diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/drivers/mtd/nand/denali.c | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/drivers/mtd/nand/denali.c')
-rw-r--r-- | kernel/drivers/mtd/nand/denali.c | 1621 |
1 files changed, 1621 insertions, 0 deletions
diff --git a/kernel/drivers/mtd/nand/denali.c b/kernel/drivers/mtd/nand/denali.c new file mode 100644 index 000000000..870c7fc0f --- /dev/null +++ b/kernel/drivers/mtd/nand/denali.c @@ -0,0 +1,1621 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ +#include <linux/interrupt.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/module.h> + +#include "denali.h" + +MODULE_LICENSE("GPL"); + +/* + * We define a module parameter that allows the user to override + * the hardware and decide what timing mode should be used. + */ +#define NAND_DEFAULT_TIMINGS -1 + +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; +module_param(onfi_timing_mode, int, S_IRUGO); +MODULE_PARM_DESC(onfi_timing_mode, + "Overrides default ONFI setting. -1 indicates use default timings"); + +#define DENALI_NAND_NAME "denali-nand" + +/* + * We define a macro here that combines all interrupts this driver uses into + * a single constant value, for convenience. + */ +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ + INTR_STATUS__ECC_TRANSACTION_DONE | \ + INTR_STATUS__ECC_ERR | \ + INTR_STATUS__PROGRAM_FAIL | \ + INTR_STATUS__LOAD_COMP | \ + INTR_STATUS__PROGRAM_COMP | \ + INTR_STATUS__TIME_OUT | \ + INTR_STATUS__ERASE_FAIL | \ + INTR_STATUS__RST_COMP | \ + INTR_STATUS__ERASE_COMP) + +/* + * indicates whether or not the internal value for the flash bank is + * valid or not + */ +#define CHIP_SELECT_INVALID -1 + +#define SUPPORT_8BITECC 1 + +/* + * This macro divides two integers and rounds fractional values up + * to the nearest integer value. + */ +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) + +/* + * this macro allows us to convert from an MTD structure to our own + * device context (denali) structure. + */ +#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) + +/* + * These constants are defined by the driver to enable common driver + * configuration options. + */ +#define SPARE_ACCESS 0x41 +#define MAIN_ACCESS 0x42 +#define MAIN_SPARE_ACCESS 0x43 +#define PIPELINE_ACCESS 0x2000 + +#define DENALI_READ 0 +#define DENALI_WRITE 0x100 + +/* types of device accesses. We can issue commands and get status */ +#define COMMAND_CYCLE 0 +#define ADDR_CYCLE 1 +#define STATUS_CYCLE 2 + +/* + * this is a helper macro that allows us to + * format the bank into the proper bits for the controller + */ +#define BANK(x) ((x) << 24) + +/* forward declarations */ +static void clear_interrupts(struct denali_nand_info *denali); +static uint32_t wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask); +static uint32_t read_interrupt_status(struct denali_nand_info *denali); + +/* + * Certain operations for the denali NAND controller use an indexed mode to + * read/write data. The operation is performed by writing the address value + * of the command to the device memory followed by the data. This function + * abstracts this common operation. + */ +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) +{ + iowrite32(address, denali->flash_mem); + iowrite32(data, denali->flash_mem + 0x10); +} + +/* Perform an indexed read of the device */ +static void index_addr_read_data(struct denali_nand_info *denali, + uint32_t address, uint32_t *pdata) +{ + iowrite32(address, denali->flash_mem); + *pdata = ioread32(denali->flash_mem + 0x10); +} + +/* + * We need to buffer some data for some of the NAND core routines. + * The operations manage buffering that data. + */ +static void reset_buf(struct denali_nand_info *denali) +{ + denali->buf.head = denali->buf.tail = 0; +} + +static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) +{ + denali->buf.buf[denali->buf.tail++] = byte; +} + +/* reads the status of the device */ +static void read_status(struct denali_nand_info *denali) +{ + uint32_t cmd; + + /* initialize the data buffer to store status */ + reset_buf(denali); + + cmd = ioread32(denali->flash_reg + WRITE_PROTECT); + if (cmd) + write_byte_to_buf(denali, NAND_STATUS_WP); + else + write_byte_to_buf(denali, 0); +} + +/* resets a specific device connected to the core */ +static void reset_bank(struct denali_nand_info *denali) +{ + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; + + clear_interrupts(denali); + + iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); + + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status & INTR_STATUS__TIME_OUT) + dev_err(denali->dev, "reset bank failed.