while (count) { + writeq(*src, dst); + src++; + dst++; + count--; + } +} + +/** + * ring_tx_db - check and potentially ring a Tx queue's doorbell + * @adap: the adapter + * @q: the Tx queue + * @n: number of new descriptors to give to HW + * + * Ring the doorbel for a Tx queue. + */ +static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) +{ + wmb(); /* write descriptors before telling HW */ + + /* If we don't have access to the new User Doorbell (T5+), use the old + * doorbell mechanism; otherwise use the new BAR2 mechanism. + */ + if (unlikely(q->bar2_addr == NULL)) { + u32 val = PIDX_V(n); + unsigned long flags; + + /* For T4 we need to participate in the Doorbell Recovery + * mechanism. + */ + spin_lock_irqsave(&q->db_lock, flags); + if (!q->db_disabled) + t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), + QID_V(q->cntxt_id) | val); + else + q->db_pidx_inc += n; + q->db_pidx = q->pidx; + spin_unlock_irqrestore(&q->db_lock, flags); + } else { + u32 val = PIDX_T5_V(n); + + /* T4 and later chips share the same PIDX field offset within + * the doorbell, but T5 and later shrank the field in order to + * gain a bit for Doorbell Priority. The field was absurdly + * large in the first place (14 bits) so we just use the T5 + * and later limits and warn if a Queue ID is too large. + */ + WARN_ON(val & DBPRIO_F); + + /* If we're only writing a single TX Descriptor and we can use + * Inferred QID registers, we can use the Write Combining + * Gather Buffer; otherwise we use the simple doorbell. + */ + if (n == 1 && q->bar2_qid == 0) { + int index = (q->pidx + ? (q->pidx - 1) + : (q->size - 1)); + u64 *wr = (u64 *)&q->desc[index]; + + cxgb_pio_copy((u64 __iomem *) + (q->bar2_addr + SGE_UDB_WCDOORBELL), + wr); + } else { + writel(val | QID_V(q->bar2_qid), + q->bar2_addr + SGE_UDB_KDOORBELL); + } + + /* This Write Memory Barrier will force the write to the User + * Doorbell area to be flushed. This is needed to prevent + * writes on different CPUs for the same queue from hitting + * the adapter out of order. This is required when some Work + * Requests take the Write Combine Gather Buffer path (user + * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some + * take the traditional path where we simply increment the + * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the + * hardware DMA read the actual Work Request. + */ + wmb(); + } +} + +/** + * inline_tx_skb - inline a packet's data into Tx descriptors + * @skb: the packet + * @q: the Tx queue where the packet will be inlined + * @pos: starting position in the Tx queue where to inline the packet + * + * Inline a packet's contents directly into Tx descriptors, starting at + * the given position within the Tx DMA ring. + * Most of the complexity of this operation is dealing with wrap arounds + * in the middle of the packet we want to inline. + */ +static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, + void *pos) +{ + u64 *p; + int left = (void *)q->stat - pos; + + if (likely(skb->len <= left)) { + if (likely(!skb->data_len)) + skb_copy_from_linear_data(skb, pos, skb->len); + else + skb_copy_bits(skb, 0, pos, skb->len); + pos += skb->len; + } else { + skb_copy_bits(skb, 0, pos, left); + skb_copy_bits(skb, left, q->desc, skb->len - left); + pos = (void *)q->desc + (skb->len - left); + } + + /* 0-pad to multiple of 16 */ + p = PTR_ALIGN(pos, 8); + if ((uintptr_t)p & 8) + *p = 0; +} + +/* + * Figure out what HW csum a packet wants and return the appropriate control + * bits. + */ +static u64 hwcsum(const struct sk_buff *skb) +{ + int csum_type; + const struct iphdr *iph = ip_hdr(skb); + + if (iph->version == 4) { + if (iph->protocol == IPPROTO_TCP) + csum_type = TX_CSUM_TCPIP; + else if (iph->protocol == IPPROTO_UDP) + csum_type = TX_CSUM_UDPIP; + else { +nocsum: /* + * unknown protocol, disable HW csum + * and hope a bad packet is detected + */ + return TXPKT_L4CSUM_DIS; + } + } else { + /* + * this doesn't work with extension headers + */ + const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; + + if (ip6h->nexthdr == IPPROTO_TCP) + csum_type = TX_CSUM_TCPIP6; + else if (ip6h->nexthdr == IPPROTO_UDP) + csum_type = TX_CSUM_UDPIP6; + else + goto nocsum; + } + + if (likely(csum_type >= TX_CSUM_TCPIP)) + return TXPKT_CSUM_TYPE(csum_type) | + TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | + TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); + else { + int start = skb_transport_offset(skb); + + return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | + TXPKT_CSUM_LOC(start + skb->csum_offset); + } +} + +static void eth_txq_stop(struct sge_eth_txq *q) +{ + netif_tx_stop_queue(q->txq); + q->q.stops++; +} + +static inline void txq_advance(struct sge_txq *q, unsigned int n) +{ + q->in_use += n; + q->pidx += n; + if (q->pidx >= q->size) + q->pidx -= q->size; +} + +#ifdef CONFIG_CHELSIO_T4_FCOE +static inline int +cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, + const struct port_info *pi, u64 *cntrl) +{ + const struct cxgb_fcoe *fcoe = &pi->fcoe; + + if (!(fcoe->flags & CXGB_FCOE_ENABLED)) + return 0; + + if (skb->protocol != htons(ETH_P_FCOE)) + return 0; + + skb_reset_mac_header(skb); + skb->mac_len = sizeof(struct ethhdr); + + skb_set_network_header(skb, skb->mac_len); + skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); + + if (!cxgb_fcoe_sof_eof_supported(adap, skb)) + return -ENOTSUPP; + + /* FC CRC offload */ + *cntrl = TXPKT_CSUM_TYPE(TX_CSUM_FCOE) | + TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS | + TXPKT_CSUM_START(CXGB_FCOE_TXPKT_CSUM_START) | + TXPKT_CSUM_END(CXGB_FCOE_TXPKT_CSUM_END) | + TXPKT_CSUM_LOC(CXGB_FCOE_TXPKT_CSUM_END); + return 0; +} +#endif /* CONFIG_CHELSIO_T4_FCOE */ + +/** + * t4_eth_xmit - add a packet to an Ethernet Tx queue + * @skb: the packet + * @dev: the egress net device + * + * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. + */ +netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) +{ + int len; + u32 wr_mid; + u64 cntrl, *end; + int qidx, credits; + unsigned int flits, ndesc; + struct adapter *adap; + struct sge_eth_txq *q; + const struct port_info *pi; + struct fw_eth_tx_pkt_wr *wr; + struct cpl_tx_pkt_core *cpl; + const struct skb_shared_info *ssi; + dma_addr_t addr[MAX_SKB_FRAGS + 1]; + bool immediate = false; +#ifdef CONFIG_CHELSIO_T4_FCOE + int err; +#endif /* CONFIG_CHELSIO_T4_FCOE */ + + /* + * The chip min packet length is 10 octets but play safe and reject + * anything shorter than an Ethernet header. + */ + if (unlikely(skb->len < ETH_HLEN)) { +out_free: dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + pi = netdev_priv(dev); + adap = pi->adapter; + qidx = skb_get_queue_mapping(skb); + q = &adap->sge.ethtxq[qidx + pi->first_qset]; + + reclaim_completed_tx(adap, &q->q, true); + cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; + +#ifdef CONFIG_CHELSIO_T4_FCOE + err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); + if (unlikely(err == -ENOTSUPP)) + goto out_free; +#endif /* CONFIG_CHELSIO_T4_FCOE */ + + flits = calc_tx_flits(skb); + ndesc = flits_to_desc(flits); + credits = txq_avail(&q->q) - ndesc; + + if (unlikely(credits < 0)) { + eth_txq_stop(q); + dev_err(adap->pdev_dev, + "%s: Tx ring %u full while queue awake!