\n"); +} + +/* Reset the flash controller */ +static uint16_t denali_nand_reset(struct denali_nand_info *denali) +{ + int i; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + for (i = 0; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); + + for (i = 0; i < denali->max_banks; i++) { + iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) & + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) + cpu_relax(); + if (ioread32(denali->flash_reg + INTR_STATUS(i)) & + INTR_STATUS__TIME_OUT) + dev_dbg(denali->dev, + "NAND Reset operation timed out on bank %d\n", i); + } + + for (i = 0; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); + + return PASS; +} + +/* + * this routine calculates the ONFI timing values for a given mode and + * programs the clocking register accordingly. The mode is determined by + * the get_onfi_nand_para routine. + */ +static void nand_onfi_timing_set(struct denali_nand_info *denali, + uint16_t mode) +{ + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; + + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; + uint16_t dv_window = 0; + uint16_t en_lo, en_hi; + uint16_t acc_clks; + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + en_lo = CEIL_DIV(Trp[mode], CLK_X); + en_hi = CEIL_DIV(Treh[mode], CLK_X); +#if ONFI_BLOOM_TIME + if ((en_hi * CLK_X) < (Treh[mode] + 2)) + en_hi++; +#endif + + if ((en_lo + en_hi) * CLK_X < Trc[mode]) + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); + + if ((en_lo + en_hi) < CLK_MULTI) + en_lo += CLK_MULTI - en_lo - en_hi; + + while (dv_window < 8) { + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; + + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; + + data_invalid = data_invalid_rhoh < data_invalid_rloh ? + data_invalid_rhoh : data_invalid_rloh; + + dv_window = data_invalid - Trea[mode]; + + if (dv_window < 8) + en_lo++; + } + + acc_clks = CEIL_DIV(Trea[mode], CLK_X); + + while (acc_clks * CLK_X - Trea[mode] < 3) + acc_clks++; + + if (data_invalid - acc_clks * CLK_X < 2) + dev_warn(denali->dev, "%s, Line %d: Warning!\n", + __FILE__, __LINE__); + + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); + re_2_we = CEIL_DIV(Trhw[mode], CLK_X); + re_2_re = CEIL_DIV(Trhz[mode], CLK_X); + we_2_re = CEIL_DIV(Twhr[mode], CLK_X); + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); + if (cs_cnt == 0) + cs_cnt = 1; + + if (Tcea[mode]) { + while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode]) + cs_cnt++; + } + +#if MODE5_WORKAROUND + if (mode == 5) + acc_clks = 5; +#endif + + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ + if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 && + ioread32(denali->flash_reg + DEVICE_ID) == 0x88) + acc_clks = 6; + + iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); + iowrite32(re_2_we, denali->flash_reg + RE_2_WE); + iowrite32(re_2_re, denali->flash_reg + RE_2_RE); + iowrite32(we_2_re, denali->flash_reg + WE_2_RE); + iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); + iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); +} + +/* queries the NAND device to see what ONFI modes it supports. */ +static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) +{ + int i; + + /* + * we needn't to do a reset here because driver has already + * reset all the banks before + */ + if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + ONFI_TIMING_MODE__VALUE)) + return FAIL; + + for (i = 5; i > 0; i--) { + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + (0x01 << i)) + break; + } + + nand_onfi_timing_set(denali, i); + + /* + * By now, all the ONFI devices we know support the page cache + * rw feature. So here we enable the pipeline_rw_ahead feature + */ + /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ + /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ + + return PASS; +} + +static void get_samsung_nand_para(struct denali_nand_info *denali, + uint8_t device_id) +{ + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ + /* Set timing register values according to datasheet */ + iowrite32(5, denali->flash_reg + ACC_CLKS); + iowrite32(20, denali->flash_reg + RE_2_WE); + iowrite32(12, denali->flash_reg + WE_2_RE); + iowrite32(14, denali->flash_reg + ADDR_2_DATA); + iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(2, denali->flash_reg + CS_SETUP_CNT); + } +} + +static void get_toshiba_nand_para(struct denali_nand_info *denali) +{ + uint32_t tmp; + + /* + * Workaround to fix a controller bug which reports a wrong + * spare area size for some kind of Toshiba NAND device + */ + if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && + (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { + iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * + ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(tmp, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); +#if SUPPORT_15BITECC + iowrite32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + iowrite32(8, denali->flash_reg + ECC_CORRECTION); +#endif + } +} + +static void get_hynix_nand_para(struct denali_nand_info *denali, + uint8_t device_id) +{ + uint32_t main_size, spare_size; + + switch (device_id) { + case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ + case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ + iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); + iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + main_size = 4096 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + spare_size = 224 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + iowrite32(main_size, + denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + iowrite32(spare_size, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + iowrite32(0, denali->flash_reg + DEVICE_WIDTH); +#if SUPPORT_15BITECC + iowrite32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + iowrite32(8, denali->flash_reg + ECC_CORRECTION); +#endif + break; + default: + dev_warn(denali->dev, + "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n" + "Will use default parameter values instead.\n", + device_id); + } +} + +/* + * determines how many NAND chips are connected to the controller. Note for + * Intel CE4100 devices we don't support more than one device. + */ +static void find_valid_banks(struct denali_nand_info *denali) +{ + uint32_t id[denali->max_banks]; + int i; + + denali->total_used_banks = 1; + for (i = 0; i < denali->max_banks; i++) { + index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); + index_addr(denali, MODE_11 | (i << 24) | 1, 0); + index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); + + dev_dbg(denali->dev, + "Return 1st ID for bank[%d]: %x\n", i, id[i]); + + if (i == 0) { + if (!(id[i] & 0x0ff)) + break; /* WTF? */ + } else { + if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) + denali->total_used_banks++; + else + break; + } + } + + if (denali->platform == INTEL_CE4100) { + /* + * Platform limitations of the CE4100 device limit + * users to a single chip solution for NAND. + * Multichip support is not enabled. + */ + if (denali->total_used_banks != 1) { + dev_err(denali->dev, + "Sorry, Intel CE4100 only supports a single NAND device.\n"); + BUG(); + } + } + dev_dbg(denali->dev, + "denali->total_used_banks: %d\n", denali->total_used_banks); +} + +/* + * Use the configuration feature register to determine the maximum number of + * banks that the hardware supports. + */ +static void detect_max_banks(struct denali_nand_info *denali) +{ + uint32_t features = ioread32(denali->flash_reg + FEATURES); + + denali->max_banks = 2 << (features & FEATURES__N_BANKS); +} + +static void detect_partition_feature(struct denali_nand_info *denali) +{ + /* + * For MRST platform, denali->fwblks represent the + * number of blocks firmware is taken, + * FW is in protect partition and MTD driver has no + * permission to access it. So let driver know how many + * blocks it can't touch. + */ + if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { + if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & + PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { + denali->fwblks = + ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & + MIN_MAX_BANK__MIN_VALUE) * + denali->blksperchip) + + + (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & + MIN_BLK_ADDR__VALUE); + } else { + denali->fwblks = SPECTRA_START_BLOCK; + } + } else { + denali->fwblks = SPECTRA_START_BLOCK; + } +} + +static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) +{ + uint16_t status = PASS; + uint32_t id_bytes[8], addr; + uint8_t maf_id, device_id; + int i; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + /* + * Use read id method to get device ID and other params. + * For some NAND chips, controller can't report the correct + * device ID by reading from DEVICE_ID register + */ + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, 0x90); + index_addr(denali, addr | 1, 0); + for (i = 0; i < 8; i++) + index_addr_read_data(denali, addr | 2, &id_bytes[i]); + maf_id = id_bytes[0]; + device_id = id_bytes[1]; + + if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & + ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ + if (FAIL == get_onfi_nand_para(denali)) + return FAIL; + } else if (maf_id == 0xEC) { /* Samsung NAND */ + get_samsung_nand_para(denali, device_id); + } else if (maf_id == 0x98) { /* Toshiba NAND */ + get_toshiba_nand_para(denali); + } else if (maf_id == 0xAD) { /* Hynix NAND */ + get_hynix_nand_para(denali, device_id); + } + + dev_info(denali->dev, + "Dump timing register values:\n" + "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" + "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" + "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", + ioread32(denali->flash_reg + ACC_CLKS), + ioread32(denali->flash_reg + RE_2_WE), + ioread32(denali->flash_reg + RE_2_RE), + ioread32(denali->flash_reg + WE_2_RE), + ioread32(denali->flash_reg + ADDR_2_DATA), + ioread32(denali->flash_reg + RDWR_EN_LO_CNT), + ioread32(denali->flash_reg + RDWR_EN_HI_CNT), + ioread32(denali->flash_reg + CS_SETUP_CNT)); + + find_valid_banks(denali); + + detect_partition_feature(denali); + + /* + * If the user specified to override the default timings + * with a specific ONFI mode, we apply those changes here. + */ + if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) + nand_onfi_timing_set(denali, onfi_timing_mode); + + return status; +} + +static void denali_set_intr_modes(struct denali_nand_info *denali, + uint16_t INT_ENABLE) +{ + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + if (INT_ENABLE) + iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); + else + iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); +} + +/* + * validation function to verify that the controlling software is making + * a valid request + */ +static inline bool is_flash_bank_valid(int flash_bank) +{ + return flash_bank >= 0 && flash_bank < 4; +} + +static void denali_irq_init(struct denali_nand_info *denali) +{ + uint32_t int_mask; + int i; + + /* Disable global interrupts */ + denali_set_intr_modes(denali, false); + + int_mask = DENALI_IRQ_ALL; + + /* Clear all status bits */ + for (i = 0; i < denali->max_banks; ++i) + iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); + + denali_irq_enable(denali, int_mask); +} + +static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) +{ + denali_set_intr_modes(denali, false); + free_irq(irqnum, denali); +} + +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask) +{ + int i; + + for (i = 0; i < denali->max_banks; ++i) + iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); +} + +/* + * This function only returns when an interrupt that this driver cares about + * occurs. This is to reduce the overhead of servicing interrupts + */ +static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) +{ + return read_interrupt_status(denali) & DENALI_IRQ_ALL; +} + +/* Interrupts are cleared by writing a 1 to the appropriate status bit */ +static inline void clear_interrupt(struct denali_nand_info *denali, + uint32_t irq_mask) +{ + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + iowrite32(irq_mask, denali->flash_reg + intr_status_reg); +} + +static void clear_interrupts(struct denali_nand_info *denali) +{ + uint32_t status; + + spin_lock_irq(&denali->irq_lock); + + status = read_interrupt_status(denali); + clear_interrupt(denali, status); + + denali->irq_status = 0x0; + spin_unlock_irq(&denali->irq_lock); +} + +static uint32_t read_interrupt_status(struct denali_nand_info *denali) +{ + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + return ioread32(denali->flash_reg + intr_status_reg); +} + +/* + * This is the interrupt service routine. It handles all interrupts + * sent to this device. Note that on CE4100, this is a shared interrupt. + */ +static irqreturn_t denali_isr(int irq, void *dev_id) +{ + struct denali_nand_info *denali = dev_id; + uint32_t irq_status; + irqreturn_t result = IRQ_NONE; + + spin_lock(&denali->irq_lock); + + /* check to see if a valid NAND chip has been selected. */ + if (is_flash_bank_valid(denali->flash_bank)) { + /* + * check to see if controller generated the interrupt, + * since this is a shared interrupt + */ + irq_status = denali_irq_detected(denali); + if (irq_status != 0) { + /* handle interrupt */ + /* first acknowledge it */ + clear_interrupt(denali, irq_status); + /* + * store the status in the device context for someone + * to read + */ + denali->irq_status |= irq_status; + /* notify anyone who cares that it happened */ + complete(&denali->complete); + /* tell the OS that we've handled this */ + result = IRQ_HANDLED; + } + } + spin_unlock(&denali->irq_lock); + return result; +} +#define BANK(x) ((x) << 24) + +static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) +{ + unsigned long comp_res; + uint32_t intr_status; + unsigned long timeout = msecs_to_jiffies(1000); + + do { + comp_res = + wait_for_completion_timeout(&denali->complete, timeout); + spin_lock_irq(&denali->irq_lock); + intr_status = denali->irq_status; + + if (intr_status & irq_mask) { + denali->irq_status &= ~irq_mask; + spin_unlock_irq(&denali->irq_lock); + /* our interrupt was detected */ + break; + } + + /* + * these are not the interrupts you are looking for - + * need to wait again + */ + spin_unlock_irq(&denali->irq_lock); + } while (comp_res != 0); + + if (comp_res == 0) { + /* timeout */ + pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n", + intr_status, irq_mask); + + intr_status = 0; + } + return intr_status; +} + +/* + * This helper function setups the registers for ECC and whether or not + * the spare area will be transferred. + */ +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare) +{ + int ecc_en_flag, transfer_spare_flag; + + /* set ECC, transfer spare bits if needed */ + ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; + transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; + + /* Enable spare area/ECC per user's request. */ + iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); + iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); +} + +/* + * sends a pipeline command operation to the controller. See the Denali NAND + * controller's user guide for more information (section 4.2.3.6). + */ +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, + bool ecc_en, bool transfer_spare, + int access_type, int op) +{ + int status = PASS; + uint32_t page_count = 1; + uint32_t addr, cmd, irq_status, irq_mask; + + if (op == DENALI_READ) + irq_mask = INTR_STATUS__LOAD_COMP; + else if (op == DENALI_WRITE) + irq_mask = 0; + else + BUG(); + + setup_ecc_for_xfer(denali, ecc_en, transfer_spare); + + clear_interrupts(denali); + + addr = BANK(denali->flash_bank) | denali->page; + + if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { + /* read spare area */ + cmd = MODE_10 | addr; + index_addr(denali, cmd, access_type); + + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_READ) { + /* setup page read request for access type */ + cmd = MODE_10 | addr; + index_addr(denali, cmd, access_type); + + /* + * page 33 of the NAND controller spec indicates we should not + * use the pipeline commands in Spare area only mode. + * So we don't. + */ + if (access_type == SPARE_ACCESS) { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else { + index_addr(denali, cmd, + PIPELINE_ACCESS | op | page_count); + + /* + * wait for command to be accepted + * can always use status0 bit as the + * mask is identical for each