\n", + dev->name, qidx); + return NETDEV_TX_BUSY; + } + + if (is_eth_imm(skb)) + immediate = true; + + if (!immediate && + unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { + q->mapping_err++; + goto out_free; + } + + wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); + if (unlikely(credits < ETHTXQ_STOP_THRES)) { + eth_txq_stop(q); + wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; + } + + wr = (void *)&q->q.desc[q->q.pidx]; + wr->equiq_to_len16 = htonl(wr_mid); + wr->r3 = cpu_to_be64(0); + end = (u64 *)wr + flits; + + len = immediate ? skb->len : 0; + ssi = skb_shinfo(skb); + if (ssi->gso_size) { + struct cpl_tx_pkt_lso *lso = (void *)wr; + bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; + int l3hdr_len = skb_network_header_len(skb); + int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; + + len += sizeof(*lso); + wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | + FW_WR_IMMDLEN_V(len)); + lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | + LSO_FIRST_SLICE | LSO_LAST_SLICE | + LSO_IPV6(v6) | + LSO_ETHHDR_LEN(eth_xtra_len / 4) | + LSO_IPHDR_LEN(l3hdr_len / 4) | + LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); + lso->c.ipid_ofst = htons(0); + lso->c.mss = htons(ssi->gso_size); + lso->c.seqno_offset = htonl(0); + if (is_t4(adap->params.chip)) + lso->c.len = htonl(skb->len); + else + lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len)); + cpl = (void *)(lso + 1); + cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | + TXPKT_IPHDR_LEN(l3hdr_len) | + TXPKT_ETHHDR_LEN(eth_xtra_len); + q->tso++; + q->tx_cso += ssi->gso_segs; + } else { + len += sizeof(*cpl); + wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | + FW_WR_IMMDLEN_V(len)); + cpl = (void *)(wr + 1); + if (skb->ip_summed == CHECKSUM_PARTIAL) { + cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; + q->tx_cso++; + } + } + + if (skb_vlan_tag_present(skb)) { + q->vlan_ins++; + cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb)); +#ifdef CONFIG_CHELSIO_T4_FCOE + if (skb->protocol == htons(ETH_P_FCOE)) + cntrl |= TXPKT_VLAN( + ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); +#endif /* CONFIG_CHELSIO_T4_FCOE */ + } + + cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | + TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); + cpl->pack = htons(0); + cpl->len = htons(skb->len); + cpl->ctrl1 = cpu_to_be64(cntrl); + + if (immediate) { + inline_tx_skb(skb, &q->q, cpl + 1); + dev_consume_skb_any(skb); + } else { + int last_desc; + + write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, + addr); + skb_orphan(skb); + + last_desc = q->q.pidx + ndesc - 1; + if (last_desc >= q->q.size) + last_desc -= q->q.size; + q->q.sdesc[last_desc].skb = skb; + q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); + } + + txq_advance(&q->q, ndesc); + + ring_tx_db(adap, &q->q, ndesc); + return NETDEV_TX_OK; +} + +/** + * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs + * @q: the SGE control Tx queue + * + * This is a variant of reclaim_completed_tx() that is used for Tx queues + * that send only immediate data (presently just the control queues) and + * thus do not have any sk_buffs to release. + */ +static inline void reclaim_completed_tx_imm(struct sge_txq *q) +{ + int hw_cidx = ntohs(q->stat->cidx); + int reclaim = hw_cidx - q->cidx; + + if (reclaim < 0) + reclaim += q->size; + + q->in_use -= reclaim; + q->cidx = hw_cidx; +} + +/** + * is_imm - check whether a packet can be sent as immediate data + * @skb: the packet + * + * Returns true if a packet can be sent as a WR with immediate data. + */ +static inline int is_imm(const struct sk_buff *skb) +{ + return skb->len <= MAX_CTRL_WR_LEN; +} + +/** + * ctrlq_check_stop - check if a control queue is full and should stop + * @q: the queue + * @wr: most recent WR written to the queue + * + * Check if a control queue has become full and should be stopped. + * We clean up control queue descriptors very lazily, only when we are out. + * If the queue is still full after reclaiming any completed descriptors + * we suspend it and have the last WR wake it up. + */ +static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) +{ + reclaim_completed_tx_imm(&q->q); + if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { + wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); + q->q.stops++; + q->full = 1; + } +} + +/** + * ctrl_xmit - send a packet through an SGE control Tx queue + * @q: the control queue + * @skb: the packet + * + * Send a packet through an SGE control Tx queue. Packets sent through + * a control queue must fit entirely as immediate data. + */ +static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) +{ + unsigned int ndesc; + struct fw_wr_hdr *wr; + + if (unlikely(!is_imm(skb))) { + WARN_ON(1); + dev_kfree_skb(skb); + return NET_XMIT_DROP; + } + + ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); + spin_lock(&q->sendq.lock); + + if (unlikely(q->full)) { + skb->priority = ndesc; /* save for restart */ + __skb_queue_tail(&q->sendq, skb); + spin_unlock(&q->sendq.lock); + return NET_XMIT_CN; + } + + wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; + inline_tx_skb(skb, &q->q, wr); + + txq_advance(&q->q, ndesc); + if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) + ctrlq_check_stop(q, wr); + + ring_tx_db(q->adap, &q->q, ndesc); + spin_unlock(&q->sendq.lock); + + kfree_skb(skb); + return NET_XMIT_SUCCESS; +} + +/** + * restart_ctrlq - restart a suspended control queue + * @data: the control queue to restart + * + * Resumes transmission on a suspended Tx control queue. + */ +static void restart_ctrlq(unsigned long data) +{ + struct sk_buff *skb; + unsigned int written = 0; + struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; + + spin_lock(&q->sendq.lock); + reclaim_completed_tx_imm(&q->q); + BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ + + while ((skb = __skb_dequeue(&q->sendq)) != NULL) { + struct fw_wr_hdr *wr; + unsigned int ndesc = skb->priority; /* previously saved */ + + /* + * Write descriptors and free skbs outside the lock to limit + * wait times. q->full is still set so new skbs will be queued. + */ + spin_unlock(&q->sendq.lock); + + wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; + inline_tx_skb(skb, &q->q, wr); + kfree_skb(skb); + + written += ndesc; + txq_advance(&q->q, ndesc); + if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { + unsigned long old = q->q.stops; + + ctrlq_check_stop(q, wr); + if (q->q.stops != old) { /* suspended anew */ + spin_lock(&q->sendq.lock); + goto ringdb; + } + } + if (written > 16) { + ring_tx_db(q->adap, &q->q, written); + written = 0; + } + spin_lock(&q->sendq.lock); + } + q->full = 0; +ringdb: if (written) + ring_tx_db(q->adap, &q->q, written); + spin_unlock(&q->sendq.lock); +} + +/** + * t4_mgmt_tx - send a management message + * @adap: the adapter + * @skb: the packet containing the management message + * + * Send a management message through control queue 0. + */ +int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) +{ + int ret; + + local_bh_disable(); + ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); + local_bh_enable(); + return ret; +} + +/** + * is_ofld_imm - check whether a packet can be sent as immediate data + * @skb: the packet + * + * Returns true if a packet can be sent as an offload WR with immediate + * data. We currently use the same limit as for Ethernet packets. + */ +static inline int is_ofld_imm(const struct sk_buff *skb) +{ + return skb->len <= MAX_IMM_TX_PKT_LEN; +} + +/** + * calc_tx_flits_ofld - calculate # of flits for an offload packet + * @skb: the packet + * + * Returns the number of flits needed for the given offload packet. + * These packets are already fully constructed and no additional headers + * will be added. + */ +static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) +{ + unsigned int flits, cnt; + + if (is_ofld_imm(skb)) + return DIV_ROUND_UP(skb->len, 8); + + flits = skb_transport_offset(skb) / 8U; /* headers */ + cnt = skb_shinfo(skb)->nr_frags; + if (skb_tail_pointer(skb) != skb_transport_header(skb)) + cnt++; + return flits + sgl_len(cnt); +} + +/** + * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion + * @adap: the adapter + * @q: the queue to stop + * + * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting + * inability to map packets. A periodic timer attempts to restart + * queues so marked. + */ +static void txq_stop_maperr(struct sge_ofld_txq *q) +{ + q->mapping_err++; + q->q.stops++; + set_bit(q->q.cntxt_id - q->adap->sge.egr_start, + q->adap->sge.txq_maperr); +} + +/** + * ofldtxq_stop - stop an offload Tx queue that has become full + * @q: the queue to stop + * @skb: the packet causing the queue to become full + * + * Stops an offload Tx queue that has become full and modifies the packet + * being written to request a wakeup. + */ +static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) +{ + struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; + + wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); + q->q.stops++; + q->full = 1; +} + +/** + * service_ofldq - restart a suspended offload queue + * @q: the offload queue + * + * Services an offload Tx queue by moving packets from its packet queue + * to the HW Tx ring. The function starts and ends with the queue locked. + */ +static void service_ofldq(struct sge_ofld_txq *q) +{ + u64 *pos; + int credits; + struct sk_buff *skb; + unsigned int written = 0; + unsigned int flits, ndesc; + + while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { + /* + * We drop the lock but leave skb on sendq, thus retaining + * exclusive access to the state of the queue. + */ + spin_unlock(&q->sendq.lock); + + reclaim_completed_tx(q->adap, &q->q, false); + + flits = skb->priority; /* previously saved */ + ndesc = flits_to_desc(flits); + credits = txq_avail(&q->q) - ndesc; + BUG_ON(credits < 0); + if (unlikely(credits < TXQ_STOP_THRES)) + ofldtxq_stop(q, skb); + + pos = (u64 *)&q->q.desc[q->q.pidx]; + if (is_ofld_imm(skb)) + inline_tx_skb(skb, &q->q, pos); + else if (map_skb(q->adap->pdev_dev, skb, + (dma_addr_t *)skb->head)) { + txq_stop_maperr(q); + spin_lock(&q->sendq.lock); + break; + } else { + int last_desc, hdr_len = skb_transport_offset(skb); + + memcpy(pos, skb->data, hdr_len); + write_sgl(skb, &q->q, (void *)pos + hdr_len, + pos + flits, hdr_len, + (dma_addr_t *)skb->head); +#ifdef CONFIG_NEED_DMA_MAP_STATE + skb->dev = q->adap->port[0]; + skb->destructor = deferred_unmap_destructor; +#endif + last_desc = q->q.pidx + ndesc - 1; + if (last_desc >= q->q.size) + last_desc -= q->q.size; + q->q.sdesc[last_desc].skb = skb; + } + + txq_advance(&q->q, ndesc); + written += ndesc; + if (unlikely(written > 32)) { + ring_tx_db(q->adap, &q->q, written); + written = 0; + } + + spin_lock(&q->sendq.lock); + __skb_unlink(skb, &q->sendq); + if (is_ofld_imm(skb)) + kfree_skb(skb); + } + if (likely(written)) + ring_tx_db(q->adap, &q->q, written); +} + +/** + * ofld_xmit - send a packet through an offload queue + * @q: the Tx offload queue + * @skb: the packet + * + * Send an offload packet through an SGE offload queue. + */ +static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) +{ + skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ + spin_lock(&q->sendq.lock); + __skb_queue_tail(&q->sendq, skb); + if (q->sendq.qlen == 1) + service_ofldq(q); + spin_unlock(&q->sendq.lock); + return NET_XMIT_SUCCESS; +} + +/** + * restart_ofldq - restart a suspended offload queue + * @data: the offload queue to restart + * + * Resumes transmission on a suspended Tx offload queue. + */ +static void restart_ofldq(unsigned long data) +{ + struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; + + spin_lock(&q->sendq.lock); + q->full = 0; /* the queue actually is completely empty now */ + service_ofldq(q); + spin_unlock(&q->sendq.lock); +} + +/** + * skb_txq - return the Tx queue an offload packet should use + * @skb: the packet + * + * Returns the Tx queue an offload packet should use as indicated by bits + * 1-15 in the packet's queue_mapping. + */ +static inline unsigned int skb_txq(const struct sk_buff *skb) +{ + return skb->queue_mapping >> 1; +} + +/** + * is_ctrl_pkt - return whether an offload packet is a control packet + * @skb: the packet + * + * Returns whether an offload packet should use an OFLD or a CTRL + * Tx queue as indicated by bit 0 in the packet's queue_mapping. + */ +static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) +{ + return skb->queue_mapping & 1; +} + +static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) +{ + unsigned int idx = skb_txq(skb); + + if (unlikely(is_ctrl_pkt(skb))) { + /* Single ctrl queue is a requirement for LE workaround path */ + if (adap->tids.nsftids) + idx = 0; + return ctrl_xmit(&adap->sge.ctrlq[idx], skb); + } + return ofld_xmit(&adap->sge.ofldtxq[idx], skb); +} + +/** + * t4_ofld_send - send an offload packet + * @adap: the adapter + * @skb: the packet + * + * Sends an offload packet. We use the packet queue_mapping to select the + * appropriate Tx queue as follows: bit 0 indicates whether the packet + * should be sent as regular or control, bits 1-15 select the queue. + */ +int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) +{ + int ret; + + local_bh_disable(); + ret = ofld_send(adap, skb); + local_bh_enable(); + return ret; +} + +/** + * cxgb4_ofld_send - send an offload packet + * @dev: the net device + * @skb: the packet + * + * Sends an offload packet. This is an exported version of @t4_ofld_send, + * intended for ULDs. + */ +int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) +{ + return t4_ofld_send(netdev2adap(dev), skb); +} +EXPORT_SYMBOL(cxgb4_ofld_send); + +static inline void copy_frags(struct sk_buff *skb, + const struct pkt_gl *gl, unsigned int offset) +{ + int i; + + /* usually there's just one frag */ + __skb_fill_page_desc(skb, 0, gl->frags[0].page, + gl->frags[0].offset + offset, + gl->frags[0].size - offset); + skb_shinfo(skb)->nr_frags = gl->nfrags; + for (i = 1; i < gl->nfrags; i++) + __skb_fill_page_desc(skb, i, gl->frags[i].page, + gl->frags[i].offset, + gl->frags[i].size); + + /* get a reference to the last page, we don't own it */ + get_page(gl->frags[gl->nfrags - 1].page); +} + +/** + * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list + * @gl: the gather list + * @skb_len: size of sk_buff main body if it carries fragments + * @pull_len: amount of data to move to the sk_buff's main body + * + * Builds an sk_buff from the given packet gather list. Returns the + * sk_buff or %NULL if sk_buff allocation failed. + */ +struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, + unsigned int skb_len, unsigned int pull_len) +{ + struct sk_buff *skb; + + /* + * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer + * size, which is expected since buffers are at least PAGE_SIZEd. + * In this case packets up to RX_COPY_THRES have only one fragment. + */ + if (gl->tot_len <= RX_COPY_THRES) { + skb = dev_alloc_skb(gl->tot_len); + if (unlikely(!skb)) + goto out; + __skb_put(skb, gl->tot_len); + skb_copy_to_linear_data(skb, gl->va, gl->tot_len); + } else { + skb = dev_alloc_skb(skb_len); + if (unlikely(!skb)) + goto out; + __skb_put(skb, pull_len); + skb_copy_to_linear_data(skb, gl->va, pull_len); + + copy_frags(skb, gl, pull_len); + skb->len = gl->tot_len; + skb->data_len = skb->len - pull_len; + skb->truesize += skb->data_len; + } +out: return skb; +} +EXPORT_SYMBOL(cxgb4_pktgl_to_skb); + +/** + * t4_pktgl_free - free a packet gather list + * @gl: the gather list + * + * Releases the pages of a packet gather list. We do not own the last + * page on the list and do not free it. + */ +static void t4_pktgl_free(const struct pkt_gl *gl) +{ + int n; + const struct page_frag *p; + + for (p = gl->frags, n = gl->nfrags - 1; n--; p++) + put_page(p->page); +} + +/* + * Process