bank. + */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, + "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n", + cmd, denali->page, addr); + status = FAIL; + } else { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } + } + } + return status; +} + +/* helper function that simply writes a buffer to the flash */ +static int write_data_to_flash_mem(struct denali_nand_info *denali, + const uint8_t *buf, int len) +{ + uint32_t *buf32; + int i; + + /* + * verify that the len is a multiple of 4. + * see comment in read_data_from_flash_mem() + */ + BUG_ON((len % 4) != 0); + + /* write the data to the flash memory */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + iowrite32(*buf32++, denali->flash_mem + 0x10); + return i * 4; /* intent is to return the number of bytes read */ +} + +/* helper function that simply reads a buffer from the flash */ +static int read_data_from_flash_mem(struct denali_nand_info *denali, + uint8_t *buf, int len) +{ + uint32_t *buf32; + int i; + + /* + * we assume that len will be a multiple of 4, if not it would be nice + * to know about it ASAP rather than have random failures... + * This assumption is based on the fact that this function is designed + * to be used to read flash pages, which are typically multiples of 4. + */ + BUG_ON((len % 4) != 0); + + /* transfer the data from the flash */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + *buf32++ = ioread32(denali->flash_mem + 0x10); + return i * 4; /* intent is to return the number of bytes read */ +} + +/* writes OOB data to the device */ +static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | + INTR_STATUS__PROGRAM_FAIL; + int status = 0; + + denali->page = page; + + if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, + DENALI_WRITE) == PASS) { + write_data_to_flash_mem(denali, buf, mtd->oobsize); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, "OOB write failed\n"); + status = -EIO; + } + } else { + dev_err(denali->dev, "unable to send pipeline command\n"); + status = -EIO; + } + return status; +} + +/* reads OOB data from the device */ +static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_mask = INTR_STATUS__LOAD_COMP; + uint32_t irq_status, addr, cmd; + + denali->page = page; + + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, + DENALI_READ) == PASS) { + read_data_from_flash_mem(denali, buf, mtd->oobsize); + + /* + * wait for command to be accepted + * can always use status0 bit as the + * mask is identical for each bank. + */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + dev_err(denali->dev, "page on OOB timeout %d\n", + denali->page); + + /* + * We set the device back to MAIN_ACCESS here as I observed + * instability with the controller if you do a block erase + * and the last transaction was a SPARE_ACCESS. Block erase + * is reliable (according to the MTD test infrastructure) + * if you are in MAIN_ACCESS. + */ + addr = BANK(denali->flash_bank) | denali->page; + cmd = MODE_10 | addr; + index_addr(denali, cmd, MAIN_ACCESS); + } +} + +/* + * this function examines buffers to see if they contain data that + * indicate that the buffer is part of an erased region of flash. + */ +static bool is_erased(uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + if (buf[i] != 0xFF) + return false; + return true; +} +#define ECC_SECTOR_SIZE 512 + +#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) +#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) +#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) +#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) +#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) +#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) + +static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, + uint32_t irq_status, unsigned int *max_bitflips) +{ + bool check_erased_page = false; + unsigned int bitflips = 0; + + if (irq_status & INTR_STATUS__ECC_ERR) { + /* read the ECC errors. we'll ignore them for now */ + uint32_t err_address, err_correction_info, err_byte, + err_sector, err_device, err_correction_value; + denali_set_intr_modes(denali, false); + + do { + err_address = ioread32(denali->flash_reg + + ECC_ERROR_ADDRESS); + err_sector = ECC_SECTOR(err_address); + err_byte = ECC_BYTE(err_address); + + err_correction_info = ioread32(denali->flash_reg + + ERR_CORRECTION_INFO); + err_correction_value = + ECC_CORRECTION_VALUE(err_correction_info); + err_device = ECC_ERR_DEVICE(err_correction_info); + + if (ECC_ERROR_CORRECTABLE(err_correction_info)) { + /* + * If err_byte is larger than ECC_SECTOR_SIZE, + * means error happened in OOB, so we ignore + * it. It's no need for us to correct it + * err_device is represented the NAND error + * bits are happened in if there are more + * than one NAND connected. + */ + if (err_byte < ECC_SECTOR_SIZE) { + int offset; + + offset = (err_sector * + ECC_SECTOR_SIZE + + err_byte) * + denali->devnum + + err_device; + /* correct the ECC error */ + buf[offset] ^= err_correction_value; + denali->mtd.ecc_stats.corrected++; + bitflips++; + } + } else { + /* + * if the error is not correctable, need to + * look at the page to see if it is an erased + * page. if so, then it's not a real ECC error + */ + check_erased_page = true; + } + } while (!ECC_LAST_ERR(err_correction_info)); + /* + * Once handle all ecc errors, controller will triger + * a ECC_TRANSACTION_DONE interrupt, so here just wait + * for a while for this interrupt + */ + while (!(read_interrupt_status(denali) & + INTR_STATUS__ECC_TRANSACTION_DONE)) + cpu_relax(); + clear_interrupts(denali); + denali_set_intr_modes(denali, true); + } + *max_bitflips = bitflips; + return check_erased_page; +} + +/* programs the controller to either enable/disable DMA transfers */ +static void denali_enable_dma(struct denali_nand_info *denali, bool en) +{ + iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); + ioread32(denali->flash_reg + DMA_ENABLE); +} + +/* setups the HW to perform the data DMA */ +static void denali_setup_dma(struct denali_nand_info *denali, int op) +{ + uint32_t mode; + const int page_count = 1; + uint32_t addr = denali->buf.dma_buf; + + mode = MODE_10 | BANK(denali->flash_bank); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + index_addr(denali, mode | denali->page, 0x2000 | op | page_count); + + /* 2. set memory high address bits 23:8 */ + index_addr(denali, mode | ((addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes */ + index_addr(denali, mode | 0x14000, 0x2400); +} + +/* + * writes a page. user specifies type, and this function handles the + * configuration details. + */ +static int write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, bool raw_xfer) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | + INTR_STATUS__PROGRAM_FAIL; + + /* + * if it is a raw xfer, we want to disable ecc and send the spare area. + * !raw_xfer - enable ecc + * raw_xfer - transfer spare + */ + setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); + + /* copy buffer into DMA buffer */ + memcpy(denali->buf.buf, buf, mtd->writesize); + + if (raw_xfer) { + /* transfer the data to the spare area */ + memcpy(denali->buf.buf + mtd->writesize, + chip->oob_poi, + mtd->oobsize); + } + + dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE); + + clear_interrupts(denali); + denali_enable_dma(denali, true); + + denali_setup_dma(denali, DENALI_WRITE); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, "timeout on write_page (type = %d)\n", + raw_xfer); + denali->status = NAND_STATUS_FAIL; + } + + denali_enable_dma(denali, false); + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); + + return 0; +} + +/* NAND core entry points */ + +/* + * this is the callback that the NAND core calls to write a page. Since + * writing a page with ECC or without is similar, all the work is done + * by write_page above. + */ +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + /* + * for regular page writes, we let HW handle all the ECC + * data written to the device. + */ + return write_page(mtd, chip, buf, false); +} + +/* + * This is the callback that the NAND core calls to write a page without ECC. + * raw access is similar to ECC page writes, so all the work is done in the + * write_page() function above. + */ +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + /* + * for raw page writes, we want to disable ECC and simply write + * whatever data is in the buffer. + */ + return write_page(mtd, chip, buf, true); +} + +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return write_oob_data(mtd, chip->oob_poi, page); +} + +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + read_oob_data(mtd, chip->oob_poi, page); + + return 0; +} + +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + unsigned int max_bitflips; + struct denali_nand_info *denali = mtd_to_denali(mtd); + + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | + INTR_STATUS__ECC_ERR; + bool check_erased_page = false; + + if (page != denali->page) { + dev_err(denali->dev, + "IN %s: page %d is not equal to denali->page %d", + __func__, page, denali->page); + BUG(); + } + + setup_ecc_for_xfer(denali, true, false); + + denali_enable_dma(denali, true); + dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); + + clear_interrupts(denali); + denali_setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); + + memcpy(buf, denali->buf.buf, mtd->writesize); + + check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); + denali_enable_dma(denali, false); + + if (check_erased_page) { + read_oob_data(&denali->mtd, chip->oob_poi, denali->page); + + /* check ECC failures that may have occurred on erased pages */ + if (check_erased_page) { + if (!is_erased(buf, denali->mtd.writesize)) + denali->mtd.ecc_stats.failed++; + if (!is_erased(buf, denali->mtd.oobsize)) + denali->mtd.ecc_stats.failed++; + } + } + return max_bitflips; +} + +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + dma_addr_t addr = denali->buf.dma_buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; + + if (page != denali->page) { + dev_err(denali->dev, + "IN %s: page %d is not equal to denali->page %d", + __func__, page, denali->page); + BUG(); + } + + setup_ecc_for_xfer(denali, false, true); + denali_enable_dma(denali, true); + + dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); + + clear_interrupts(denali); + denali_setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + wait_for_irq(denali, irq_mask); + + dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); + + denali_enable_dma(denali, false); + + memcpy(buf, denali->buf.buf, mtd->writesize); + memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); + + return 