an MPS trace packet. Give it an unused protocol number so it won't + * be delivered to anyone and send it to the stack for capture. + */ +static noinline int handle_trace_pkt(struct adapter *adap, + const struct pkt_gl *gl) +{ + struct sk_buff *skb; + + skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); + if (unlikely(!skb)) { + t4_pktgl_free(gl); + return 0; + } + + if (is_t4(adap->params.chip)) + __skb_pull(skb, sizeof(struct cpl_trace_pkt)); + else + __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); + + skb_reset_mac_header(skb); + skb->protocol = htons(0xffff); + skb->dev = adap->port[0]; + netif_receive_skb(skb); + return 0; +} + +static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, + const struct cpl_rx_pkt *pkt) +{ + struct adapter *adapter = rxq->rspq.adap; + struct sge *s = &adapter->sge; + int ret; + struct sk_buff *skb; + + skb = napi_get_frags(&rxq->rspq.napi); + if (unlikely(!skb)) { + t4_pktgl_free(gl); + rxq->stats.rx_drops++; + return; + } + + copy_frags(skb, gl, s->pktshift); + skb->len = gl->tot_len - s->pktshift; + skb->data_len = skb->len; + skb->truesize += skb->data_len; + skb->ip_summed = CHECKSUM_UNNECESSARY; + skb_record_rx_queue(skb, rxq->rspq.idx); + skb_mark_napi_id(skb, &rxq->rspq.napi); + if (rxq->rspq.netdev->features & NETIF_F_RXHASH) + skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, + PKT_HASH_TYPE_L3); + + if (unlikely(pkt->vlan_ex)) { + __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); + rxq->stats.vlan_ex++; + } + ret = napi_gro_frags(&rxq->rspq.napi); + if (ret == GRO_HELD) + rxq->stats.lro_pkts++; + else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) + rxq->stats.lro_merged++; + rxq->stats.pkts++; + rxq->stats.rx_cso++; +} + +/** + * t4_ethrx_handler - process an ingress ethernet packet + * @q: the response queue that received the packet + * @rsp: the response queue descriptor holding the RX_PKT message + * @si: the gather list of packet fragments + * + * Process an ingress ethernet packet and deliver it to the stack. + */ +int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, + const struct pkt_gl *si) +{ + bool csum_ok; + struct sk_buff *skb; + const struct cpl_rx_pkt *pkt; + struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); + struct sge *s = &q->adap->sge; + int cpl_trace_pkt = is_t4(q->adap->params.chip) ? + CPL_TRACE_PKT : CPL_TRACE_PKT_T5; +#ifdef CONFIG_CHELSIO_T4_FCOE + struct port_info *pi; +#endif + + if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) + return handle_trace_pkt(q->adap, si); + + pkt = (const struct cpl_rx_pkt *)rsp; + csum_ok = pkt->csum_calc && !pkt->err_vec && + (q->netdev->features & NETIF_F_RXCSUM); + if ((pkt->l2info & htonl(RXF_TCP_F)) && + !(cxgb_poll_busy_polling(q)) && + (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { + do_gro(rxq, si, pkt); + return 0; + } + + skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); + if (unlikely(!skb)) { + t4_pktgl_free(si); + rxq->stats.rx_drops++; + return 0; + } + + __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ + skb->protocol = eth_type_trans(skb, q->netdev); + skb_record_rx_queue(skb, q->idx); + if (skb->dev->features & NETIF_F_RXHASH) + skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, + PKT_HASH_TYPE_L3); + + rxq->stats.pkts++; + + if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { + if (!pkt->ip_frag) { + skb->ip_summed = CHECKSUM_UNNECESSARY; + rxq->stats.rx_cso++; + } else if (pkt->l2info & htonl(RXF_IP_F)) { + __sum16 c = (__force __sum16)pkt->csum; + skb->csum = csum_unfold(c); + skb->ip_summed = CHECKSUM_COMPLETE; + rxq->stats.rx_cso++; + } + } else { + skb_checksum_none_assert(skb); +#ifdef CONFIG_CHELSIO_T4_FCOE +#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ + RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) + + pi = netdev_priv(skb->dev); + if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { + if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && + (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { + if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F))) + skb->ip_summed = CHECKSUM_UNNECESSARY; + } + } + +#undef CPL_RX_PKT_FLAGS +#endif /* CONFIG_CHELSIO_T4_FCOE */ + } + + if (unlikely(pkt->vlan_ex)) { + __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); + rxq->stats.vlan_ex++; + } + skb_mark_napi_id(skb, &q->napi); + netif_receive_skb(skb); + return 0; +} + +/** + * restore_rx_bufs - put back a packet's Rx buffers + * @si: the packet gather list + * @q: the SGE free list + * @frags: number of FL buffers to restore + * + * Puts back on an FL the Rx buffers associated with @si. The buffers + * have already been unmapped and are left unmapped, we mark them so to + * prevent further unmapping attempts. + * + * This function undoes a series of @unmap_rx_buf calls when we find out + * that the current packet can't be processed right away afterall and we + * need to come back to it later. This is a very rare event and there's + * no effort to make this particularly efficient. + */ +static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, + int frags) +{ + struct rx_sw_desc *d; + + while (frags--) { + if (q->cidx == 0) + q->cidx = q->size - 1; + else + q->cidx--; + d = &q->sdesc[q->cidx]; + d->page = si->frags[frags].page; + d->dma_addr |= RX_UNMAPPED_BUF; + q->avail++; + } +} + +/** + * is_new_response - check if a response is newly written + * @r: the response descriptor + * @q: the response queue + * + * Returns true if a response descriptor contains a yet unprocessed + * response. + */ +static inline bool is_new_response(const struct rsp_ctrl *r, + const struct sge_rspq *q) +{ + return RSPD_GEN(r->type_gen) == q->gen; +} + +/** + * rspq_next - advance to the next entry in a response queue + * @q: the queue + * + * Updates the state of a response queue to advance it to the next entry. + */ +static inline void rspq_next(struct sge_rspq *q) +{ + q->cur_desc = (void *)q->cur_desc + q->iqe_len; + if (unlikely(++q->cidx == q->size)) { + q->cidx = 0; + q->gen ^= 1; + q->cur_desc = q->desc; + } +} + +/** + * process_responses - process responses from an SGE response queue + * @q: the ingress queue to process + * @budget: how many responses can be processed in this round + * + * Process responses from an SGE response queue up to the supplied budget. + * Responses include received packets as well as control messages from FW + * or HW. + * + * Additionally choose the interrupt holdoff time for the next interrupt + * on this queue. If the system is under memory shortage use a fairly + * long delay to help recovery. + */ +static int process_responses(struct sge_rspq *q, int budget) +{ + int ret, rsp_type; + int budget_left = budget; + const struct rsp_ctrl *rc; + struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); + struct adapter *adapter = q->adap; + struct sge *s = &adapter->sge; + + while (likely(budget_left)) { + rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); + if (!is_new_response(rc, q)) + break; + + dma_rmb(); + rsp_type = RSPD_TYPE(rc->type_gen); + if (likely(rsp_type == RSP_TYPE_FLBUF)) { + struct page_frag *fp; + struct pkt_gl si; + const struct rx_sw_desc *rsd; + u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; + + if (len & RSPD_NEWBUF) { + if (likely(q->offset > 0)) { + free_rx_bufs(q->adap, &rxq->fl, 1); + q->offset = 0; + } + len = RSPD_LEN(len); + } + si.tot_len = len; + + /* gather packet fragments */ + for (frags = 0, fp = si.frags; ; frags++, fp++) { + rsd = &rxq->fl.sdesc[rxq->fl.cidx]; + bufsz = get_buf_size(adapter, rsd); + fp->page = rsd->page; + fp->offset = q->offset; + fp->size = min(bufsz, len); + len -= fp->size; + if (!len) + break; + unmap_rx_buf(q->adap, &rxq->fl); + } + + /* + * Last buffer remains mapped so explicitly make it + * coherent for CPU access. + */ + dma_sync_single_for_cpu(q->adap->pdev_dev, + get_buf_addr(rsd), + fp->size, DMA_FROM_DEVICE); + + si.va = page_address(si.frags[0].page) + + si.frags[0].offset; + prefetch(si.va); + + si.nfrags = frags + 1; + ret = q->handler(q, q->cur_desc, &si); + if (likely(ret == 0)) + q->offset += ALIGN(fp->size, s->fl_align); + else + restore_rx_bufs(&si, &rxq->fl, frags); + } else if (likely(rsp_type == RSP_TYPE_CPL)) { + ret = q->handler(q, q->cur_desc, NULL); + } else { + ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); + } + + if (unlikely(ret)) { + /* couldn't process descriptor, back off for recovery */ + q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); + break; + } + + rspq_next(q); + budget_left--; + } + + if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) + __refill_fl(q->adap, &rxq->fl); + return budget - budget_left; +} + +#ifdef CONFIG_NET_RX_BUSY_POLL +int cxgb_busy_poll(struct napi_struct *napi) +{ + struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); + unsigned int params, work_done; + u32 val; + + if (!cxgb_poll_lock_poll(q)) + return LL_FLUSH_BUSY; + + work_done = process_responses(q, 4); + params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN; + q->next_intr_params = params; + val = CIDXINC_V(work_done) | SEINTARM_V(params); + + /* If we don't have access to the new User GTS (T5+), use the old + * doorbell mechanism; otherwise use the new BAR2 mechanism. + */ + if (unlikely(!q->bar2_addr)) + t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), + val | INGRESSQID_V((u32)q->cntxt_id)); + else { + writel(val | INGRESSQID_V(q->bar2_qid), + q->bar2_addr + SGE_UDB_GTS); + wmb(); + } + + cxgb_poll_unlock_poll(q); + return work_done; +} +#endif /* CONFIG_NET_RX_BUSY_POLL */ + +/** + * napi_rx_handler - the NAPI handler for Rx processing + * @napi: the napi instance + * @budget: how many packets we can process in this round + * + * Handler for new data events when using NAPI. This does not need any + * locking or protection from interrupts as data interrupts are off at + * this point and other adapter interrupts do not interfere (the latter + * in not a concern at all with MSI-X as non-data interrupts then have + * a separate handler). + */ +static int napi_rx_handler(struct napi_struct *napi, int budget) +{ + unsigned int params; + struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); + int work_done; + u32 val; + + if (!cxgb_poll_lock_napi(q)) + return budget; + + work_done = process_responses(q, budget); + if (likely(work_done < budget)) { + int timer_index; + + napi_complete(napi); + timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params); + + if (q->adaptive_rx) { + if (work_done > max(timer_pkt_quota[timer_index], + MIN_NAPI_WORK)) + timer_index = (timer_index + 1); + else + timer_index = timer_index - 1; + + timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); + q->next_intr_params = QINTR_TIMER_IDX(timer_index) | + V_QINTR_CNT_EN; + params = q->next_intr_params; + } else { + params = q->next_intr_params; + q->next_intr_params = q->intr_params; + } + } else + params = QINTR_TIMER_IDX(7); + + val = CIDXINC_V(work_done) | SEINTARM_V(params); + + /* If we don't have access to the new User GTS (T5+), use the old + * doorbell mechanism; otherwise use the new BAR2 mechanism. + */ + if (unlikely(q->bar2_addr == NULL)) { + t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), + val | INGRESSQID_V((u32)q->cntxt_id)); + } else { + writel(val | INGRESSQID_V(q->bar2_qid), + q->bar2_addr + SGE_UDB_GTS); + wmb(); + } + cxgb_poll_unlock_napi(q); + return work_done; +} + +/* + * The MSI-X interrupt handler for an SGE response queue. + */ +irqreturn_t t4_sge_intr_msix(int irq, void *cookie) +{ + struct sge_rspq *q = cookie; + + napi_schedule(&q->napi); + return IRQ_HANDLED; +} + +/* + * Process the indirect interrupt entries in the interrupt queue and kick off + * NAPI for each queue that has generated an entry. + */ +static unsigned int process_intrq(struct adapter *adap) +{ + unsigned int credits; + const struct rsp_ctrl *rc; + struct sge_rspq *q = &adap->sge.intrq; + u32 val; + + spin_lock(&adap->sge.intrq_lock); + for (credits = 0; ; credits++) { + rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); + if (!is_new_response(rc, q)) + break; + + dma_rmb(); + if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { + unsigned int qid = ntohl(rc->pldbuflen_qid); + + qid -= adap->sge.ingr_start; + napi_schedule(&adap->sge.ingr_map[qid]->napi); + } + + rspq_next(q); + } + + val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); + + /* If we don't have access to the new User GTS (T5+), use the old + * doorbell mechanism; otherwise use the new BAR2 mechanism. + */ + if (unlikely(q->bar2_addr == NULL)) { + t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), + val | INGRESSQID_V(q->cntxt_id)); + } else { + writel(val | INGRESSQID_V(q->bar2_qid), + q->bar2_addr + SGE_UDB_GTS); + wmb(); + } + spin_unlock(&adap->sge.intrq_lock); + return credits; +} + +/* + * The MSI interrupt handler, which handles data events from SGE response queues + * as well as error and other async events as they all use the same MSI vector. + */ +static irqreturn_t t4_intr_msi(int irq, void *cookie) +{ + struct adapter *adap = cookie; + + if (adap->flags & MASTER_PF) + t4_slow_intr_handler(adap); + process_intrq(adap); + return IRQ_HANDLED; +} + +/* + * Interrupt handler for legacy INTx interrupts. + * Handles data events from SGE response queues as well as error and other + * async events as they all use the same interrupt line. + */ +static irqreturn_t t4_intr_intx(int irq, void *cookie) +{ + struct adapter *adap = cookie; + + t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); + if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | + process_intrq(adap)) + return IRQ_HANDLED; + return IRQ_NONE; /* probably shared interrupt */ +} + +/** + * t4_intr_handler - select the top-level interrupt handler + * @adap: the adapter + * + * Selects the top-level interrupt handler based on the type of interrupts + * (MSI-X, MSI, or INTx). + */ +irq_handler_t t4_intr_handler(struct adapter *adap) +{ + if (adap->flags & USING_MSIX) + return t4_sge_intr_msix; + if (adap->flags & USING_MSI) + return t4_intr_msi; + return t4_intr_intx; +} + +static void sge_rx_timer_cb(unsigned long data) +{ + unsigned long m; + unsigned int i, idma_same_state_cnt[2]; + struct adapter *adap = (struct adapter *)data; + struct sge *s = &adap->sge; + + for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) + for (m = s->starving_fl[i]; m; m &= m - 1) { + struct sge_eth_rxq *rxq; + unsigned int id = __ffs(m) + i * BITS_PER_LONG; + struct sge_fl *fl = s->egr_map[id]; + + clear_bit(id, s->starving_fl); + smp_mb__after_atomic(); + + if (fl_starving(adap, fl)) { + rxq = container_of(fl, struct sge_eth_rxq, fl); + if (napi_reschedule(&rxq->rspq.napi)) + fl->starving++; + else + set_bit(id, s->starving_fl); + } + } + + t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13); + idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A); + idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); + + for (i = 0; i < 2; i++) { + u32 debug0, debug11; + + /* If the Ingress DMA Same State Counter ("timer") is less + * than 1s, then we can reset our synthesized Stall Timer and + * continue. If we have previously emitted warnings about a + * potential stalled Ingress Queue, issue a note indicating + * that the Ingress Queue has resumed forward progress. + */ + if (idma_same_state_cnt[i] < s->idma_1s_thresh) { + if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH) + CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n", + i, s->idma_qid[i], + s->idma_stalled[i]/HZ); + s->idma_stalled[i] = 0; + continue; + } + + /* Synthesize an SGE Ingress DMA Same State Timer in the Hz + * domain. The first time we get here it'll be because we + * passed the 1s Threshold; each additional time it'll be + * because the RX Timer Callback is being fired on its regular + * schedule. + * + * If the stall is below our Potential Hung Ingress Queue + * Warning Threshold, continue. + */ + if (s->idma_stalled[i] == 0) + s->idma_stalled[i] = HZ; + else + s->idma_stalled[i] += RX_QCHECK_PERIOD; + + if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH) + continue; + + /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */ + if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0) + continue; + + /* Read and save the SGE IDMA State and Queue ID information. + * We do this every time in case it changes across time ... + */ + t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0); + debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); + s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; + + t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11); + debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); + s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; + + CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n", + i, s->idma_qid[i], s->idma_state[i], + s->idma_stalled[i]/HZ, debug0, debug11); + t4_sge_decode_idma_state(adap, s->idma_state[i]); + } + + mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); +} + +static void sge_tx_timer_cb(unsigned long data) +{ + unsigned long m; + unsigned int i, budget; + struct adapter *adap = (struct adapter *)data; + struct sge *s = &adap->sge; + + for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) + for (m = s->txq_maperr[i]; m; m &= m - 1) { + unsigned long id = __ffs(m) + i * BITS_PER_LONG; + struct sge_ofld_txq *txq = s->egr_map[id]; + + clear_bit(id, s->txq_maperr); + tasklet_schedule(&txq->qresume_tsk); + } + + budget = MAX_TIMER_TX_RECLAIM; + i = s->ethtxq_rover; + do { + struct sge_eth_txq *q = &s->ethtxq[i]; + + if (q->q.in_use && + time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && + __netif_tx_trylock(q->txq)) { + int avail = reclaimable(&q->q); + + if (avail) { + if (avail > budget) + avail = budget; + + free_tx_desc(adap, &q->q, avail, true); + q->q.in_use -= avail; + budget -= avail; + } + __netif_tx_unlock(q->txq); + } + + if (++i >= s->ethqsets) + i = 0; + } while (budget && i != s->ethtxq_rover); + s->ethtxq_rover = i; + mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); +} + +/** + * bar2_address - return the BAR2 address for an SGE Queue's Registers + * @adapter: the adapter + * @qid: the SGE Queue ID + * @qtype: the SGE Queue Type (Egress or Ingress) + * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues + * + * Returns the BAR2 address for the SGE Queue Registers associated with + * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also + * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE + * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" + * Registers are supported (e.g. the Write Combining Doorbell Buffer). + */ +static void __iomem *bar2_address(struct adapter *adapter, + unsigned int qid, + enum t4_bar2_qtype qtype, + unsigned int *pbar2_qid) +{ + u64 bar2_qoffset; + int ret; + + ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype, + &bar2_qoffset, pbar2_qid); + if (ret) + return NULL; + + return adapter->bar2 + bar2_qoffset; +} + +int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, + struct net_device *dev, int intr_idx, + struct sge_fl *fl, rspq_handler_t hnd) +{ + int ret, flsz = 0; + struct fw_iq_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = netdev_priv(dev); + + /* Size needs to be multiple of 16, including status entry. */ + iq->size = roundup(iq->size, 16); + + iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, + &iq->phys_addr, NULL, 0, NUMA_NO_NODE); + if (!iq->desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | + FW_CMD_WRITE_F | FW_CMD_EXEC_F | + FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0)); + c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | + FW_LEN16(c)); + c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | + FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | + FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) | + FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : + -intr_idx - 1)); + c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | + FW_IQ_CMD_IQGTSMODE_F | + FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | + FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); + c.iqsize = htons(iq->size); + c.iqaddr = cpu_to_be64(iq->phys_addr); + + if (fl) { + fl->size = roundup(fl->size, 8); + fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), + sizeof(struct rx_sw_desc), &fl->addr, + &fl->sdesc, s->stat_len, NUMA_NO_NODE); + if (!fl->desc) + goto fl_nomem; + + flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); + c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F | + FW_IQ_CMD_FL0FETCHRO_F | + FW_IQ_CMD_FL0DATARO_F | + FW_IQ_CMD_FL0PADEN_F); + c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) | + FW_IQ_CMD_FL0FBMAX_V(3)); + c.fl0size = htons(flsz); + c.fl0addr = cpu_to_be64(fl->addr); + } + + ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); + if (ret) + goto err; + + netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); + napi_hash_add(&iq->napi); + iq->cur_desc = iq->desc; + iq->cidx = 0; + iq->gen = 1; + iq->next_intr_params = iq->intr_params; + iq->cntxt_id = ntohs(c.iqid); + iq->abs_id = ntohs(c.physiqid); + iq->bar2_addr = bar2_address(adap, + iq->cntxt_id, + T4_BAR2_QTYPE_INGRESS, + &iq->bar2_qid); + iq->size--; /* subtract status entry */ + iq->netdev = dev; + iq->handler = hnd; + + /* set offset to -1 to distinguish ingress queues without FL */ + iq->offset = fl ? 0 : -1; + + adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; + + if (fl) { + fl->cntxt_id = ntohs(c.fl0id); + fl->avail = fl->pend_cred = 0; + fl->pidx = fl->cidx = 0; + fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; + adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; + + /* Note, we must initialize the BAR2 Free List User Doorbell + * information before refilling the Free List! + */ + fl->bar2_addr = bar2_address(adap, + fl->cntxt_id, + T4_BAR2_QTYPE_EGRESS, + &fl->bar2_qid); + refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); + } + return 0; + +fl_nomem: + ret = -ENOMEM; +err: + if (iq->desc) { + dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, + iq->desc, iq->phys_addr); + iq->desc = NULL; + } + if (fl && fl->desc) { + kfree(fl->sdesc); + fl->sdesc = NULL; + dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), + fl->desc, fl->addr); + fl->desc = NULL; + } + return ret; +} + +static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) +{ + q->cntxt_id = id; + q->bar2_addr = bar2_address(adap, + q->cntxt_id, + T4_BAR2_QTYPE_EGRESS, + &q->bar2_qid); + q->in_use = 0; + q->cidx = q->pidx = 0; + q->stops = q->restarts = 0; + q->stat = (void *)&q->desc[q->size]; + spin_lock_init(&q->db_lock); + adap->sge.egr_map[id - adap->sge.egr_start] = q; +} + +int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, + struct net_device *dev, struct netdev_queue *netdevq, + unsigned int iqid) +{ + int ret, nentries; + struct fw_eq_eth_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = netdev_priv(dev); + + /* Add status entries */ + nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); + + txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, + sizeof(struct