0; +} + +static uint8_t denali_read_byte(struct mtd_info *mtd) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint8_t result = 0xff; + + if (denali->buf.head < denali->buf.tail) + result = denali->buf.buf[denali->buf.head++]; + + return result; +} + +static void denali_select_chip(struct mtd_info *mtd, int chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + spin_lock_irq(&denali->irq_lock); + denali->flash_bank = chip; + spin_unlock_irq(&denali->irq_lock); +} + +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int status = denali->status; + + denali->status = 0; + + return status; +} + +static int denali_erase(struct mtd_info *mtd, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + uint32_t cmd, irq_status; + + clear_interrupts(denali); + + /* setup page read request for access type */ + cmd = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, cmd, 0x1); + + /* wait for erase to complete or failure to occur */ + irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | + INTR_STATUS__ERASE_FAIL); + + return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS; +} + +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, + int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t addr, id; + int i; + + switch (cmd) { + case NAND_CMD_PAGEPROG: + break; + case NAND_CMD_STATUS: + read_status(denali); + break; + case NAND_CMD_READID: + case NAND_CMD_PARAM: + reset_buf(denali); + /* + * sometimes ManufactureId read from register is not right + * e.g. some of Micron MT29F32G08QAA MLC NAND chips + * So here we send READID cmd to NAND insteand + */ + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, 0x90); + index_addr(denali, addr | 1, 0); + for (i = 0; i < 8; i++) { + index_addr_read_data(denali, addr | 2, &id); + write_byte_to_buf(denali, id); + } + break; + case NAND_CMD_READ0: + case NAND_CMD_SEQIN: + denali->page = page; + break; + case NAND_CMD_RESET: + reset_bank(denali); + break; + case NAND_CMD_READOOB: + /* TODO: Read OOB data */ + break; + default: + pr_err(": unsupported command received 0x%x\n", cmd); + break; + } +} +/* end NAND core entry points */ + +/* Initialization code to bring the device up to a known good state */ +static void denali_hw_init(struct denali_nand_info *denali) +{ + /* + * tell driver how many bit controller will skip before + * writing ECC code in OOB, this register may be already + * set by firmware. So we read this value out. + * if this value is 0, just let it be. + */ + denali->bbtskipbytes = ioread32(denali->flash_reg + + SPARE_AREA_SKIP_BYTES); + detect_max_banks(denali); + denali_nand_reset(denali); + iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, + denali->flash_reg + CHIP_ENABLE_DONT_CARE); + + iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); + + /* Should set value for these registers when init */ + iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); + iowrite32(1, denali->flash_reg + ECC_ENABLE); + denali_nand_timing_set(denali); + denali_irq_init(denali); +} + +/* + * Althogh controller spec said SLC ECC is forceb to be 4bit, + * but denali controller in MRST only support 15bit and 8bit ECC + * correction + */ +#define ECC_8BITS 14 +static struct nand_ecclayout nand_8bit_oob = { + .eccbytes = 14, +}; + +#define ECC_15BITS 26 +static struct nand_ecclayout nand_15bit_oob = { + .eccbytes = 26, +}; + +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* initialize driver data structures */ +static void denali_drv_init(struct denali_nand_info *denali) +{ + denali->idx = 0; + + /* setup interrupt handler */ + /* + * the completion object will be used to notify + * the callee that the interrupt is done + */ + init_completion(&denali->complete); + + /* + * the spinlock will be used to synchronize the ISR with any + * element that might be access shared data (interrupt status) + */ + spin_lock_init(&denali->irq_lock); + + /* indicate that MTD has not selected a valid bank yet */ + denali->flash_bank = CHIP_SELECT_INVALID; + + /* initialize our irq_status variable to indicate no interrupts */ + denali->irq_status = 0; +} + +int denali_init(struct denali_nand_info *denali) +{ + int ret; + + if (denali->platform == INTEL_CE4100) { + /* + * Due to a silicon limitation, we can only support + * ONFI timing mode 1 and below. + */ + if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { + pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); + return -EINVAL; + } + } + + /* allocate a temporary buffer for nand_scan_ident() */ + denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (!denali->buf.buf) + return -ENOMEM; + + denali->mtd.dev.parent = denali->dev; + denali_hw_init(denali); + denali_drv_init(denali); + + /* + * denali_isr register is done after all the hardware + * initilization is finished + */ + if (request_irq(denali->irq, denali_isr, IRQF_SHARED, + DENALI_NAND_NAME, denali)) { + pr_err("Spectra: Unable to allocate IRQ\n"); + return -ENODEV; + } + + /* now that our ISR is registered, we can enable interrupts */ + denali_set_intr_modes(denali, true); + denali->mtd.name = "denali-nand"; + denali->mtd.owner = THIS_MODULE; + denali->mtd.priv = &denali->nand; + + /* register the driver with the NAND core subsystem */ + denali->nand.select_chip = denali_select_chip; + denali->nand.cmdfunc = denali_cmdfunc; + denali->nand.read_byte = denali_read_byte; + denali->nand.waitfunc = denali_waitfunc; + + /* + * scan for NAND devices attached to the controller + * this is the first stage in a two step process to register + * with the nand subsystem + */ + if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) { + ret = -ENXIO; + goto failed_req_irq; + } + + /* allocate the right size buffer now */ + devm_kfree(denali->dev, denali->buf.buf); + denali->buf.buf = devm_kzalloc(denali->dev, + denali->mtd.writesize + denali->mtd.oobsize, + GFP_KERNEL); + if (!denali->buf.buf) { + ret = -ENOMEM; + goto failed_req_irq; + } + + /* Is 32-bit DMA supported? */ + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32)); + if (ret) { + pr_err("Spectra: no usable DMA configuration\n"); + goto failed_req_irq; + } + + denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); + if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) { + dev_err(denali->dev, "Spectra: failed to map DMA buffer\n"); + ret = -EIO; + goto failed_req_irq; + } + + /* + * support for multi nand + * MTD known nothing about multi nand, so we should tell it + * the real pagesize and anything necessery + */ + denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali->nand.chipsize <<= (denali->devnum - 1); + denali->nand.page_shift += (denali->devnum - 1); + denali->nand.pagemask = (denali->nand.chipsize >> + denali->nand.page_shift) - 1; + denali->nand.bbt_erase_shift += (denali->devnum - 1); + denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; + denali->nand.chip_shift += (denali->devnum - 1); + denali->mtd.writesize <<= (denali->devnum - 1); + denali->mtd.oobsize <<= (denali->devnum - 1); + denali->mtd.erasesize <<= (denali->devnum - 1); + denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; + denali->bbtskipbytes *= denali->devnum; + + /* + * second stage of the NAND scan + * this stage requires information regarding ECC and + * bad block management. + */ + + /* Bad block management */ + denali->nand.bbt_td = &bbt_main_descr; + denali->nand.bbt_md = &bbt_mirror_descr; + + /* skip the scan for now until we have OOB read and write support */ + denali->nand.bbt_options |= NAND_BBT_USE_FLASH; + denali->nand.options |= NAND_SKIP_BBTSCAN; + denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; + + /* no subpage writes on denali */ + denali->nand.options |= NAND_NO_SUBPAGE_WRITE; + + /* + * Denali Controller only support 15bit and 8bit ECC in MRST, + * so just let controller do 15bit ECC for MLC and 8bit ECC for + * SLC if possible. + * */ + if (!nand_is_slc(&denali->nand) && + (denali->mtd.oobsize > (denali->bbtskipbytes + + ECC_15BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE)))) { + /* if MLC OOB size is large enough, use 15bit ECC*/ + denali->nand.ecc.strength = 15; + denali->nand.ecc.layout = &nand_15bit_oob; + denali->nand.ecc.bytes = ECC_15BITS; + iowrite32(15, denali->flash_reg + ECC_CORRECTION); + } else if (denali->mtd.oobsize < (denali->bbtskipbytes + + ECC_8BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE))) { + pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes"); + goto failed_req_irq; + } else { + denali->nand.ecc.strength = 8; + denali->nand.ecc.layout = &nand_8bit_oob; + denali->nand.ecc.bytes = ECC_8BITS; + iowrite32(8, denali->flash_reg + ECC_CORRECTION); + } + + denali->nand.ecc.bytes *= denali->devnum; + denali->nand.ecc.strength *= denali->devnum; + denali->nand.ecc.layout->eccbytes *= + denali->mtd.writesize / ECC_SECTOR_SIZE; + denali->nand.ecc.layout->oobfree[0].offset = + denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; + denali->nand.ecc.layout->oobfree[0].length = + denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - + denali->bbtskipbytes; + + /* + * Let driver know the total blocks number and how many blocks + * contained by each nand chip. blksperchip will help driver to + * know how many blocks is taken by FW. + */ + denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift; + denali->blksperchip = denali->totalblks / denali->nand.numchips; + + /* override the default read operations */ + denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; + denali->nand.ecc.read_page = denali_read_page; + denali->nand.ecc.read_page_raw = denali_read_page_raw; + denali->nand.ecc.write_page = denali_write_page; + denali->nand.ecc.write_page_raw = denali_write_page_raw; + denali->nand.ecc.read_oob = denali_read_oob; + denali->nand.ecc.write_oob = denali_write_oob; + denali->nand.erase = denali_erase; + + if (nand_scan_tail(&denali->mtd)) { + ret = -ENXIO; + goto failed_req_irq; + } + + ret = mtd_device_register(&denali->mtd, NULL, 0); + if (ret) { + dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n", + ret); + goto failed_req_irq; + } + return 0; + +failed_req_irq: + denali_irq_cleanup(denali->irq, denali); + + return ret; +} +EXPORT_SYMBOL(denali_init); + +/* driver exit point */ +void denali_remove(struct denali_nand_info *denali) +{ + denali_irq_cleanup(denali->irq, denali); + dma_unmap_single(denali->dev, denali->buf.dma_buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); +} +EXPORT_SYMBOL(denali_remove); |