tx_desc), sizeof(struct tx_sw_desc), + &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, + netdev_queue_numa_node_read(netdevq)); + if (!txq->q.desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | + FW_CMD_WRITE_F | FW_CMD_EXEC_F | + FW_EQ_ETH_CMD_PFN_V(adap->fn) | + FW_EQ_ETH_CMD_VFN_V(0)); + c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | + FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); + c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | + FW_EQ_ETH_CMD_VIID_V(pi->viid)); + c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) | + FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | + FW_EQ_ETH_CMD_FETCHRO_V(1) | + FW_EQ_ETH_CMD_IQID_V(iqid)); + c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) | + FW_EQ_ETH_CMD_FBMAX_V(3) | + FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) | + FW_EQ_ETH_CMD_EQSIZE_V(nentries)); + c.eqaddr = cpu_to_be64(txq->q.phys_addr); + + ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); + if (ret) { + kfree(txq->q.sdesc); + txq->q.sdesc = NULL; + dma_free_coherent(adap->pdev_dev, + nentries * sizeof(struct tx_desc), + txq->q.desc, txq->q.phys_addr); + txq->q.desc = NULL; + return ret; + } + + init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); + txq->txq = netdevq; + txq->tso = txq->tx_cso = txq->vlan_ins = 0; + txq->mapping_err = 0; + return 0; +} + +int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, + struct net_device *dev, unsigned int iqid, + unsigned int cmplqid) +{ + int ret, nentries; + struct fw_eq_ctrl_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = netdev_priv(dev); + + /* Add status entries */ + nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); + + txq->q.desc = alloc_ring(adap->pdev_dev, nentries, + sizeof(struct tx_desc), 0, &txq->q.phys_addr, + NULL, 0, NUMA_NO_NODE); + if (!txq->q.desc) + return -ENOMEM; + + c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | + FW_CMD_WRITE_F | FW_CMD_EXEC_F | + FW_EQ_CTRL_CMD_PFN_V(adap->fn) | + FW_EQ_CTRL_CMD_VFN_V(0)); + c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | + FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); + c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); + c.physeqid_pkd = htonl(0); + c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) | + FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | + FW_EQ_CTRL_CMD_FETCHRO_F | + FW_EQ_CTRL_CMD_IQID_V(iqid)); + c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) | + FW_EQ_CTRL_CMD_FBMAX_V(3) | + FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) | + FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); + c.eqaddr = cpu_to_be64(txq->q.phys_addr); + + ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); + if (ret) { + dma_free_coherent(adap->pdev_dev, + nentries * sizeof(struct tx_desc), + txq->q.desc, txq->q.phys_addr); + txq->q.desc = NULL; + return ret; + } + + init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); + txq->adap = adap; + skb_queue_head_init(&txq->sendq); + tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); + txq->full = 0; + return 0; +} + +int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, + struct net_device *dev, unsigned int iqid) +{ + int ret, nentries; + struct fw_eq_ofld_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = netdev_priv(dev); + + /* Add status entries */ + nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); + + txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, + sizeof(struct tx_desc), sizeof(struct tx_sw_desc), + &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, + NUMA_NO_NODE); + if (!txq->q.desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | + FW_CMD_WRITE_F | FW_CMD_EXEC_F | + FW_EQ_OFLD_CMD_PFN_V(adap->fn) | + FW_EQ_OFLD_CMD_VFN_V(0)); + c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | + FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); + c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) | + FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | + FW_EQ_OFLD_CMD_FETCHRO_F | + FW_EQ_OFLD_CMD_IQID_V(iqid)); + c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) | + FW_EQ_OFLD_CMD_FBMAX_V(3) | + FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) | + FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); + c.eqaddr = cpu_to_be64(txq->q.phys_addr); + + ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); + if (ret) { + kfree(txq->q.sdesc); + txq->q.sdesc = NULL; + dma_free_coherent(adap->pdev_dev, + nentries * sizeof(struct tx_desc), + txq->q.desc, txq->q.phys_addr); + txq->q.desc = NULL; + return ret; + } + + init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); + txq->adap = adap; + skb_queue_head_init(&txq->sendq); + tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); + txq->full = 0; + txq->mapping_err = 0; + return 0; +} + +static void free_txq(struct adapter *adap, struct sge_txq *q) +{ + struct sge *s = &adap->sge; + + dma_free_coherent(adap->pdev_dev, + q->size * sizeof(struct tx_desc) + s->stat_len, + q->desc, q->phys_addr); + q->cntxt_id = 0; + q->sdesc = NULL; + q->desc = NULL; +} + +static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, + struct sge_fl *fl) +{ + struct sge *s = &adap->sge; + unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; + + adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; + t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, + rq->cntxt_id, fl_id, 0xffff); + dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, + rq->desc, rq->phys_addr); + napi_hash_del(&rq->napi); + netif_napi_del(&rq->napi); + rq->netdev = NULL; + rq->cntxt_id = rq->abs_id = 0; + rq->desc = NULL; + + if (fl) { + free_rx_bufs(adap, fl, fl->avail); + dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, + fl->desc, fl->addr); + kfree(fl->sdesc); + fl->sdesc = NULL; + fl->cntxt_id = 0; + fl->desc = NULL; + } +} + +/** + * t4_free_ofld_rxqs - free a block of consecutive Rx queues + * @adap: the adapter + * @n: number of queues + * @q: pointer to first queue + * + * Release the resources of a consecutive block of offload Rx queues. + */ +void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) +{ + for ( ; n; n--, q++) + if (q->rspq.desc) + free_rspq_fl(adap, &q->rspq, + q->fl.size ? &q->fl : NULL); +} + +/** + * t4_free_sge_resources - free SGE resources + * @adap: the adapter + * + * Frees resources used by the SGE queue sets. + */ +void t4_free_sge_resources(struct adapter *adap) +{ + int i; + struct sge_eth_rxq *eq = adap->sge.ethrxq; + struct sge_eth_txq *etq = adap->sge.ethtxq; + + /* clean up Ethernet Tx/Rx queues */ + for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { + if (eq->rspq.desc) + free_rspq_fl(adap, &eq->rspq, + eq->fl.size ? &eq->fl : NULL); + if (etq->q.desc) { + t4_eth_eq_free(adap, adap->fn, adap->fn, 0, + etq->q.cntxt_id); + free_tx_desc(adap, &etq->q, etq->q.in_use, true); + kfree(etq->q.sdesc); + free_txq(adap, &etq->q); + } + } + + /* clean up RDMA and iSCSI Rx queues */ + t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq); + t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); + t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); + + /* clean up offload Tx queues */ + for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { + struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; + + if (q->q.desc) { + tasklet_kill(&q->qresume_tsk); + t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, + q->q.cntxt_id); + free_tx_desc(adap, &q->q, q->q.in_use, false); + kfree(q->q.sdesc); + __skb_queue_purge(&q->sendq); + free_txq(adap, &q->q); + } + } + + /* clean up control Tx queues */ + for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { + struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; + + if (cq->q.desc) { + tasklet_kill(&cq->qresume_tsk); + t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, + cq->q.cntxt_id); + __skb_queue_purge(&cq->sendq); + free_txq(adap, &cq->q); + } + } + + if (adap->sge.fw_evtq.desc) + free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); + + if (adap->sge.intrq.desc) + free_rspq_fl(adap, &adap->sge.intrq, NULL); + + /* clear the reverse egress queue map */ + memset(adap->sge.egr_map, 0, + adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); +} + +void t4_sge_start(struct adapter *adap) +{ + adap->sge.ethtxq_rover = 0; + mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); + mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); +} + +/** + * t4_sge_stop - disable SGE operation + * @adap: the adapter + * + * Stop tasklets and timers associated with the DMA engine. Note that + * this is effective only if measures have been taken to disable any HW + * events that may restart them. + */ +void t4_sge_stop(struct adapter *adap) +{ + int i; + struct sge *s = &adap->sge; + + if (in_interrupt()) /* actions below require waiting */ + return; + + if (s->rx_timer.function) + del_timer_sync(&s->rx_timer); + if (s->tx_timer.function) + del_timer_sync(&s->tx_timer); + + for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { + struct sge_ofld_txq *q = &s->ofldtxq[i]; + + if (q->q.desc) + tasklet_kill(&q->qresume_tsk); + } + for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { + struct sge_ctrl_txq *cq = &s->ctrlq[i]; + + if (cq->q.desc) + tasklet_kill(&cq->qresume_tsk); + } +} + +/** + * t4_sge_init_soft - grab core SGE values needed by SGE code + * @adap: the adapter + * + * We need to grab the SGE operating parameters that we need to have + * in order to do our job and make sure we can live with them. + */ + +static int t4_sge_init_soft(struct adapter *adap) +{ + struct sge *s = &adap->sge; + u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; + u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; + u32 ingress_rx_threshold; + + /* + * Verify that CPL messages are going to the Ingress Queue for + * process_responses() and that only packet data is going to the + * Free Lists. + */ + if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != + RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { + dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); + return -EINVAL; + } + + /* + * Validate the Host Buffer Register Array indices that we want to + * use ... + * + * XXX Note that we should really read through the Host Buffer Size + * XXX register array and find the indices of the Buffer Sizes which + * XXX meet our needs! + */ + #define READ_FL_BUF(x) \ + t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) + + fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); + fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); + fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); + fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); + + /* We only bother using the Large Page logic if the Large Page Buffer + * is larger than our Page Size Buffer. + */ + if (fl_large_pg <= fl_small_pg) + fl_large_pg = 0; + + #undef READ_FL_BUF + + /* The Page Size Buffer must be exactly equal to our Page Size and the + * Large Page Size Buffer should be 0 (per above) or a power of 2. + */ + if (fl_small_pg != PAGE_SIZE || + (fl_large_pg & (fl_large_pg-1)) != 0) { + dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", + fl_small_pg, fl_large_pg); + return -EINVAL; + } + if (fl_large_pg) + s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; + + if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || + fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { + dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", + fl_small_mtu, fl_large_mtu); + return -EINVAL; + } + + /* + * Retrieve our RX interrupt holdoff timer values and counter + * threshold values from the SGE parameters. + */ + timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); + timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); + timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); + s->timer_val[0] = core_ticks_to_us(adap, + TIMERVALUE0_G(timer_value_0_and_1)); + s->timer_val[1] = core_ticks_to_us(adap, + TIMERVALUE1_G(timer_value_0_and_1)); + s->timer_val[2] = core_ticks_to_us(adap, + TIMERVALUE2_G(timer_value_2_and_3)); + s->timer_val[3] = core_ticks_to_us(adap, + TIMERVALUE3_G(timer_value_2_and_3)); + s->timer_val[4] = core_ticks_to_us(adap, + TIMERVALUE4_G(timer_value_4_and_5)); + s->timer_val[5] = core_ticks_to_us(adap, + TIMERVALUE5_G(timer_value_4_and_5)); + + ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); + s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); + s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); + s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); + s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); + + return 0; +} + +/** + * t4_sge_init - initialize SGE + * @adap: the adapter + * + * Perform low-level SGE code initialization needed every time after a + * chip reset. + */ +int t4_sge_init(struct adapter *adap) +{ + struct sge *s = &adap->sge; + u32 sge_control, sge_control2, sge_conm_ctrl; + unsigned int ingpadboundary, ingpackboundary; + int ret, egress_threshold; + + /* + * Ingress Padding Boundary and Egress Status Page Size are set up by + * t4_fixup_host_params(). + */ + sge_control = t4_read_reg(adap, SGE_CONTROL_A); + s->pktshift = PKTSHIFT_G(sge_control); + s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; + + /* T4 uses a single control field to specify both the PCIe Padding and + * Packing Boundary. T5 introduced the ability to specify these + * separately. The actual Ingress Packet Data alignment boundary + * within Packed Buffer Mode is the maximum of these two + * specifications. + */ + ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + + INGPADBOUNDARY_SHIFT_X); + if (is_t4(adap->params.chip)) { + s->fl_align = ingpadboundary; + } else { + /* T5 has a different interpretation of one of the PCIe Packing + * Boundary values. + */ + sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); + ingpackboundary = INGPACKBOUNDARY_G(sge_control2); + if (ingpackboundary == INGPACKBOUNDARY_16B_X) + ingpackboundary = 16; + else + ingpackboundary = 1 << (ingpackboundary + + INGPACKBOUNDARY_SHIFT_X); + + s->fl_align = max(ingpadboundary, ingpackboundary); + } + + ret = t4_sge_init_soft(adap); + if (ret < 0) + return ret; + + /* + * A FL with <= fl_starve_thres buffers is starving and a periodic + * timer will attempt to refill it. This needs to be larger than the + * SGE's Egress Congestion Threshold. If it isn't, then we can get + * stuck waiting for new packets while the SGE is waiting for us to + * give it more Free List entries. (Note that the SGE's Egress + * Congestion Threshold is in units of 2 Free List pointers.) For T4, + * there was only a single field to control this. For T5 there's the + * original field which now only applies to Unpacked Mode Free List + * buffers and a new field which only applies to Packed Mode Free List + * buffers. + */ + sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); + if (is_t4(adap->params.chip)) + egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); + else + egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); + s->fl_starve_thres = 2*egress_threshold + 1; + + setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); + setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); + s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */ + s->idma_stalled[0] = 0; + s->idma_stalled[1] = 0; + spin_lock_init(&s->intrq_lock); + + return 0; +} |